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Implementation of a patient-flow model to optimize inpatient hospital capacity 

 

ABSTRACT 

Rationale How to determine the minimal number of beds in hospital inpatient units (IPs) to 

achieve patient waiting-time targets is unknown.  

Objectives To determine the relationship between patient waiting-time related performance 

measures and bed utilization, so as to optimize IP capacity decisions.  

Methods We simulated a novel queueing model specifically developed for the IPs. The model 

takes into account salient features of patient-flow dynamics and was validated against hospital 

census data. We used the model to evaluate inpatient capacity decisions against multiple waiting 

time outcomes: (1) daily average, peak-hour average, and daily maximum waiting times, and (2) 

proportion of patients waiting strictly more than 0, 1, and 2 hours. We published the results in a 

simple Microsoft Excel tool to allow administrators to conduct sensitivity analysis.  

Results To achieve our hospital’s goal of rooming patients within 30 to 60 minutes of IP bed 

requests, our model predicted the optimal daily average occupancy levels should be 89% – 92% 

(182 – 188 beds) in the Medicine, 74% – 79% (41 – 43 beds) in the Cardiology, and 72% – 78% 

(23 – 25 beds) in the Observation cohorts. Larger IP cohorts can achieve the same queueing-

related performance measure as smaller ones, while tolerating a higher occupancy level. 

Moreover, patient waiting time increases rapidly as the occupancy level approaches 100%.  

Conclusions No universal optimal IP occupancy level exists. Capacity decisions should 

therefore be made on a cohort-by-cohort basis, incorporating the comprehensive patient-flow 
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characteristics of each cohort. To this end, patient-flow queueing models tailored to the IPs are 

needed.  

INTRODUCTION 

Hospitals are constantly examining how to provide the right care, in the right place, and in the 

right time. To achieve satisfactory outcomes, it is imperative that patients be admitted in a timely 

manner to the unit that is most appropriate for them. This, in turn, requires the hospital to have 

sufficient capacity in each inpatient and observation unit/cohort (IP) to satisfy the demand. 

Indeed, chronic shortage of IP capacity results in overcrowding and boarding of patients in the 

emergency department (ED) and other areas, which puts patients at risk for suboptimal care and 

potential harm.1-4 Inadequate capacity can also increase the burden on hospital staff and 

accelerate clinician burnout.5 Thus, hospital administrators are faced with the difficult task of 

balancing the tradeoffs between the high costs associated with increasing the bed capacity, and 

the need to ensure timely care. The fundamental challenge lies in a lack of comprehensive 

framework for understanding the impact of resource allocation decisions on patient-flow 

outcomes. 

In hospital capacity planning, particular attention must be given to the resource allocation in the 

(IPs) which, due to their central location (e.g., as hubs) in the hospital network, have large 

impacts on upstream units, such as the ED, intensive-care units (ICUs), post anesthesia care unit 

(PACU), the operating rooms (ORs), and external direct admission sources.6-9 Specifically, 

congestion in the IPs tends to “propagate” upstream, because patients who need to be admitted to 

the IPs cannot be transferred until IP beds become available. Thus, insufficient capacity in the 

IPs can lead to ED and PACU boarding, which, in turn, may cause further undesirable outcomes 
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including patients who leave the emergency department without being seen (LWBS), ambulance 

diversion, and OR holding.10,11  

The ideal occupancy in the IPs is often stated to be such that daily average occupancy is around 

85%.12-18 One of the earliest expression of this occupancy can be traced to the discrete-event 

simulation implemented in Excel by Bagust, Place & Posnett (1999).12 The authors report that: 

“Risks are discernible when average bed occupancy rates exceed about 85%, and an acute 

hospital can expect regular bed shortages and periodic bed crises if average bed occupancy rises 

to 90% or more.”12(p. 155) Later, in addressing the overcrowding problem faced by the Australian 

healthcare system, a 2004 Australasian College for Emergency Medicine (ACEM) position 

study13 again advocates 85% occupancy: “Queuing theory developed by Erlang nearly 100 years 

ago tells us that systems are most efficient when they operate at 85% capacity. This applies to 

queues at the local bank waiting for the teller or at ticket booths at the MCG [Melbourne Cricket 

Ground].”14(p. 42) Others have called for similar 85% occupancy.15,16   

We are unaware of a general result (e.g., rule or theorem) in queueing theory claiming that 

systems are most efficient when operating at 85% utilization; indeed, this level of utilization is 

often too low for large systems with many servers, and too high for small systems with a small 

number of servers. The lack of a universal optimality rule can partially explain why different 

studies found different optimal occupancy rates, ranging from 70% – 90%.19-21 Furthermore, as 

was mathematically demonstrated in Dong & Perry (2020),22 existing queueing models (such as 

Erlang’s), do not accurately capture the complex operational characteristics of IP cohorts and the 

patient-flow dynamics wherein, necessitating the development of specialized models. 

