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We propose a new robust optimization method for problems with objective functions that
may be computed via numerical simulations and incorporate constraints that need to be feasi-
ble under perturbations. The proposed method iteratively moves along descent directions for
the robust problem with nonconvex constraints, and terminates at a robust local minimum.
We generalize the algorithm further to model parameter uncertainties. We demonstrate the
practicability of the method in a test application on a nonconvex problem with a polynomial
cost function as well as in a real-world application to the optimization problem of Intensity
Modulated Radiation Therapy for cancer treatment. The method significantly improves the

robustness for both designs.
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1. Introduction

In recent years, there has been considerable literature on robust optimization, which has
primarily focused on convex optimization problems whose objective functions and constraints
were given explicitly and had specific structure (linear, convex quadratic, conic-quadratic
and semidefinite) (Ben-Tal and Nemirovski, 1998| 2003; Bertsimas and Sim| 2003, 2006]).
In an earlier paper, we proposed a local search method for solving unconstrained robust
optimization problems, whose objective functions are given via numerical simulation and
may be nonconvex; see (Bertsimas et al., [2008]).

In this paper, we extend our approach to solve constrained robust optimization problems,
assuming that cost and constraints as well as their gradients are provided. We also consider
how the efficiency of the algorithm can be improved, if some constraints are convex. We first
consider problems with only implementation errors and then extend our approach to admit

cases with implementation and parameter uncertainties. The paper is structured as follows:



Structure of the Paper: In Section , the robust local search, as we proposed in (Bertsimas
et al.l 2008), is generalized to handle constrained optimization problems with implementation
errors. We also explore how the efficiency of the algorithm can be improved, if some of
the constraints are convex. In Section [ we further generalize the algorithm to admit
problems with implementation and parameter uncertainties. In Section [5] we discuss an
application involving a polynomial cost function to develop intuition. We show, that the
robust local search can be more efficient when the simplicity of constraints are exploited. In
Section [6] we report on an application in an actual healthcare problem in Intensity Modulated
Radiation Therapy for cancer treatment. This problem has 85 decision variables and is highly

nonconvex.

2. Review on Robust Nonconvex Optimization

In this section, we review the robust nonconvex optimization for problems with implemen-
tation errors, as we introduced in (Bertsimas et al., 2008, 2007). We discuss the notion of
the descent direction for the robust problem, which is a vector that points away from all the
worst implementation errors. Consequently, a robust local minimum is a solution at which

no such direction can be found.

2.1 Problem Definition

The nominal cost function, possibly nonconvex, is denoted by f(x), where x € R" is the

design vector. The nominal optimization problem is
mxin f(x). (1)

In general, there are two common forms of perturbations: (i) implementation errors, which
are caused in an imperfect realization of the desired decision variables x, and (ii) parameter
uncertainties, which are due to modeling errors during the problem definition, such as noise.
Note that our discussion on parameter errors in Section 4 also extends to other sources of
errors, such as deviations between a computer simulation and the underlying model (e.g.,
numerical noise) or the difference between the computer model and the meta-model, as
discussed by [Stinstra and den Hertog| (2007). For the ease of exposition, we first introduce
a robust optimization method for implementation errors only, as they may occur during the

fabrication process.



When implementing x, additive implementation errors Ax € R™ may be introduced due
to an imperfect realization process, resulting in a design x + Ax. Here, Ax is assumed to

reside within an uncertainty set
U = {AxeR"||Ax|s <T}. (2)

Note, that I' > 0 is a scalar describing the size of perturbation against which the design
needs to be protected. While our approach applies to other norms ||Ax[[, < T'"in (2) (p
being a positive integer, including p = c0), we present the case of p = 2. We seek a robust

design x by minimizing the worst case cost

g(x) = max f(x+ Ax). (3)

The worst case cost g(x) is the maximum possible cost of implementing x due to an error

Ax € U. Thus, the robust optimization problem is given through

min ¢g(x) = min max f(x+ Ax). (4)

x Ax€E
In other words, the robust optimization method seeks to minimize the worst case cost. When
implementing a certain design x = X, the possible realization due to implementation errors

Ax € U lies in the set
N = {x][x—-x[ <T}. (5)

We call N the neighborhood of X; such a neighborhood is illustrated in Fig. [Th. A design x
is a neighbor of x if it is in V. Therefore, g(X), is the maximum cost attained within A/. Let
Ax* be one of the worst implementation error at x, Ax* = arg mmax f(x+ Ax). Then, g(x)
is given by f(x + Ax*). Since we seek to navigate away from all the worst implementation

errors, we define the set of worst implementation errors at x

U (x) = {Ax* | Ax* = arg max f(x+ AX)} : (6)

2.2 Robust Local Search Algorithm

Given the set of worst implementation errors, U*(x), a descent direction can be found effi-

ciently by solving the following second-order cone program (SOCP):

o

st. ||d|s <1 (7)
d'Ax* < g VAx* € U*(x)
ﬁ S —€,
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Figure 1: a) A two-dimensional illustration of the neighborhood. For a design x, all possible
implementation errors Ax € U are contained in the shaded circle. The bold arrow d shows
a possible descent direction and thin arrows Ax} represent worst errors. b) The solid arrow
indicates the optimal direction d* which makes the largest possible angle 6,,,, = cos™! 3* >
90° with all Ax*. ¢) Without knowing all Ax*, the direction d points away from all Ax; €
M = {Ax;, Axy, Ax3}, when all x} lie within the cone spanned by Ax;.

where € is a small positive scalar. A feasible solution to Problem , d*, forms the maximum
possible angle 0. with all Ax*. An example is illustrated in Fig. [Ipb. This angle is always
greater than 90° due to the constraint 3 < —e < 0. When ¢ is sufficiently small, and
Problem (|7 is infeasible, X is a good estimate of a robust local minimum. Note, that the
constraint ||d*||s = 1 is automatically satisfied if the problem is feasible. Such an SOCP can
be solved efficiently using both commercial and noncommercial solvers.

