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Abstract. In many applications, statistical estimators serve to derive conclusions from
data, for example, in finance, medical decision making, and clinical trials. However, the
conclusions are typically dependent on uncertainties in the data. We use robust opti-
mization principles to provide robust maximum likelihood estimators that are protected
against data errors. Both types of input data errors are considered: (a) the adversarial
type,modeled using the notion of uncertainty sets, and (b) the probabilistic type,modeled by
distributions. We provide efficient local and global search algorithms to compute the robust
estimators and discuss them in detail for the case of multivariate normally distributed data.
The estimator performance is demonstrated on two applications. First, using computer
simulations, we demonstrate that the proposed estimators are robust against both types of
data uncertainty and provide more accurate estimates compared with classical estimators,
which degrade significantly, when errors are encountered. We establish a range of uncer-
tainty sizes forwhich robust estimators are superior. Second,we analyze deviations in cancer
radiation therapy planning. Uncertainties among plans are caused by patients’ individual
anatomies and the trial-and-error nature of the process. When analyzing a large set of past
clinical treatment data, robust estimators lead to more reliable decisions when applied to
a large set of past treatment plans.
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1. Introduction
Maximum likelihood is widely used to successfully con-
struct statistical estimators for parameters of a proba-
bility distribution. This method is prevalent in many
applications, ranging from econometrics and machine
learning to many areas of science and engineering,
where the nature of the data motivates a functional
form of the underlying distribution. The parameters of
this distribution remain to be estimated (Pfanzagl 1994).
For uncertain distributions, the estimators can be lo-
cated in a family of them by leveraging the minimax
asymptotic variance (Huber et al. 1964, Huber 1996).
This is also possible in the common case of symmetric
contamination (Jaeckel 1971). Maximum likelihood
estimator (MLE) methods typically assume data to be
complete, precise, and free of errors. In reality, however,
data are often insufficient. Moreover, any input data
can be subject to errors and perturbations. These can
stem from (a) measurement errors, (b) input errors,
(c) implementation errors, (d) numerical errors, or (e)model
errors. These sources of uncertainty affect the quality
of the estimators and can degrade outcomes signifi-
cantly, so much so that we might lose the advantages

of maximum likelihood estimators completely. There-
fore, it is instrumental to the success of the application to
construct estimators that are intrinsically robust against
possible sources of uncertainty.
In this work, we seek to estimate the parameter θ for

the probability density function f (θ, x) of an ensemble
of n data points xi ∈Rm, which can be contaminated by
errors ∆xi ∈Rm in some uncertainty set 8. The robust
MLE maximizes the worst-case likelihood via

max
θ

min
∆X∈8

∏
n

i!1
f (θ; xi − ∆xi), (1)

following the robust optimization (RO) paradigm.
Robust optimization has increasingly been used as

an effective way to immunize solutions against data
uncertainty. In principle, if errors are not taken into
account, an otherwise optimal solution may turn out
to be suboptimal, or even in some cases infeasible. RO,
however, considers errors to reside within an uncer-
tainty set and aims to calculate solutions that are robust
to such uncertainty. There is a sizable body of literature
on various aspects of RO, and we refer to Ben-Tal et al.
(2009) and Bertsimas et al. (2011). In the context of
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simulation-based problems, that is, problems not given
by a closed form solution, a local search algorithm was
proposed that provides robust solutions to unconstrained
(Bertsimas et al. 2010b) and constrained (Bertsimas et al.
2010a) problems without exploiting the structure of the
problem or the uncertainty set.

The effects of measurement errors on statistical es-
timators have been addressed extensively in the liter-
ature, for example, by Buonaccorsi (2010) and the
references within. Measurement error models assume
a distribution of the observed values given the true
values of a certain quantity (Fuller 2009). This is the
reverse of the Berkson error model, which assumes
a distribution on the true values given the observed
values (Berkson 1950). The rich literature for error cor-
rection provides a plethora of techniques for correcting
additive errors in linear regression (Cheng et al. 1999).