We sought to address this gap by implementing a novel queueing model specifically designed for 

hospital IPs in Dong & Perry (2020)22 to analyze the relationship between the occupancy levels 
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of a unit (or cohort of beds), and timeliness of obtaining a bed in the cohort. We quantified the 

minimum number of beds needed to achieve patient waiting-time related performance measures 

for each IP. In particular for the Medicine, Cardiology, and Observation cohorts of a large urban 

academic hospital (which houses 400 private IP rooms and 92 private ICU rooms), hospital 

management set the patient waiting-time performance goal to be less than 60 minutes, defined as 

the time difference between bed request and bed assignment. To this end, we simulated the 

queueing model for each cohort, validated the model’s accuracy by comparing its prediction to 

patient-flow data, and determined the optimal number of beds needed. To facilitate ease of use of 

the model without necessitating expertise in queueing theory and simulation techniques we 

published the results in a simple Microsoft Excel tool to allow administrators to conduct 

sensitivity analysis and evaluate various bed allocation policies. The toolbox could be calibrated 

to other IP cohorts and hospitals as well, using the same input data as described in the Model 

Input Section below.  

METHODS 

Queueing theory is concerned with the modeling and analyses of randomly evolving systems that 

process work, such as communication, manufacturing, inventory, and service systems, among 

others.23-30 In our IP setting, the “work” is the clinical care of patients, and the “servers” are the 

beds in the cohort under consideration. Patients are considered to be “queueing” (waiting for 

service) if their bed requests have been ordered, but no bed was yet made available. Those 

patients are waiting for their requested beds in other units of the hospital, with most of them 

boarding in the ED. A patient’s waiting time is then the period between the time at which the bed 

request is made, and the assignment time of the patient to an available IP bed in the desired 

service.  
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Model description 

We simulated the queueing model in Dong & Perry (2020)22 using Monte-Carlo methods, which 

takes into account the salient patient-flow characteristics of hospital IP cohorts. The dynamics in 

the queueing model are as follows (see Figure 1 for a graphical representation): Bed requests to 

the IPs are entered with a rate that is equal to the average number of bed requests per hour. If a 

bed request is made while there are available beds in the IP, the patient for whom the bed is 

requested is assumed to be assigned that bed immediately. If no bed is available when a request 

is made, the corresponding patient waits until a bed becomes available. If multiple patients are 

waiting for a bed in the same IP, the bed is assigned in the order that it was requested (first in 

first out). After the patients have recovered, they remain in their beds until the next morning 

physician round in which they are identified as “recovered” and given a disposition order to be 

discharged. However, the actual departure does not take place immediately after the morning 

rounds and occurs after additional administrative steps and delays. Those latter delays, which are 

due to reasons such as paperwork, transportation arrangement, and patient education by the care 

team, etc., may take several hours for some patients. We term the time difference between the 

discharge order and the actual departure of a patient as the “discharge delay.” The recovery time 

and the discharge delay together add up to the patient’s length of stay (LOS) in the IP. We note 

that the departure process just described, namely, the fact that hospitalized patients depart only 

after discharge decisions are made in the morning round, with subsequent discharge delays, is 

unique to our model. Further, it is closer to reality than any other discharge process in the 

queueing literature. It is therefore significant that it has substantial impact on the patient-flow 

dynamics, implying that standard queueing models are not appropriate for IP modeling. Our 

novel queueing model allows for generalizability to other hospitals and cohorts that satisfy the 
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key model assumptions: (i) (mostly) unscheduled patient demand, (ii) random bed request times 

and LOS, (iii) physician morning round, and (iv) discharge delay.   