Consequently, if we have an oracle returning U*(x), we can iteratively find descent direc-
tions and use them to update the current iterates. In most real-world instances, however,
we cannot expect to find Ax*. Therefore, an alternative approach is required. We argue
in (Bertsimas et al., 2008) that descent directions can be found without knowing the worst
implementation errors Ax* exactly. As illustrated in Fig. [Ik, finding a set M, such that all
the worst errors Ax* are confined to the sector demarcated by Ax; € M, would suffice. The
set M does not have to be unique. If this set satisfies condition:

Ax* = ilA%;M o; AX;, (8)
the cone of descent directions pointing away from Ax; € M is a subset of the cone of
directions pointing away from Ax*. Because Ax* usually reside among designs with nominal
costs higher than the rest of the neighborhood, the following algorithm summarizes a heuristic

strategy for the robust local search:

Algorithm 1



Step 0. Initialization: Let x' be an arbitrarily chosen initial decision vector. Set k = 1.

Step 1. Neighborhood Fxploration :

Find MF¥, a set containing implementation errors Ax; indicating where the
highest cost is likely to occur within the neighborhood of x*. For this, we
conduct multiple gradient ascent sequences. The results of all function eval-
uations (x, f(x)) are recorded in a history set H*, combined with all past
histories. The set MF* includes elements of H* which are within the neigh-

borhood and have highest costs.

Step 2. Robust Local Mowve :

(i) Solve a SOCP (similar to Problem (1), but with the set U*(x*) replaced
by set MF¥); terminate if the problem is infeasible.

(ii) Set x*1 .= xk 4 tkd*, where d* is the optimal solution to the SOCP.
(i1i) Set k:=k+ 1. Go to Step 1.

Reference Bertsimas et al.| (2008) provides a detailed discussion on the actual implementation.

Next, we generalize this robust local search algorithm to problems with constraints.

3. Constrained Problem under Implementation Errors

3.1 Problem Definition

Consider the nominal optimization problem

min f(x)
s.t. hj(X) < O, V], (9)

where the objective function and the constraints may be nonconvex. To find a design which

is robust against implementation errors Ax, we formulate the robust problem

min max f(x + Ax)

x AxelU ) (10)
st. max h;(x+ Ax) <0, Vj,
AxeU

where the uncertainty set U is given by

U= {Ax e R"| |Ax|}s < T}. (11)



A design is robust if, and only if, no constraints are violated for any errors in Y. Of all
the robust designs, we seek one with the lowest worst case cost g(x). When a design X is

implemented with errors in U, the realized design falls within the neighborhood,
N ={x|[x=x[ < T}, (12)

Fig. [2] illustrates the neighborhood N of a design x along with the constraints. x is robust
if, and only if, none of its neighbors violate any constraints. Equivalently, there is no overlap

between the neighborhood of x and the shaded regions h;(x) > 0 in Fig.

hi1(x)>0

Figure 2: A 2-D illustration of the neighborhood A in the design space x. The shaded
regions h;(x) > 0 contain designs violating the constraints j. Note, that hy is a convex
constraint but not hs.

3.2 Robust Local Search for Problems with Constraints

When constraints do not come into play in the vicinity of the neighborhood of X, the worst
cost can be reduced iteratively, using the robust local search algorithm for the unconstrained
problem, as discussed in Section [2J The additional procedures for the robust local search
algorithm that are required when constraints are present, are:

(i) Neighborhood Search: To determine if there are neighbors violating constraint h;,
the constraint maximization problem

max  f;(x + Ax) (13)

is solved using multiple gradient ascents from different starting designs. Gradient ascents

are used because Problem is not a convex optimization problem, in general. We shall
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consider in Section the case, where h; is an explicitly given convex function, and con-
sequently, Problem can be solved using more efficient techniques. If a neighbor has a
constraint value exceeding zero, for any constraint, it is recorded in a history set ).

(ii) Check feasibility under perturbations: If X has neighbors in the history set ),
then it is not feasible under perturbations. Otherwise, the algorithm treats X to be feasible
under perturbations.

(iii)a. Robust local move if x is not feasible under perturbations: Because constraint
violations are more important than cost considerations, and because we want the algorithm to
operate within the feasible region of robust problem, nominal cost is ignored, when neighbors
violating constraints are encountered. To ensure that the new neighborhood does not contain
neighbors in ), an update step along a direction d%,_ . is taken. This is illustrated in Fig. .
Here, d7

feas

found by solving the SOCP

€eas

makes the largest possible angle with all the vectors y; —x. Such a d3,,, can be

i

st |d]. <1, 14
@ () <0 wiey,
f < —e.

As shown in Fig. , a sufficiently large step along d7,,, yields a robust design.
(iii)b. Robust local move if x is feasible under perturbations: When x is feasible
under perturbations, the update step is similar to that for an unconstrained problem, as
in Section 2l However, ignoring designs that violate constraints and lie just beyond the
neighborhood might lead to a non-robust design. This issue is taken into account when
determining an update direction df,,,, as illustrated in Fig. 3b. This update direction d

cost? cost

can be found by solving the SOCP

min 3
st [df2 <1,
!/ X; —X '
d lIxi —%][2 <B, Vx;eM, (15)
/ yi—X '
d lyi—%ll2 S 67 sz S y+,
B < —e,

where M contains neighbors with highest cost within the neighborhood, and ), is the set
of known infeasible designs lying in the slightly enlarged neighborhood N,

Ni = {x[lx=x[2 < (14T}, (16)
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Figure 3: A 2-D illustration of the robust local move: a) when X is non-robust; the upper
shaded regions contain constraint-violating designs, including infeasible neighbors y;. Vector

d}..s points away from all y;. b) when X is robust; x; denotes a bad neighbor with high

nominal cost, while y; denotes an infeasible neighbor lying just outside the neighborhood.
The circle with the broken circumference denotes the updated neighborhood.