El Ghaoui and Lebret (1997) showed that robust least
squares problems for erroneous but bounded data
can be formulated as second-order cone or semidefi-
nite optimization problems, and thus become effi-
ciently solvable. In the context of maximum likelihood,
Calafiore and El Ghaoui (2001) elaborated on estima-
tors in linear models in the presence of Gaussian noise
whose parameters are uncertain. The proposed esti-
mators maximize a lower bound on the worst-case
likelihood using semidefinite optimization.

In the context of robust statistics, Huber (1980) in-
troduced estimators that are insensitive to perturba-
tions. The robustness of estimators is measured in
different ways: For instance, the breakdown point is
defined as the minimum amount of contamination that
causes the estimator to become unreliable. Another
measure is the influence curve that describes the impact
of outliers to an estimator (Hampel 1974).

In this paper, we introduce a robust MLE method to
produce estimators that are robust to data uncertainty.
Our approach differs from Huber’s (1980) in multiple
facets, as summarized in Table 1. Because the likeli-
hood is not proportional to the error in the estimation,
our proposed method considers the worst case directly
in the likelihood. Correspondingly, we believe that our
proposed approach is directly relevant to real-world

data, where errors are observed on the data and a priori
information on distributions is not available.
In principle, errors may be of an adversarial nature,

where no probabilistic information about their source is
known, or of a distributional nature, where the source is
known to be probabilistic. Correspondingly, we discuss
two kinds of robust maximum likelihood estimators:

1. Adversarially robust: The worst-case scenario is
calculated among possible errors that reside in some
uncertainty set. To compute these estimators, we pro-
pose two methods: a first-order gradient descent al-
gorithm, which is highly efficient and warrants local
optimal robust estimators, and a global search method
based on robust simulated annealing, which provides
global optimal robust estimators at higher computa-
tionally expense.

2. Distributionally robust: The worst-case scenario is
evaluated among errors that are independent and fol-
low some distribution residing in some set of distri-
butions. Such errors resemble persistent errors. Using
distributional robust optimization techniques, we show
that their estimators are a particular case of adversa-
rially robust estimators.
To demonstrate the performance of the methods, we

apply our methods to two types of data sets. First, we
conduct numerical experiments on simulated data to
ensure a controlled setting and to be able to determine
the deviation from true data. We show that for small-
sized errors, both the local and the global RO methods
yield comparable estimates. For larger errors, how-
ever, we observe that the robust simulated annealing
method outperforms the local searchmethod.Moreover,
we show that the proposed estimators are also immune
against the source of uncertainty; that is, even if the
errors follow a different distribution than anticipated,
the estimators remain robustly optimal. Furthermore,
the proposed robust estimators turn out to be signifi-
cantly more accurate compared with classical maxi-
mum likelihood estimators, which degrade sizably,
when errors are encountered. Finally, we establish the
range within which the robust estimators are most
effective. This range can inform practitioners about
the appropriate size of the uncertainty set. The error
size–dependent observation can be generalized to a
broader range of RO approaches.
In the second application, past patient data for cancer

radiation therapy serve to probe the method. In clini-
cal practice, the quality of treatment plans is typically
examined based on the spatial dose distribution, sum-
marized in five specific observable dose points and
compared with internally recommended criteria. How-
ever, the recording and evaluation of these criteria are
subject to human uncertainty. To evaluate the overall
performance of an individual clinician, a team, or an
entire institution, statistical estimators are employed.
The resulting decisions remain highly sensitive to the

Table 1. Comparison of Huber’s (1980) Approach to the
Proposed RO Approach

Comparison Huber’s approach Our approach

Estimators Functionals on the space
of distributions

Functions on the
observed data

Worst case In the value of the
estimator

In the value of the
likelihood

Observables Observed distributions
reside in a neighborhood
around the true
distribution

True data reside in
a neighborhood
around the
observed data
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uncertainty in data. We analyze 491 treatment plans
for various tumor sites that have already undergone
radiation therapy and compute robust estimators to
support physicians in arriving at more dependable
conclusions. We show that robust estimators have a
significantly reduced and stable spread over different
samples, when compared with nominal estimators,
offeringmore reliable and sample-independent decision
making.