We make three remarks on the validity of the aforementioned model assumptions to capture 

reality. First, patients can experience further delay after being assigned an IP bed. We refer to 

this post-assignment delay (in comparison to the bed assignment delay) as the baseline delay, 

which can include the time managers need to communicate with environmental services team, 

the travel time taken by the servers to move to the assigned bed location, the bed cleaning time, 

and the time required to finish duties associated with any prior assignment. At our hospital, the 

average baseline delay is approximately 29 minutes. The bed assignment delay and baseline 

delay add up to the total admission delay of a patient (see Table 2 for a summary of IP delay 

measures). That said, it is important that our goal is to control the bed assignment delay, which is 

the time between the bed request and bed assignment, to be between 30 and 60 minutes, 

independently of the baseline delay. Second, it is possible in practice (and not explicitly captured 

by the model) that patients who are more acutely ill would be preferentially admitted out of 

order. Nevertheless, assigning different priorities and changing the sequence of the queueing 

patients does not affect the average waiting time measure. Thus, the model is effective in making 

capacity decisions regardless of the prioritization of patients. Third, when a patient waits 

excessively long before a primary bed becomes available, hospital managers may choose to 

assign him/her to a non-primary bed, which is often referred to as off-service placement. While 

the practice of off-service placement exists, we do not allow it in the model when determining 

the optimal bed capacity since the goal is for patients to be assigned to the most appropriate 

medical service unit specific to their clinical needs. Indeed, off-service placement has been 

shown to be associated with worse medical outcomes and longer LOS, which are undesirable 
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from both the clinical and the efficiency perspective. In our analysis, the bed capacity is set such 

that off-service placement does not occur during “normal” state of operation. Therefore, the 

waiting times presented in the paper represent those for ideal bed assignment instead of those 

with patient overflow.        

Model input  

At our hospital, the model was found to appropriately describe the bed request and discharge 

patterns in the Medicine, Cardiology, and Observation cohorts, because most admissions to these 

cohorts are unscheduled (mainly from other hospital units or the ED), and each of these cohorts 

had the discharge pattern described above (morning round and discharge delays). Because the 

hospital geographically localizes clinical cohorts to concentrate specialized care teams for the 

patients, these cohorts have a fixed number of beds with minimal overflow to other cohorts.   

For each cohort, we fit the input parameters for the model from the hospital’s data. These include 

(i) the average number of bed requests per hour (arrival rate); (ii) the average LOS of patients in 

the IP; (iii) the average number of beds that become available (departure rate) per hour on a 

typical day; and (iv) the typical time in the morning at which the round ends. We make two 

comments on the model input: First, departure rate in the model is reflected by the average 

number of beds that become available per hour on a typical day (input iii), which can be 

estimated from the patient departure time stamps in the data. For the discharge delay, if 10% of 

patients depart the unit 2 hours after the morning round on average, then the discharge delay is 

assumed to be 2 hours with probability 0.1. Second, we use the typical end time of the morning 

round (input iv) to approximate the average discharge order time. Alternatively, hospital 

management can calculate the mean of discharge order times across all patients from data and 

use this value for input (iv).     
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Model output 

The model can be used to evaluate patient-flow related performance metrics at any bed capacity 

level. Focusing on controlling patients’ average waiting time for an IP bed, we computed five 

performance measures for any given number of beds: (1) hourly occupancy level in the IP 

cohort; (2) average waiting time for bed requests in the IP on a typical day; (3) peak-hour 

waiting time (i.e., waiting time for bed requests made during the busiest hour of the day); (4) 

daily-maximum waiting time (i.e., the maximum waiting time for bed requests on a typical day); 

(5) the proportion of patients that have to wait due to unavailability of beds upon the request, as 

well as the proportion of patients that wait strictly more than 1 hour or 2 hours for and IP bed. 

Given desired waiting-time performance constraints, such as keeping the average waiting time 

within the range of 30 – 60 minutes, the model can then be used to determine the number of beds 

(and the corresponding occupancy level) needed in order to achieve the desired service 

constraint. 

Model validation 

We validate the accuracy of the queueing model proposed by Dong & Perry (2020)22 for our 

hospital by calibrating the model input from data, and comparing the model output to the 

observed dynamics. For the Medicine cohort, with its 172 beds, this comparison is depicted in 

Figure 2. We observe that the hourly total admission delay predicted by the model matches the 

data closely. In particular, 78.5% of the hourly variation in the admission delay throughout the 

day can be explained by the model (see captions of Figure 2 for detailed calculation). However, 

there is discrepancy between the model-predicted and observed bed occupancy process. In 

particular, as shown in Figure 2(b), the observed average occupancy never reaches 100%, 

suggesting that there is always spare capacity on average. In contrast, Figure 2(a) indicates long 
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admission delay during most of the day, especially in the time window when the observed 

occupancy level is the lowest. Given the long admission delay during the day, the 

underrepresentation of mid-day occupancy in the data can be attributed to census inaccuracy 

during turnover of beds or temporary closure of beds for maintenance, which may falsely suggest 

less than 100% occupancy. Note that the census issue related to the occupancy data is restricted 

to the operations of our hospital, and may not be generalizable to other sites. On the other hand, 

our model predicts 100% occupancy during the hours when patients experience excessive delays.  