0 being a small positive scalar for designs that lie just beyond the neighborhood, as illus-
trated in Fig. [Bb. Since x is robust, there are no infeasible designs in the neighborhood N.
Therefore, all infeasible designs in Y, lie at a distance between I' and (1 + 9)I".
Termination criteria:

We shall first define the robust local minimum for a problem with constraints:

Definition 1

*

X* is a robust local minimum for the problem with constraints if

(1) Feasible Under Perturbations

x* remains feasible under perturbations,

h;(x*+Ax) < 0, Vj,VAxe€U, and (17)

(i1) No Descent Direction

there are no improving direction d,_,, at x*.

Given the above definition, we can only terminate at Step (iii)b, where x* is feasible under
perturbations. Furthermore, for there to be no direction d_,, at x*, it must be surrounded

by neighbors with high cost and infeasible designs in A/,.
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3.3 Enhancements when Constraints are Convex

In this section, we review the case when h; is explicitly given as a convex function. If
Problem ([13)) is convex, it can be solved with techniques that are more efficient than multiple
gradient ascents. Table |1| summarizes the required procedures for solving Problem .
For symmetric constraints, the resulting single trust region problem can be expressed as

maxaxey AX' QAx + 2(Qx + b)'Ax + xQ'x + 2b’x + ¢. The possible improvements to the

Table 1: Algorithms to solve Problem ((13)

| h;(x) \ Problem (13) | Required Computation
ax+b ax+Talls+b < 0 Solve LP
x'Qx + 2b'x + ¢, Q symmetric | Single trust region problem | 1 SDP in the worst case
—h; is convex Convex problem 1 gradient ascent

robust local search are:

(i) Neighborhood Search: Solve Problem ([13) with the corresponding method of Table

instead of multiple gradient ascents in order to improve the computational efficiency.

(i) Check Feasibility Under Perturbations: If h?(x) = max hy h;(x + Ax) > 0, X is not
XE

feasible under perturbations.

(iii) Robust Local Move: To warrant that all designs in the new neighborhood are feasible,

the direction should be chosen such that it points away from the infeasible regions. The
corresponding vectors describing the closest points in A}°°(X) are given by Vyh!®(x)

as illustrated in Fig. 4l Therefore, d has to satisfy

Vi (%) < Bl Vi (%) 2

feas

and
dl

cost

Vihi® (%) < B[ Vach (%)]|2
in SOCP (14) and SOCP , respectively. Note, that V[ (x) = Vih(x + Ax}),

which can be evaluated easily.

In particular, if h; is a linear constraint, then hf(x) = a'x +Tfall, +b < 0

is the same for all x. Consequently, we can replace the constraint max hi(x + Ax) =
XE

max a’(x + Ax) < 0 with its robust counterpart 25(x). Here, h7®(x) is a constraint on x

Axel
without any uncertainties, as illustrated in Fig. [4]
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Figure 4: A 2-D illustration of the neighborhood when one of the violated constraints is
a linear function. (A) denotes the infeasible region. Because x has neighbors in region
(A), x lies in the infeasible region of its robust counterpart (B). y; denotes neighbors which

violate a nonconvex constraint, shown in region (C). d},,, denotes a direction which would

reduces the infeasible region within the neighborhood and points away from the gradient of
the robust counterpart and all bad neighbors y;. The dashed circle represents the updated
neighborhood.

3.4 Constrained Robust Local Search Algorithm

In this Section, we utilize the methods outlined in Sections [3.2] and to formalize the

overall algorithm:

Algorithm 2 [Constrained Robust Local Search]
Step 0. Initialization: Set k := 1. Let x' be an arbitrary decision vector.

Step 1. Neighborhood Search:

1. Find neighbors with high cost through n + 1 gradient ascents sequences, where n
18 the dimension of x. Record all evaluated neighbors and their costs in a history

set H*, together with H**.

1. Let J be the set of constraints to the convex constraint mazximization Problem
that are convex. Find optimizer Ax; and highest constraint value h;f(’b(xk), for all
j € J, according to the methods listed in Table . Let J C J be the set of

constraints which are violated under perturbations.
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1. For every constraint j € J, find infeasible neighbors by applying n + 1 gradient
ascents sequences on Problem , with X = x*. Record all infeasible neighbors
i a history set %8 together with set YF1.

Step 2. Check Feasibility Under Perturbations: x* is not feasible under perturbations, if

either Y* or J is not empty.

Step 3. Robust Local Mowve:

i. If x* is not feasible under perturbations, solve SOCP with additional con-
straints A, Vil (x¥) < B||Vxhi®(x*)||2, for all j € J. Find direction d;

eas €eas

and set X" = xF 4tk dy

ii. If x* feasible under perturbations, solve SOCP to find a direction d,,,. Set
XM= XM ik dy . If no direction d,, exists, reduce the size of M; if the

size 18 below a threshold, terminate.

In Steps 3(i) and 3(ii), t* is the minimum distance chosen such that the undesirable

designs are excluded from the neighborhood of the new iterate x**!. Finding t* requires

solving a simple geometric problem. For more details, refer to (Bertsimas et al., [2008)).

4. Generalization to Include Parameter Uncertainties

4.1 Problem Definition
Consider the nominal problem:

mxin f(x,p) (18)
S.t. h](x, I_)) S 07 v.]?

where p € R™ is a coefficient vector of the problem parameters. For our purpose, we can

restrict p to parameters with perturbations only. For example, if Problem ([18) is given by

- 3.4 .2 2
min 4] + x5 + 2077

s.t. 3z} + b3 < 20,

4
1

then we can extract x = (73) and p = <§> Note, that uncertainties can even be present
5

[\~

0
in the exponent, e.g. 3 in the monomial 4z3.
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In addition to implementation errors, there can be perturbations Ap in parameters p as
well. The true, but unknown parameter, p can then be expressed as p+ Ap. To protect the

design against both types of perturbations, we formulate the robust problem

min max f(x+ Ax,p + Ap)