The structure of this paper is as follows: In Section 2,
we define the robust estimators and introduce the RO
problem for robust estimators. In Section 2.1, we dis-
cuss the robust maximum likelihood estimators, along
with a corresponding local as well as a global search
algorithm. Section 2.1 also details the method to com-
pute the corresponding robust estimates when the data
follow a specific distribution, namely, the multivariate
normal distribution. In Section 3, we report on the per-
formance of the proposed robust estimators on simu-
lated data. In Section 4, we compute robust estimators
for a large set of clinical cancer radiation therapy data.
In Section 5, we conclude our findings.

2. Robust Maximum Likelihood Estimators
To introduce the robust estimators, we first differentiate
between observed and true data. Consider the following
setting: we can only observe samples xobsi , i ! 1, 2, . . . ,n,
which may include errors. This is expressed via

xobsi ! xtruei + ∆xi, i ! 1, 2, . . . ,n,

where xtruei is the error-free (but not observable) data,
and ∆xi is the error in the ith sample. The error-free
data xtruei are assumed to be distributed according to
a distribution 0(θ), with probability density function
f (θ; x), where θ is the parameter we wish to estimate.

Maximum likelihood estimator seeks to find θ that
maximizes the probability density function

∏
n

i!1
f
(
θ; xtruei

) ≡ ∏
n

i!1
f
(
θ; xobsi − ∆xi

)
, (2)

or equivalently maximizes the log-likelihood density
function

ψ
(
θ;Xobs − ∆X

) ≡ log ∏
n

i!1
f
(
θ; xobsi − ∆Xi

)( )
, (3)

where Xobs denotes the ensemble of the observed data
xobsi , and ∆X the ensemble of ∆xi as

Xobs ! [xobs1 , xobs2 , . . . , xobsn ]u, and

∆X ! [∆x1,∆x2, . . . ,∆xn]u.

In what will follow, the errors ∆xi, i ! 1, 2, . . . ,n, are
modeled in two different ways:

(a) no further knowledge about the nature of errors
is available, and we consider them to reside within an

uncertainty set, which leads to adversarially robust
estimators (AREs), introduced in Section 2.1;
(b) errors can be considered as random variables

with known support, which leads to designing dis-
tributionally robust estimators (DREs), introduced in
Section 2.3.
In both cases, we assume the magnitude of ∆X to

be sizably smaller than that of Xtrue, making the esti-
mators identifiable. When they are of comparable sizes,
the distinction of their parameters fades. However,
a discussion on identifiability for general cases is be-
yond the scope of this work. With respect to likelihood
methods, our approach can be regarded as semiparametric
because we specify only the distribution of Xtrue para-
metrically, and not that of ∆X.

2.1. Adversarial Robust Maximum
Likelihood Estimators

In most real-world applications, the knowledge about
the error distribution is not accessible and at times not
even existent. For example, medical records are often
manually transferred from a diagnostic device onto
paper and later into an electronic form, and during each
step, copying errors and uncertainties from unit con-
version may occur. The nature of these errors cannot
be associated to a known distribution. Therefore, fol-
lowing the RO paradigm, we model such errors ∆X
as belonging to an uncertainty set, which is assumed
to be a convex set and denoted by 8. The set 8 is
typically determined by the underlying application; for
example, the accuracy of a measurement device de-
termines the size of measurement errors in data. When
the Euclidean norm of the errors is bounded by a pa-
rameter Γ> 0, the corresponding uncertainty set can be
expressed as

8 !
{
∆X ! [∆x1,∆x2, . . . ,∆xn]u

∣∣∣ ∥∆xi∥2≤ Γ,

i ! 1, 2, . . . ,n
}
. (4)

Although this set serves to clarify the exposition, our
gradient descent approach does not leverage this spe-
cific structure, as will be discussed. We seek to find θ
thatmaximizes the log-likelihood in Equation (3) against
all errors (in particular the worst-case one) in 8.
Therefore, the ARE is the solution to

max
θ

min
∆X∈8

∑n

i!1
log

(
f
(
θ; xobsi − ∆xi

))
. (5)

Note that if there are no errors, 8 ! {0}, and prob-
lem (5) corresponds to classical maximum likelihood
estimation. As the size of 8 increases, the ARE may
become more conservative, that is, we attempt to im-
munize against larger errors, potentially at the expense
of lower likelihood.
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2.2. Computation of AREs
To compute adversarial maximum likelihood estimates,
we first discuss the gradient-based robust optimization
method for nonconvex cost functions before extending
it to compute local optimal estimators. We then intro-
duce a global search method based on robust simulated
annealing that warrants global robust optimality.