Model implementation 

The simulation of the queueing model was coded into an Excel toolkit which can be easily used 

by hospital management. Additionally, to prepare the hospital for projected future demand, we 

incorporated the forecasted compound annual growth rate for demand in the model, so that it 

could be used to determine future capacity needs as market conditions change. The user interface 

of the toolbox is shown in Figure 5 (see the corresponding captions for detailed instructions). 

The same toolbox can be easily employed by any hospital to analyze units/cohorts that adhere to 

the modeling assumptions, by simply feeding it with the required data as input. We have made 

the toolkit openly accessible via: https://github.com/YueHu-CU/Implementation-of-a-patient-

flow-model-to-optimize-inpatient-hospital-capacity.  

RESULTS 

Relationship of patient waiting time and IP occupancy level 

Simulation results of our model provide the average the waiting time, peak-hour waiting time, 

and the daily-maximum waiting time for different bed capacity levels (Figure 3). For example, 

the Medicine cohort achieves an average occupancy level of 92.0% with 182 beds, for which the 

https://github.com/YueHu-CU/Implementation-of-a-patient-flow-model-to-optimize-inpatient-hospital-capacity
https://github.com/YueHu-CU/Implementation-of-a-patient-flow-model-to-optimize-inpatient-hospital-capacity
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resulting average delay is 54.3 minutes, peak-hour delay is 77.6 minutes, and the daily maximum 

delay is 158.2 minutes. We also obtain the proportion of patients that would wait for more than 1 

and more than 2 hours in correspondence to difference bed capacities (Figure 4). At 92.0% 

average occupancy level, it is estimated that 16.3% of patients would wait for more than 1 hour, 

and 12.6% of patients would wait for more than 2 hours for a bed in the Medicine cohort. The 

figure also demonstrates that the marginal degradation in the waiting-time performance measures 

becomes more rapid as the number of beds decreases and the average occupancy level increases.                

Optimal bed capacity decisions 

With the goal of an average waiting time between 30 and 60 minutes, the simulated model 

determined target average occupancy levels of 89% – 92% for the Medicine cohort, 74% – 79% 

for the Cardiology cohort, and 72% – 78% for the Observation cohort; see Table 1. Table 1 also 

shows the current number of beds in each cohort (in the Current beds column), the current 

average occupancy and waiting times, and the number of beds that needs to be added to each 

cohort so as to achieve the target waiting times. Similarly, the desired occupancy levels can be 

determined for other target performance measures. For example, if the hospital management 

aims to control the peak-hour delay to be less than 30 minutes, then the target average occupancy 

level is 88% for the Medicine cohort, 71% for the Cardiology cohort, and 69% for the 

Observation cohort.  

Identification of critical capacity levels or capacity “tipping points” 

Patient waiting time increases rapidly as the occupancy level approaches 100% in each IP cohort. 

We identify “tipping point” as the critical occupancy level above which service quality degrades 
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sharply. Formally, we define the marginal increase (alternatively, the growth rate) in the average 

waiting time after removing 1 bed when the total number of beds is N as  

S(N) = (average waiting time with N – 1 beds) – (average waiting time with N beds). 

Tipping point is the occupancy level at which the marginal increase in the average waiting time 

first exceeds 30 minutes. Consider the Cardiology cohort in particular (Figure 3). As the number 

of beds decreases from 36 (85% average occupancy) to 35 (87% average occupancy), the 

average waiting time increases by 20 minutes. As the number of beds further decreases from 35 

(87% average occupancy) to 34 (90% average occupancy), the average waiting time increases by 

49 minutes. Thus, we identify the average occupancy level of 87% with 35 beds as the tipping 

point for the Cardiology cohort. Similarly, the tipping point is 99% with 169 beds for the 

Medicine cohort, and 85% with 20 beds for the Observation cohort. 

Capacity expansion outcome 

Based on the model recommendations, we elected to expand the Medicine bed capacity by a total 

of 20 beds by September 2018 (+8 beds on 08/20/2018 and +12 beds on 09/10/2018), and in 

tangent to that also expanded provider and nurse coverage for this hospital service line. A direct 

outcome was the reduction in ED ambulance diversion, which was utilized in time of severe 

overcrowding to reduce demand and mitigate congestion (Figure 6). Prior to expanding beds for 

the Medicine unit, diversion hours for our hospital were as high as > 50% of the hours in a 

month. As a consequence of the reduced waiting times and occupancy levels that the novel 

patient-flow model correctly predicted, our hospital was able to sustain the reduction in 

ambulance diversion to < 20% of the hours in October and November 2018.  