X Azeld ~ ‘ (19)
s.t. max hij(x+ Ax,p+ Ap) <0, Vj,
VAS]

where Az = (ﬁ;). Here, Az lies within the uncertainty set
{ Az e R™™™ | ||Az|, < T}, (20)

where I' > 0 is a scalar describing the size of perturbations, we want to protect the design
against. Similar to Problem , a design is robust only if no constraints are violated under
the perturbations. Among these robust designs, we seek to minimizing the worst case cost

g9(x) = max f(x+Ax,p+Ap). (21)

4.2 Generalized Constrained Robust Local Search Algorithm

Problem (19)) is equivalent to the following problem with implementation errors only,

i A
nin g S(e+da)

.t. ; < )

s.t Inax hi(z+ Az) <0, Vj, (22)
P =D,

where z = (5). The idea behind generalizing the constrained robust local search algorithm is

analogous to the approach described in Section [2| for the unconstrained problem, discussed

n (Bertsimas et al., 2008)). Consequently, the necessary modifications to Algorithm [2] are:

(i) Neighborhood Search : Given x, z = (g) is the decision vector. Therefore, the neigh-

borhood can be described as

N = {z]llz—2ll,<T} = {G |G, =T} (23)

(ii) Robust Local Move : Let d* = <3§> be a update direction in the z space. Because
p is not a decision vector but a given system parameter, the algorithm has to ensure

that p = P is satisfied at every iterate. Thus, d;; = 0.

When finding the update direction, the condition d, = 0 must be included in ei-
ther of SOCP 1) and along with the feasibility constraints d'Vxhg"b(f() <

12



Bl Vxhi®(%)||2 As discussed earlier, we seek a direction d that points away from the
worst case and infeasible neighbors. We achieve this objective by maximizing the angle
between d and all worst case neighbors as well as the angle between d and the gradient

of all constraints. For example, if a design z is not feasible under perturbations, the

SOCP is given by

d::agifitﬁ,ﬁ 13
st ||d]l, <1,
d’ (Zz—i) SﬁHZZ—iHQ, Vyz 697,
A'V, 070 (z) < B[V @) e, Vi€ T,
d, =0,
B < —e.

Here, V¥ is the set of infeasible designs in the neighborhood. Since the p-component

of d is zero, this problem reduces to the following:

w0

st [|dglly, <1,
d;, (x; — X) < f|z; — 2|2, Vyi €, (24)
d, Vi hi®(2) < BIVA(2) e, V5 €T,
f < —e

A similar approach is carried out for the case of z being robust. Consequently, both
d*

feas

and d} ,, satisfy p = p at every iteration. This is illustrated in Fig. .

Now, we have arrived at the constrained robust local search algorithm for Problem ({19)

with both implementation errors and parameter uncertainties:
Algorithm 3 [Generalized Constrained Robust Local Search]
Step 0. Initialization: Set k := 1. Let x* be an arbitrary initial decision vector.

Step 1. Neighborhood Search: Same as Step 1 in Algorithm @ but over the neighbor-

hood .

Step 2. Check Feasibility under Perturbations: z¥, and equivalently x*, is feasible under

perturbations, if Y* and J* are empty.

Step 3. Robust Local Mowve:

i. Ifz* is not feasible under perturbations, find a direction d}eqs by solving SOCP

with z = z*. Set zFt1 .= zFt1 4 ¢k *

eas”

13



(a) z is not robust (b) z is robust

P=p p P=p p

Figure 5: A 2-D illustration of the robust local move for problems with both implementation
errors and parameter uncertainties. The neighborhood spans the z = (x,p) space: a) the
constrained counterpart of Fig. [3a and b) the constrained counterpart of Fig. . Note, that
the direction found must lie within the hyper-planes p = p.

1. If x is feasible under perturbations, solve the SOCP

w7

st ||dg]l2 <1,
d, (xi —x) <BCs ), VmeMEz =) (g5
d; (i —x") < B (55, Vi e Vhyi= G,
d&vxh;‘d’(zk) < ﬁ"vzh§0b(zk)"2a vie s,

ﬁg_(f)

to find a direction d, . )}_’ﬁ 1s the set of infeasible designs in the enlarged neigh-
borhood /\/’fj as in Eqn. @) J. is the set of constraints which are not violated in
the neighborhood of X, but are violated in the slightly enlarged neighborhood N .
Set z"1 = 2" 75, . If no direction d,,, exists, reduce the size of M; if the

size 18 below a threshold, terminate.

We have finished introducing the robust local search method with constraints. In the

following sections, we will present two applications which showcase the performance of this

method.
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5. Application I: Problem with Polynomial Cost Func-
tion and Constraints

5.1 Problem Description

The first problem is sufficiently simple, so as to develop intuition into the algorithm. Consider

the nominal problem
rgliyn fpoly<x> y)

st. hy(z,y) <0, (26)
hg(l',y) S 07

where

footy(z,y) = 22° —12.20° + 21.22* 4+ 6.2 — 6.42° — 4.72° + y® — 11y° + 43.3y*
—10y — 74.8y° + 56.9y* — 4.1zy — 0.1y*2* + 0.4y°x + 0.42%y
hi(z,y) = (v—15)"+ (y—1.5)*—10.125,
ho(z,y) = —(2.5—12)* — (y+ 1.5)° + 15.75.

Given implementation errors A = (17) such that |[|All, < 0.5, the robust problem is

i 0 Az, y+ A
min | max fpory(x + Az, y + Ay)

2. <
s.t HAH”12a§15 hi(z + Az, y + Ay) <0, (27)

< 0.
HAII”13§}%5 ho(x + Az,y + Ay) <0

To the best of our knowledge, there are no practical ways to solve such a robust problem,
given today’s technology (see [Lasserre| (2006)). If the relaxation method for polynomial
optimization problems is used, as in (Henrion and Lasserre| (2003))), Problem leads to
a large polynomial SDP problem, which cannot be solved in practice today (see Kojima
(2003)); [Lasserre| (2006)). In Fig. [6} a counterplot of the nominal and the estimated worst
cost surface along with their local and global extrema are shown to generate intuition for
the performance of the robust optimization method. The computation takes less than 10
minutes on an Intel Xeon 3.4GHz to terminate, thus fast enough for a prototype-problem.