2.2.1. Robust Nonconvex Optimization. In general, for
a continuously differentiable and possibly nonconvex
cost function f (x), where x∈Rn is the decision or data
vector, the robust optimization problem is given through

min
x

g(x) ≡ min
x

max
∆x∈8

f (x + ∆x). (6)

Here, the errors ∆x directly affect the decision variables
and are bound in an uncertainty set 8. The robust
problem can be solved by updating x along descent
directions that reduce g by excluding worst errors. In
other words, d is a descent direction for the robust
optimization problem (6) at x, if the directional de-
rivative in direction d satisfies the following condition:

g′(x)< 0. (7)

Note that for problem (6), it may not be possible to find
∆x∗ ! argmax∆x∈8 f (x + ∆x) or the solution may not be
unique. However, it has been shown that when it is
possible to provide a collection of } ! {∆x1, . . . ,∆xm}
with ∆xi ∈8 and ∆x∗ ! ∑

i |∆xi∈} λi∆xi for some λi ≥ 0,
then d is a descent direction for g(x;d), if du

∆xi < 0
∀∆xi ∈} (Bertsimas et al. 2010b). Furthermore, such
a descent direction points away from all the worst
implementation errors in 8, as shown by the following
theorem:

Theorem 1. Suppose that f (x) is continuously differentiable,
the uncertainty set 8 is defined as in (4), and 8∗(x)≔{
∆x∗ |∆x∗ ∈ argmax

∆x∈8
f (x + ∆x)

}
. Then, d ∈Rn is a descent

direction for the worst-case cost function g(x) at x ! x̂ if
and only if for all ∆x∗ ∈8∗(x̂),

du
∆x∗ < 0,

=x f (x ! x̂ + ∆x∗)≠ 0.

Note that all descent directions d reside in the strict in-
terior of a cone,which is normal to the cone spannedby all
the vectors∆x∗ ∈8∗(x̂). Consequently, the worst-case cost
at x̂ can be strictly decreased, if a sufficiently small step is
taken along any directions within this cone, leading to
solutions that are more robust. All worst solutions,
x̂ + ∆x∗, would also lie outside the neighborhood of the
updated solution. Therefore, x∗ can be considered a robust
local minimum, if there exists no descent direction for the
robust problem at x ! x∗. The proof of Theorem 1 as well
as empirical evidence of the robust optimizationmethod’s
behavior is discussed in Bertsimas et al. (2010b).

In summary, if we can compute the directional de-
rivative of the inner function of a robust optimization
problem, the above method can efficiently provide
robust solutions. We now extend this approach to
compute robust estimators.

2.2.2. Local Optimal Estimator. Let φ(θ) be the solution
to the inner minimization problem (5) as

φ(θ) ≡ min
∆X∈8

ψ
(
θ;Xobs − ∆X

)
(8)

with

∆X∗(θ) ≡ argmin
∆X∈8

ψ
(
θ;Xobs − ∆X

)
. (9)

By applying Danskin’s (1966) theorem, we have

=θφ(θ)
∣∣∣
θ!θ0

! =θψ(θ;Xobs − ∆X∗(θ0))
∣∣∣
θ!θ0

. (10)

Note that we do not need to calculate the gradient
at (Xobs − ∆X∗(θ)). Given the ability to calculate Equa-
tion (10), we can construct a gradient descent algorithm
with diminishing step size, which has been shown to
converge to a local minimum (Bertsimas et al. 2010b).