DISCUSSION 
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Understanding the relationship between hospital occupancy level and queueing-related 

performance measures is a complex problem confronting hospital and health system 

management. Despite continuous efforts in gauging the ideal occupancy that meets a desired 

service quality, overcrowding remains a common state of affairs across hospitals, and is foreseen 

to keep worsen.15,31  

To address the capacity-planning problem in hospitals, we utilized a high-fidelity queueing 

model which is specifically designed for IPs that employ morning rounds. Our 

model successfully retrieves the one-to-one relationship (i.e., tradeoff curves) between the 

waiting-time related performance measures and the occupancy level. Understanding this 

interplay can inform hospital administrators on the correct occupancy level to work towards so as 

to achieve the desired quality-of-care target. The insights and results gained are summarized 

below. 

1. There is no universal occupancy level that can be considered “ideal” across IP cohorts for 

the following two reasons. First, different patient waiting time performance targets can 

lead to different desired occupancy levels; for example, the occupancy required to keep 

the average waiting time below a certain threshold may be different from the occupancy 

that is required to keep the probability of patients waiting below a desirable value. 

Second, and more importantly, the occupancy required in order to achieve a fixed 

performance measure depends on other characteristics of the cohort, such as the average 

LOS, the bed request rate (patients’ demand), etc. In particular, two different cohorts can 

have two very different ideal occupancies, even if they both target the exact same 

performance metric. Indeed, as we demonstrate for our hospital, to achieve an average 

waiting time of around 30 – 60 minutes, the Observation cohort should have its 
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occupancy at around 70%, whereas the Medicine cohort should have an occupancy of 

approximately 90%; see Figure 4. Thus, no “rule of thumb,” such as the 85% occupancy 

rule, can be used for all cohorts. An optimal occupancy must be determined on a case-by-

case basis, depending on the specific characterization of the IP and its patient flow 

dynamics, and on the performance metric goals management seeks to achieve. For 

example, with everything else held constant, it follows from classical queueing theory 

that cohorts with smaller variability in LOS may achieve the same waiting time 

performance with fewer beds.  

2. It can be mathematically verified that larger cohorts higher patient volume can run at a 

higher occupancy level while achieving the same queueing-related performance measures 

as smaller ones with fewer patients. Indeed, as can be seen in Figure 4, the Medicine 

cohort (188 beds) can achieve 30 minutes average waiting time with 89% occupancy, 

whereas the same performance requires a 74% occupancy in Cardiology (43 beds), and a 

72% occupancy in Observation (25 beds). This empirical verification is a demonstration 

of the economies-of-scales principle for queueing systems, which stipulates that service 

efficiencies increase directly as the system scale increases. In particular, the randomness 

in patient-flow dynamics plays a smaller role in larger systems than in smaller ones. The 

insight for hospital administrators is two-fold: First, at least as far as patient flow is 

concerned, there are operational advantages (e.g., reducing waiting time for bed requests) 

for pooling cohorts (beds) together when this is clinically and operationally feasible. 

Second, expanding capacity for a small cohort may lead to larger marginal gain in 

performance stabilization than expanding capacity for a large cohort. (In reality, 

prioritization of increasing capacity may also be given to cohorts that are more frequently 
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selected as the off-service placement destinations. This latter aspect is not considered in 

the scope of this paper.) 

3. As shown by Figures 3 and 4, patient waiting time and the proportion of patients waiting 

for a bed increase rapidly as the occupancy level approaches 100%. This suggests that 

hospitals operating at a high occupancy level (close to full bed utilization) will 

experience drastic deterioration in service timeliness with slight increases in demand. 

Recall that the tradeoff curves (Figures 3) suggest that the critical occupancy levels are 

approximately 99% for Medicine, 87% for Cardiology, and 85% for Observation. These 

are occupancy levels at which the change in the growth rate of the average waiting time 

exceeds 100% if 1 additional bed is removed. (The fact that the tipping point is larger for 

larger cohorts is another indication of the economies of scales discussed above.) 

Comparing these critical occupancy levels to the target occupancy levels, we observe that 

the increase in bed capacity recommended by the model will lead to improved and robust 

system performance, in that variability plays less of a role in pushing the IPs into severe 

congestion.  