Three different initial designs with their respective neighborhoods are sketched as well.

5.2 Computation Results

For the constrained Problem (26), the nonconvex cost surface and the feasible region are

shown in Fig. [f[a). Note, that the feasible region is not convex, because hy is not a convex
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(a) Nominal Cost

~

b) Estimated Worst Case Cost
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Figure 6: Contour plotx of (a) the nominal cost function and (b) the ‘estimated worst case
cost function in Application I. The shaded regions denote designs which violate at least one
of the two constraints, h; and hs. While point A and point B are feasible, they are not
feasible under perturbations due to their infeasible neighbors. Point C, on the other hand,
remains feasible under perturbations.

constraint. Let gpo (7, y) be the worst case cost function given as

lo] ) = 0 A 9 A .
Gpoly (T, Y) Anax Jpoly(z + Az, y + Ay)

Fig. |§|(b) shows the worst case cost estimated by using sampling on the cost surface fo-
In the robust Problem , we seek to find a design, which minimizes g, (2, y), such that
its neighborhood lies within the unshaded region. An example of such a design is the point
C in Fig. [fb).

Two separate robust local searches were carried out from initial designs A and B. The
initial design A exemplifies initial configurations whose neighborhood contains infeasible
designs and is close to a local minimum. The design B represents only configurations whose
neighborhood contains infeasible designs. Fig. [7]shows that in both instances, the algorithm
terminated at designs that are feasible under perturbations and have significantly lower worst
case costs. However, it converged to different robust local minima in the two instances, as
shown in Fig. [fc. The presence of multiple robust local minima is not surprising because
poty(z, y) is nonconvex. Fig. [fe also shows that both robust local minima I and II satisfy

the terminating conditions as stated in Section [3.2}
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s a) Cost vs. lteration (from Point A) b) Cost vs. lteration (from Point B)
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Figure 7: Performance of the robust local search algorithm in Application I from two different
starting points A and B. The circle marker indicates the starting and the diamond marker
the final design. (a) Starting from point A, the algorithm reduces the worst case cost and
the nominal cost. (b) Starting from point B, the algorithm converges to a different robust
solution, which has a significantly larger worst case cost and nominal cost. ¢) The broken
circles sketch the neighborhood of minima. For each minimum, (i) there is no overlap between
its neighborhood and the shaded infeasible regions, and (ii) there is no improving directions
because it is surrounded by neighbors of high cost (bold circle) and infeasible designs (bold
diamond) residing just beyond the neighborhood. Two bad neighbors of minimum II (started
from B) share the same cost, since they lie on the same contour line.

(i) Feasible under Perturbations: Both their neighborhoods do not overlap with the shaded

regions.

(ii) No direction d?

r st found: Both designs are surrounded by bad neighbors and infeasible

designs lying just outside their respective neighborhoods. Note, that for robust local
minimum II, the bad neighbors lie on the same contour line, even though they are apart,
indicating that any further improvement is restricted by the infeasible neighboring

designs.

5.3 When Constraints are Linear

In Section [3.3] we argued that the robust local search can be more efficient if the constrains
are explicitly given as convex functions. To illustrate this, suppose that the constraints in

Problem are linear and given by

hi(xz,y) = 0.6x —y+0.17,
ho(z,y) = —16x —y — 3.15, (28)
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As shown in Table , the robust counterparts of the constraints in Eqn. are

Rz y) = 0.60 —y+0.17+0.5831 < 0,
hy(z,y) = —16z —y —3.15+8.0156 < 0. (29)

The benefit of using the explicit counterparts in Eqn. is that the algorithm terminates

in only 96 seconds as opposed to 3600 seconds, when using the initial linear constraints in

Eqn. (28).

6. Application II: A Problem in Intensity Modulated
Radiation Therapy for Cancer Treatment

Radiation therapy is a key component in cancer treatment today. In this form of treatment,
ionizing radiation is directed onto cancer cells with the objective of destroying their DNA
and consequently causing a cell death. Unfortunately, healthy and non-cancerous cells are
exposed to the destructive radiation as well, since cancerous tumors are embedded within
the patient’s body. Even though healthy cells can repair themselves, an important objec-
tive behind the planning process is to minimize the total radiation received by the patient
(“objective”), while ensuring that the tumor is subjected to a sufficient level of radiation
(“constraints”).

Most radiation oncologists adopt the technique of Intensity Modulated Radiation Therapy
(IMRT; see Bortfeld| (2006)). In IMRT, the dose distribution is controlled by two set of
decisions. First, instead of a single beam, multiple beams of radiation from different angles
are directed onto the tumor. This is illustrated in Fig. [§l In the actual treatment, this is
accomplished using a rotatable oncology system, which can be varied in angle on a plane
perpendicular to patients length-axis. Furthermore, the beam can be regarded as assembled
by a number of beamlets. By choosing the beam angles and the beamlet intensities (“decision
variables”), it is desirable to make the treated volume as closely conform as possible to the
target volume, thereby minimizing radiation dosage to possible organ-at-risk (OAR) and
normal tissues. For a detailed introduction to IMRT and various related techniques, we refer
to (Bortfeld, 2006) and the references therein.

The area of simultaneous optimization of beam-intensity and beam-angle in IMRT has
been studied in the recent past, mainly by successively selecting a set of angles from a set

of predefined directions and optimizing the respective beam-intensities Djajaputra et al.

18



ionizing
/ radiation

-
-
b
) ¥

normal
‘ V.
cell oxel

v

Figure 8: Multiple ionizing radiation beams are directed at cancerous cells.

(2003)). So far, however, the issue of robustness has been only addressed for a fixed set

of beam-angles, e.g. in |Chan et al.| (2006)). In this work, we address the issue of robustly

optimizing both the beam-angles and the beam-intensities - to our best knowledge - for the
first time. We apply the presented robust optimization method to a clinically relevant case
that has been downsized due to numerical restrictions.
Optimization Problem

We obtained our optimization model through a joint research project with the Radio
Oncology group of the Massachusetts General Hospital at the Harvard Medical School. In our
model, all affected body tissues are divided into volume elements called voxels v (see

(2003)). The voxels belong to three sets:

e 7 set of tumor voxels, with |7| = 145.
e O: set of organ-at-risk voxels, with |O| = 42.
e N: set of normal tissue voxels, with |[A| = 1005.

Let the set of all voxels be V. Therefore, V =7 UOUN and |V| = 1192; there are a total
of 1192 voxels, determined by the actual sample case we have used for this study. Moreover,
there are five beams from five different angles. Each beam is divided into sixteen beamlets.
Let 6 € R® denote the vector of beam angles and Z the set of beams. In addition, let B; be
the set of beamlets b corresponding to beam i, i € Z. Furthermore, let 2% be the intensity of

beamlet b, with b € B;, and x € R'%%5 be the vector of beamlet intensities,

X = (Xiv"' ,XiG,X;,-“ ’X})G)/‘ (30)
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Finally, let D?(6;) be the absorbed dosage per unit radiation in voxel v introduced by beamlet
b from beam 7. Thus, Z Z Db x denotes the total dosage deposited in voxel v under a

treatment plan (6, x). The obJectlve is to minimize a weighted sum of the radiation dosage
in all voxels, while ensuring that (i) a minimum dosage [, is delivered to each tumor voxel
v € 7, and (ii) the dosage in each voxel v does not exceed an upper limit w,. Consequently,

the nominal optimization problem is

mln Z Z Z chb

veY 1€ beB;
s.t. Z Z Db(0,)xb > 1,, WYveT,
i€ beB; (31)
ZZDb 2t <u,, WYveV,
i€Z beB;
2 >0, Vb e B;,Vi €T,

where term ¢, is the penalty of a unit dose in voxel v. The penalty for a voxel in OAR
is set much higher than the penalty for a voxel in the normal tissue. Note, that if 0 is
given, Problem reduces to an LP and the optimal intensities x*(#) can be found more
efficiently. However, the problem is nonconvex in 6 because varying a single ; changes D?(6;)
for all voxel v and for all b € B;.

Let 6 represent the available discretized beam angles. To get D(#'), the values at
0" =0°,2° ...,358° were derived using CERR, a numerical solver for radiotherapy research
introduced by |Deasy et al,| (2003)). Subsequently for a given 0, Dg(é) is obtained by the
linear interpolation:
0 —6+2° +é;9'.

o(07+2°), (32)

where 0" = 2L§J. It is not practical to use the numerical solver to evaluate D%(6) directly
during optimization because the computation takes too much time.
Model of Uncertainty

When a design (0, x) is implemented, the realized design can be erroneous and take the
form (0 + Af,x ® (1 £ 0)), where ® refers to an element-wise multiplication. The sources
of errors include equipment limitations, differences in patient’s posture when measuring and
irradiating, and minute body movements. These perturbations are estimated to be normally

and independently distributed:

(33)



Note that by scaling §° by 0.03, we obtain 6° ~ N (0, %) and hence all components of the
5

vector 003 ) obey an N (O, %) distribution. Under the robust optimization approach, we

A
6
_ 0.03
- {(%)!

define the uncertainty set
Given this uncertainty set, the corresponding robust problem can be expressed as

mign 5123)214 ZZZCUDb9+A9) (1+(5§))

0
0.03

Ad

; SF}. (34)

veV €T beB;
s.t.  min DY(0; + A0)2(1+60) > 1,, YoeT
(6,A0)eU ; bezl’a’: (35)
max DY(0; + A0 (1 +6°) < wp, Yo EV,
(6,A0) el zEZI 1;& ( Jzi )
x? >0, Vb e B;,Vi € L.

Approximating the Robust Problem

Since the clinical data in D%(6) are already available for angles 6/ = 0°,2°,4°, ..., 358°
with a resolution of Af = +2° it is not practical to apply the robust local search on
Problem directly. Instead, we approximate the problem with a formulation that can be
evaluated more efficiently. Because D%(6;) is obtained through a linear interpolation, it can
be rewritten as

Dy(¢ +2°) — Dy(¢)
20

Db(0; £ AG) =~ DV(6;)+ AD, (36)

where ¢ = 2|%|. D5(¢), D5(¢ + 2°) are values obtained from the numerical solver. Note,
that since ; + A0 € [¢, ¢ + 2°], for all Af, Eqn. is exact.

Let %DS(&) = —D2(¢+2;2 Di(#) Then,

Db(0; 4+ AG;) - b - (1 + 6Y)

~ (D60 + Dk 20,) -t (14 8
= D5(6;)-x)+ DJ(0;) - ab - 5b+§6D”(9) 2t - A +§9Db(9i)-x?-A92--5f
~ Db, -ab+ D08, -2t - 5b+§6Db(6) z? - AY;. (37)

In the final approximation step, the second order terms are dropped. Using Eqn. (37))
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repeatedly leads to

Jmax, SN e DY+ Aby) - al - (14 6))

veV i€ beB;
= mx SON S DAO) el b, DY) a0 e DL6) at 0
veV i€l beB;
SD ) ) WNORE
veV €L beB;
max {Z Z (Z co D (0; ) ) | 2hob + Z (Z (Z cv£D2(9¢)> xf) A@l}
(6,A6)eU €7 beB; \veV i€Z \beB; \veV 09

0.03-Y ¢y co-DL(61) -1

0.03-3, cy co-DL6(61)-16
0.03-32 ¢y cv Dy (02) w3

S5 ) SERVIREE, | o

veV i€l beB; 0.03-37 ¢y CU-Dé“(GE)-%G )
ZbEBl ZvEV CU'%DU(el)'ml

Sbens Suev cor oy DY (05) 24 9
Note that the maximum in the second term is determined via the boundaries of the uncer-
tainty set in Eqn. (34]). For better reading, the beamlet and angle components are explicitly
written out. Because all the terms in the constraints are similar to those in the objective
function, the constraints can be approximated using the same approach. To simplify the
notation, the 2-norm term in Eqn.(38]) shall be represented by