Strengths of the model  

In practice, the queueing model is easy to implement and is relatively accurate. Hospital 

management used the model to make a data-driven decision to increase Medicine, Cardiology 

and Observation beds at the hospital to improve bed availability and reduce patient waiting times. 

Our Excel program for the model is generalizable to other hospitals and cohorts within similar 

patient-flow characteristics described in the Methods Section. Furthermore, the model can be 

used to conduct sensitivity analysis that is not in the scope of this paper. For example, given that 

discharge delay negatively impacts the patient-flow process because a discharged patient can 
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block an incoming patient by occupying the bed after being discharged, the model can be used to 

quantify the impact of shortening discharge delays and discharging patients earlier in the day. 

Limitations of the model 

General limitations of this model include the fact that it does not directly incorporate seasonal 

variations (note, however, that the model does allow hourly and daily variations). For hospitals 

where seasonality is salient, this issue can be circumvented by analyzing each season of the year 

separately. In addition, the queueing model assumes that the decision to discharge a patient is 

made in the morning rounds. In reality, some discharge decisions are made later in day, 

prompting continuous, rather than one-time, discharge decisions. When the number of discharge 

decisions that are taken outside the morning rounds is relatively small, the queueing model is 

accurate. If discharge decisions outside the morning rounds are common, the model provides a 

worst-case scenario on the achievable performance metrics. Lastly, while our toolkit assumes 

exponential distribution for LOS (as in traditional queueing models), existing empirical evidence 

suggests that LOS in IPs may be more accurately described by lognormal distributions.30 The 

simulation can be refined to include other hospital-specific operational features (including but 

not restricted to the continuous physician rounding and LOS distribution) not captured by the 

current model.  

Lastly, the queueing model we have implemented is limited to settings where all beds are in 

private rooms. Bed assignment decisions can be much more complex in settings where the 

infection precaution is high, and the number of shared rooms is large. To the best of our 

knowledge, how to determine the number of beds (single vs. shared) and make the corresponding 

bed assignment decisions effectively is mostly done by experience. We identify this problem as 

an interesting direction for future research. 
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CONCLUSION 

We described the utilization of a high-fidelity queueing model that accurately captures the 

tradeoffs between patient waiting-time related performance measures and IP bed utilization. 

Specifically, given desired operational performance constraints (such as average waiting times, 

proportion of patients waiting for a bed, etc.), that queueing model can be used by hospital 

management to derive the optimal number of beds, namely, the minimal number of beds that 

satisfies the desired service-level constraints. The model’s computational algorithms were coded 

into an easy-to-use Excel toolkit that can be used by any hospital with similar IP operational 

characteristics and patient-flow dynamics, namely: (i) (mostly) unscheduled patient demand, (ii) 

random bed request times and LOS, (iii) physician inspection round, and (iv) discharge delay.  

The toolkit was employed by a large urban academic hospital to recommend the number of 

additional beds that are needed in order to constrain the average patient wait times to 30 – 60 

minutes in the Medicine, Observation and Cardiology cohorts. 

REFERENCES 

1. Stretch R, et al. Effect of boarding on mortality in ICUs. Crit Care Med 2018;46(4):525-

531. 

2. Lott JP, et al. Critical illness outcomes in specialty versus general intensive care units. 

Am J Respir Crit Care Med 2009;179(8):676-683. 

3. Singer AJ, et al. The association between length of emergency department boarding and 

mortality. Acad Emerg Med 2011;18(12):1324-1329. 

4. Al-Qahtani S, et al. The association of duration of boarding in the emergency room and 

the outcome of patients admitted to the intensive care unit. BMC Emerg Med 2017;17(1):34. 



 17 

5.  Rutherford PA, et al. Achieving hospital-wide patient flow. IHI White Paper. 

Cambridge: Institute for Healthcare Improvement 2017. 

6. Trzeciak S, Rivers EP. Emergency department overcrowding in the United States: an 

emerging threat to patient safety and public health. Emerg Med J 2003;20(5):402-405. 

7.  McGowan JE, et al. Operating room efficiency and hospital capacity: factors affecting 

operating room use during maximum hospital census. J Am Coll Surg 2007;204(5):865-871. 

8. Hall, R., et al. Modeling patient flows through the healthcare system. In: Patient flow: 

Reducing delay in healthcare delivery 2006;1-44. 

9. Asplin BR, Magid DJ. If you want to fix crowding, start by fixing your hospital. Ann 

Emerg Med 2007;3(49):273-274. 

10. McGowan JE, et al. Operating room efficiency and hospital capacity: factors affecting 

operating room use during maximum hospital census. J Am Coll Surg 2007;204(5):865-871. 

11. Shen YC, Hsia RY. Association between ambulance diversion and survival among 

patients with acute myocardial infarction. JAMA 2011;305(23):2440-2447. 

12. Bagust A, Place M, Posnett JW. Dynamics of bed use in accommodating emergency 

admissions: stochastic simulation model. BMJ 1999;319(7203):155-158. 

13. Australasian College for Emergency Medicine. Access block and overcrowding in 

emergency departments. April 2004.  

14. Bain CA, et al. Myths of ideal hospital occupancy. Med J Aust 2010;192(1):42-43. 

15. Fatovich DM, Hughes G, McCarthy SM. Access block: it’s all about available beds. Med 

J Aust 2009;190(7):362-363. 



 18 

16. Cameron PA, Joseph AP, McCarthy SM. Access block can be managed. Med J Aust 

2009;190(7):364-368.  

17. Forero R, McCarthy S, Hillman K. Access block and emergency department 

overcrowding. In: Annual Update in Intensive Care and Emergency Medicine 2011; 720-728. 

18. Jones R. Optimum bed occupancy in psychiatric hospitals. Psychiatry On-line 2013;552. 

19. Green LV, Nguyen V. Strategies for cutting hospital beds: the impact on patient service. 

Health Serv Res 2001;36(2):421-442. 

20. Hillier DF, et al. The effect of hospital bed occupancy on throughput in the pediatric 

emergency department. Ann Emerg Med 2009;53(6):767-776. 

21. Devapriya P, et al. StratBAM: a discrete-event simulation model to support strategic 

hospital bed capacity decisions. J Med Syst 2015;39(10):130. 

22. Dong J, Perry O. Queueing models for patient-flow dynamics in inpatient wards. Oper 

Res. 2020;68(1):250-275. 

23. Buhaug H. Long waiting lists in hospitals: operational research needs to be used more 

often and may provide answers. BMJ 2002;324:252-253. 

24. Gorunescu F, McClean SI, Millard PH. A queueing model for bed-occupancy 

management and planning of hospitals. J Oper Res Soc 2002;53(1):19-24. 

25. Young T, et al. Using industrial processes to improve patient care. BMJ 

2004;328(7432):162-164. 

26. McManus ML, et al. Queuing theory accurately models the need for critical care 

resources. Anesthesiology 2004;100(5):1271-1276. 



 19 

27. Bitran GR, Tirupati D. Tradeoff curves, targeting and balancing in manufacturing 

queueing networks. Oper Res 1989;37(4):547-564. 

28. Koole G, Mandelbaum A. Queueing models of call centers: an introduction. Ann Oper 

Res 2002;113(1-4):41-59. 

29. Alfa AS. Queueing theory for telecommunications: discrete time modelling of a single 

node system. Springer Science & Business Media 2010. 

30. Armony M, et al. On patient flow in hospitals: a data-based queueing-science 

perspective. Stochastic Systems 2015;5(1):146-94. 

31. Gillam Stephen. Rising hospital admissions. BMJ 2010;340:c636. 

 

Table 1 Bed capacity decision for the Medicine, Cardiology, and Observation cohorts (The 

target occupancy is set to achieve 30 – 60 min avg. waiting time) 

Cohort Current beds Current avg. 

occupancy 

Current avg. 

waiting Time 

Target avg. 

occupancy  

Number of 

beds to add 

Medicine 172 97% 232 (min) 89% – 92% 10 – 16 

Cardiology 32 97% 333 (min) 74% – 79% 9 – 11 

Observation 20 85% 166 (min) 72% – 78% 3 – 5 

 

Table 2 Different IP delay measures 

Measure Start End Cause Performance 
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goal?  

Bed assignment delay 

(waiting time) 

Bed request 

order time 

Bed 

assignment 

time 

IP bed is located and 

assigned to another 

patient 

Yes – 30 – 60 

minutes on 

average 

Post-assignment 

delay (baseline delay) 

Bed 

assignment 

time 

IP 

admission 

time 

physician report/handoff, 

bed cleaning completion, 

transportation, etc. 

No – 29 

minutes on 

average 

(Total) admission 

delay 

Bed request 

order time 

IP 

admission 

time 

sum of bed assignment 

delay and post-

assignment delay 

− 

Discharge delay Physician 

discharge 

order time 

Patient 

departure 

time 

paperwork, transportation 

arrangement, patient 

education, etc. 