{0.03-3, ¢y oD (6:)- }
{ZbEBl vey Cv’ aeDb

Using this procedure, we obtain the nonconvex robust problem

o EEE o ]

2vev G aa 1,(9 )

veY i€l beB;
0.03- DY (0;)-zb
st 35S DNE) -t - H {003 ey },, = et
i€Z beB; {Zb€B vEV 39 v (39)
S5 eyt ar] Eomarme
1€Z bebB; {ZbEBi vEY 50 v b} vy )

which closely approximates the original robust Problem . Note, that when 6 and x are

known, the objective cost and all the constraint values can be computed efficiently.
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6.1 Computation Results

We used the following algorithm to find a large number of robust designs (6%, x*), for k =

1,2,...:

Algorithm 4 [Algorithm applied to the IMRT Problem]
Step 0. Initialization: Let (0°,x°) be the initial design and T° the initial value. Set k := 1.
Step 1. Set T :=T'*=1 + AT, where AT is a small scalar and can be negative.
Step 2. Find a robust local minimum by applying Algorithm [3 with

i. initial design (0%, xk=1), and

1. uncertainty set with T = T'*.
Step 3. (0%, x*) is the robust local minimum.

Step 4. Setk:=k+ 1. Go to Step 1; if k > kpaz, terminate.

For comparison, two initial designs (6°,x°) were used:
(i) “Nominal Best”, which is a local minimum of the nominal problem, and

(ii) “Strict Interior”, which is a design lying in the strict interior of the feasible set of the
nominal problem. It is determined by a local minimum to the following problem:

mien Z Z Z coD2(0;) 2

veY €T beB;

s.t. Z Z DY(0;)ab > 1, + buffer, Vv eT

i€T beB;

Z Z DY(0;)ab < u, — buffer, Vv eV,

1€ beB;

22 >0, Vb e B;,VieT.

From the “Nominal Best”, Algorithm {4{is applied with an increasing I'*. We choose I'’ =
0 and AT" = 0.001, for all k. k,,.. was set to be 250. It is estimated that beyond this value
a further increase of I' would simply increase the cost without reducing the probability any
further. Because the “Nominal Best” is an optimal solution to the LP, it lies on the extreme

point of the feasible set. Consequently, even small perturbations can violate the constraints.
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Figure 9: Pareto frontiers attained by Algorithm 4] for different initial designs: “Nominal
Best” and “Strict Interior”. Starting from “Nominal Best”, the designs have lower costs
when the required probability of violation is high. When the required probability is low,
however, the designs found from “Strict Interior” perform better.

In every iteration of Algorithm |4, I'* is increased slowly. With each new iteration, the
terminating design will remain feasible under a larger perturbation.

The “Strict Interior” design, on the other hand, will not violate the constraints under
larger perturbations, because of the buffer introduced. However, this increased robustness
comes with a higher nominal cost. By evaluating Problem , the “Strict Interior” was
found to satisfy the constraints for I' < 0.05. Thus, we apply Algorithm [4] using this initial

design twice:
(i) T9 = 0.05 and AT = 0.001, for all k. k., was set to 150, and
(i) T° = 0.051 and AT = —0.001, for all k. k4, was set to 50.

All designs (6%, x*) were assessed for their performance under implementation errors, using
10, 000 normally distributed random scenarios, as in Eqn. .
Pareto Frontiers

In general, an increase in robustness of a design often results in higher cost.
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For randomly perturbed cases, the average performance of a plan is the clinically relevant
measure. Therefore, when comparing robust designs, we look at the mean cost, and the
probability of violation. The results for the mean cost are similar to those of the worst
simulated cost. Therefore, we only report on mean costs. Furthermore, based on empirical
evidence, random sampling is not a good gauge for the worst case cost. To get an improved
worst cost estimate, multiple gradient ascents are necessary. However, this is not practical
in this context due to the large number of designs involved.

Since multiple performance measures are considered, the best designs lie on a Pareto
frontier that reflects the tradeoff between these objectives. Fig.[9]shows two Pareto frontiers
“Nominal Best” and “Strict Interior” as initial designs. When the probability of violation
is high, the designs found starting from the “Nominal Best” have lower costs. However, if
the constraints have to be satisfied with a higher probability, designs found from the “Strict
Interior” perform better. Furthermore, the strategy of increasing I' slowly in Algorithm
provides tradeoffs between robustness and cost, thus enabling the algorithm to map out the
Pareto frontier in a single sweep, as indicated in Fig. [9]

This pareto frontiers allow clinicians to chose the best robustly optimized plan based on a
desired probability of violation, e.g. if the organs at risk are not very critical, this probability
might be relaxed in order to attain a plan with a lower mean cost, thus delivering less mean
dose to all organs.

Different Modes in a Robust Local Search

The robust local search has two distinct phases. When iterates are not robust, the
search first seeks a robust design, with no consideration of worst case costs (See Step 3(i)
in Algorithm . After a robust design has been found, the algorithm then improves the
worst case cost until a robust local minimum has been found (See Step 3(ii) in Algorithm [3).
These two phases are illustrated in Fig. for a typical robust local search carried out in
Application II. Note that the algorithm takes around twenty hours on an Intel Xeon 3.4GHz

to terminate.

6.2 Comparison with Convex Robust Optimization Techniques

When @ is fixed, the resulting subproblem is convex. Therefore, convex robust optimization
techniques can be used, even though the robust Problem is not convex. Moreover, the
resulting subproblem becomes a SOCP problem, when 6 is fixed in Problem . Therefore,
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Figure 10: A typical robust local search carried out in Step 2 of Algorithm {4l In phase I,
the algorithm searches for a robust design without considering the worst case cost. Due to
the tradeoff between cost and feasibility, the worst case cost increases during this phase. At

the end of phase I, a robust design is found. In phase II, the algorithm improves the worst
case cost.

we are able to find a robustly optimized intensity x*(¢). Since all the constraints are ad-
dressed, (6,x*()) is a robust design. Thus, the problem reduces to finding a local minimum
0. We use a steepest descent algorithm with a finite-difference estimate of the gradients.

Jrop(0%) shall denote the cost of Problem for § := 6*. The algorithm can be summarized

as following:

Algorithm 5 [Algorithm Using Convex Techniques in the IMRT Problem]
Step 0. Initialization: Set k := 1. 0% denotes the initial design.
Step 1. Obtain x*(6%) by:
(a) Solving Problem (39) with 6 := 6.
(b) Setting x* to the optimal solution of the subproblem.
Step 2. Estimate gradient %Jrob(ﬁk) using finite-differences:
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(a) Solve Problem (@) with @ = 0% £ ¢ - e;, for all i € I, where € is a small positive

scalar and e; is a unit vector in the i-th coordinate.

(b) For allieZ,
OJroy  J(0F + ce;) — J(6F — ce;)

891 2-€

Step 3. Check terminating condition:

is sufficiently small, terminate. Else, take the steepest descent step

(a ) If H OJrob

2

tk) aJrob

0" = 0" —
06

where t* is a small and diminishing step size.

(b) Setk:=k+1, go to Step 1.

Unfortunately, Algorithm [5| cannot be implemented because the subproblem cannot be
computed efficiently, even though it is convex. With 1192 SOCP constraints, it takes more
than a few hours for CPLEX 9.1 to solve the problem. Given that 11 subproblems are solved
in every iteration and more than a hundred iterations are carried in each run of Algorithm [3]
we need an alternative subproblem.

Therefore, we refine the definition of the uncertainty set. Instead of an ellipsoidal un-
certainty set , which describes the independently distributed perturbations, we use the
polyhedral uncertainty set

)
0.03
A ||

u = {(d)1

with norm p =1 or p = co. The resulting subproblem becomes

. 0.03-32, -y, co-D b}
'Db 1—\ { vEeEY b,i
ST ) 3) SV IOREREY it W}H

- cy Cv- ae
veV €T beB; 2w

0.03-3° Db(é’)xb}
. D%6;) -2t —T { i bs
st YD D) - ‘ o o

1€ beB;

b (0, )20
ZZDb x 4+ T H{{003 ZUEVD (6:)- }bb} H Yo eV,

ZbeB ey 89 'U
i€ beB; L

z? >0, Vbe B,ViecT

< F} , (40)

YoeT

where % + % = 1. For p = 1 and p = oo, Problem 1} is an LP, which takes less than

5 seconds to solve. Note, that 6 is a constant in this formulation. Now, by replacing the
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subproblem (39)) with Problem every time, Algorithm |5 can be applied to find a robust
local minimum. For a given I', Algorithm [5] takes around one to two hours on an Intel Xeon

3.4GHz to terminate.

1 10° Comparison of Pareto Frontiers
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Figure 11: Pareto frontiers for the trade-off between mean cost and probability of constraint
violation using the robust local search (“RLS”). For comparison to convex robust optimiza-
tion techniques, the norm in Eqn. is set to a 1-norm (“P1”) or a oo-norm (“Pinf”). In
the small figure, which is a magnification of the larger figure for a probability of violation less
than or equal to 10%, we observe that for probability of violation less than 2%, RLS leads
to lower mean costs and lower probability of violation, whereas for probability of violation
above 2%, Pinf is the best solution, as shown in the larger figure.

Computation Results

We found a large number of robust designs using Algorithm 5] with different I' and starting
from “Nominal Best” and “Strict Interior”. Fig. [L1] shows the results for both p =1 (“P17”)
and p = oo (“Pinf”). It also illustrates the Pareto frontiers of all designs which were found
under the robust local search (“RLS”), “P1”, and “Pinf”. When the required probability
of violation is high, the convex techniques, in particular P1, find better robust designs. For
lower probability, however, the designs found by the robust local search are better.

Compared to the robust local search, the convex approaches have inherent advantages

in optimal robust designs x*(6) for every 6. This explains why the convex approaches find
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better designs for a larger probability of violation. However, the robust local search is
suited for far more general problems, as it does not rely on convexities in subproblems.
Nevertheless, its performance is comparable to the convex approaches, especially when the

required probability of violation is low.

7. Conclusions

We have generalized the robust local search technique to handle problems with constraints.
The method consists of a neighborhood search and a robust local move in every iteration. If
a new constraint is added to the problem with n-dimensional uncertainties, n + 1 additional
gradient ascents are required in the neighborhood search step, i.e., the basic structure of the
algorithm does not change.

The robust local move is also modified to avoid infeasible neighbors. We apply the
algorithm to an example with a nonconvex objective and nonconvex constraints. The method
finds two robust local minima from different starting points. In both instances, the worst
case cost is reduced by more than 70%.

When a constraint results in a convex constraint maximization problem, we show that
the gradient ascents can be replaced with more efficient procedures. This gain in efficiency
is demonstrated on a problem with linear constraints. In this example, the standard robust
local search takes 3600 seconds to converge at the robust local minimum. The same mini-
mum, however, was obtained in 96 seconds, when the gradient ascents were replaced by the
function evaluation.

The constrained version of the robust local search requires only a subroutine which pro-
vides the constraint value as well as the gradient. Because of this generic assumption, the
technique is applicable to many real-world applications, including nonconvex and simulation-
based problem. The generality of the technique is demonstrated on an actual healthcare
problem in Intensity Modulated Radiation Therapy for cancer treatment. This application
has 85 decision variables, and more than a thousand constraints. The original treatment
plan, found using optimization without considerations for uncertainties, proves to always
violate the constraints when uncertainties are introduced. Such constraint violations corre-
spond to either an insufficient radiation in the cancer cells, or an unacceptably high radiation
dosage in the normal cells. Using the robust local search, we find a large number of robust

designs using uncertainty sets of different sizes. By considering the Pareto frontier of these
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designs, a treatment planner can find the ideal trade-off between the amount of radiation

introduced and the probability of violating the dosage requirements.
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