No 

 

Figure 1 Typical patient-flow timeline in an IP cohort 

 

Figure 2 Comparisons of the model to data from the Medicine cohort (Left: Average admission 

delay for a bed in the Medicine cohort; Right: Hourly occupancy rate in the Medicine cohort)*,†,‡ 
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* The model is validated retrospectively for satisfied inpatient bed demand (i.e., excluding unmet 

demand).  

† In our hospital, bed requests are sporadically made early in the morning before 10am, during 

which there is negligible queue for the inpatient beds. Thus, admission delay during those hours 

is estimated to be the average baseline delay (29 minutes) by the model. Between 10am and 6pm, 

a majority of bed requests are made from the upper stream units. Due to the large volume of bed 

requests and the discharge delay in the patient departure process, patients start to queue for the 

inpatient beds and experience significant waiting time beyond the baseline delay. After 6pm, all 

the bed requests are eventually accommodated as all the discharged patients have left the unit, 

after which the model-predicted admission delay is again equal to the average baseline delay. 

‡ The observed average admission delay in data for each hour of the day is (19.4, 19.8, 24.2, 

22.7, 25.9, 30.0, 41.9, 35.2, 63.1, 60.0, 96.8, 149.0, 147.3, 155.0, 138.0, 141.5, 112.1, 82.2, 73.6, 

58.0, 47.9, 31.6, 23.5, 17.2) minutes. The predicted average admission delay from model for 

each hour of the day is (29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 144.2, 

173.0, 158.6, 144.2, 115.4, 101.0, 57.8, 43.4, 29.0, 29.0, 29.0, 29.0, 29.0) minutes. We follow the 

same rationale as in regression analysis to calculate a “coefficient of determination” for our 
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model. In particular, the total sum of squares (SStot, proportional to the variance of the observed 

data) is 53824.25, and the sum of squares of the residuals (SSres) is 11596.85. Then the 

coefficient of determination (defined as 1 - SSres/SStot) is equal to 0.785. This means that 78.5% 

of the hourly variation in the admission delay throughout the day can be explained by our model.  

Figure 3 Waiting-time measures for the Medicine, Cardiology, and Observation cohorts (Left: 

Medicine; Middle: Cardiology; Right: Observation)* 

 

* The performance spectrum is derived for projected inpatient bed demand informed by the 

hospital management. 

Figure 4 Proportions of patients delayed for the Medicine, Cardiology, and Observation cohorts 

(Left: Medicine; Middle: Cardiology; Right: Observation)* 
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* The performance spectrum is derived for projected inpatient bed demand informed by the 

hospital management.  

Figure 5 User interface of the Excel toolbox* 

 
* Input parameters: (a) Request Rate (number/hour)†: number of bed requests during each 
hour on a typical day, (b) Discharge Density (percentage/hour): proportion of patient 
departures during each hour on a typical day (i.e., number of patient departures during each hour 
/ all patient departures throughout the day), (c) Number of Beds: number of beds to test 
performance, (d) Average LOS (days), (e) % Compound Annual Increase in Bed Request 
Rate: projected annual increase in inpatient demand, (f) Choose Year: number of years ahead 
(Year 0 – 5) for capacity planning. 

Output: (A) Occupancy Level: average occupancy in the cohort, (B) Average Delay (min): 
average waiting time for bed requests on a typical day, (C) Peak-Hour Delay (min):  average 
waiting time for bed requests made during the busiest hour on a typical day, (D) Daily 
Maximum Delay (min): maximum waiting time for bed requests on a typical day, (E) Delayed 
Patients (%): proportion of patients waiting for > 0 hours on a typical day, (F) Patients Waiting 
> 1 hr (%): proportion of patients waiting for > 1 hour on a typical day, (G) Patients Waiting > 
2 hr (%): proportion of patients waiting for > 2 hours on a typical day, (H) The yellow diamond 
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in the output plots marks the (performance measure vs. occupancy level) couple resulting from 
the current input parameters with respect to all possible (performance measure vs. occupancy 
level) spectrum for the cohort.  

† For the bed request process, we specify the hourly average arrival count in the model input (see 

Column (a) in the Excel toolbox), and assume that the hourly count is distributed uniformly 

throughout all minutes of the hour.  

Figure 6 Reduction of ambulance diversion after capacity expansion* 

 

* ○1 E A+8 Medicine beds, 08/20/2018; A○2E A+12 Medicine beds, 09/10/2018 