2.2.3. The Case of Multivariate Normal Distribution. To
demonstrate the performance of this approach, some
specifications on the underlying distribution of the data
are necessary. We use the example of the multivariate
normal distribution of the observed data. In particular,
the framework for computing AREs is employed to
estimate the mean µ ∈Rm and the covariance matrix
Σ∈ S+m, where S+m is the set of m×m symmetric and
positive semidefinite matrices. The probability density
function for some observed data xobs is

f
(
µ,Σ; xobs

) ! 1
(2π)m/2 |Σ|1/2

· exp −1
2
(xobs − µ)uΣ−1(xobs − µ)

( )
.

(11)

Using the uncertainty set defined in (4), problem (8) for
the estimators θ ! (µ,Σ) becomes

φ(µ,Σ;Xobs) ! min
∆X∈8

ψ
(
µ,Σ;Xobs − ∆X

) ! (12)

min
∥∆xi∥2≤Γ

− nm
2

log(2π) − n
2
log|Σ|

+
∑n

i!1
− 1
2
(xobsi − ∆xi − µ)uΣ−1(xobsi − ∆xi − µ).

Note, the objective function and constraints are sepa-
rable in ∆xi. Thus, it suffices to solve

min
∥∆xi∥2≤Γ

− 1
2
(xobsi − ∆xi − µ)uΣ−1(xobsi − ∆xi − µ) (13)
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for each i ! 1, 2, . . . ,n. The objective function of prob-
lem (13) can be written as

− 1
2
(xobsi − ∆xi − µ)uΣ−1(xobsi − ∆xi − µ) !

− 1
2
∆xui Σ−1

∆xi + [Σ−1(xobsi − µ)]
u
∆xi

− 1
2
(xobsi − µ)uΣ−1(xobsi − µ).

Problem (13) is a trust region problem that has been
solved in the literature, as by Boyd and Vandenberghe
(2004) and Rendl and Wolkowicz (1997). In another
work, Ye (1992) demonstrated that for such prob-
lems, a hybrid algorithm that combines Newton’s
method and a binary search can solve the problem in
O(log(log(1/ϵ))) iterations, with error ϵ. In the online
supplement, Section 1, we briefly describe the steps for
computing this inner problem. Overall, the algorithm
to compute the robust and normal distributed esti-
mators, as defined in problem (5), can be summarized
as follows:

1. Initialize with some estimators θ ! [µ , Σ]u.
2. Solve problem (13) to obtain ∆x∗i (θ) for each

i ! 1, 2, . . . ,n.
3. Use the worse-case errors ∆X∗(θ) ! [∆x∗1(θ),

∆x∗2(θ), . . . , ∆x∗n(θ)]u to calculate φ(θ) ! ψ(θ;Xobs−
∆X∗(θ)) and Equation (10) to compute its derivative=φ.

4. Construct a Q such that Q ·θ ! 0.
5. Compute =̂φ as the projection of =φ onto the

subspace Q ·θ ! 0 using the kernel of Q.
6. Update θ using the descent direction given by =̂φ

(preserves Σ ∈ S+).
7. Stop when the norm of the derivative is smaller

than some tolerance parameter ϵ; otherwise, iterate
back to Step 2.

Following the result of Theorem 1, this algorithm
provides the local robust maximum likelihood estima-
tors. Furthermore, the convergence of the algorithm is
linear, because it is a first-order method using gradient
descent. Second-order methods are computationally
inefficient, because the inner derivative =θ(∆x∗i (θ)) com-
plicates the calculation of the secondderivate ofφ.Wenow
discuss an alternative method to obtain the global optimal
estimators in the presence of errors in the input data.

2.2.4. Global Optimal Estimator. The robust normal
distribution estimators can also be calculated using
a global search method. The global search method is
based on the robust simulated annealing algorithm
introduced by Bertsimas and Nohadani (2010). To fol-
low the original robust simulated annealing methods,
we recast the maximization problem maxφ(θ;Xobs) as
a minimization problem, ming, with g ≡ −φ. Starting

from the nominal optimum, this iterative algorithm
lowers the worst-case performance g successively. At
each step, g is computed for the corresponding estimates
within the uncertainty set, and the inverse temperature
is determined. The Boltzmann weight assigned to the
current estimates are then compared for a trial estimate.
If the trial estimates lead to a lower g, they will become
the estimates of the next step. Otherwise, theywill most
likely be rejected and new trial estimates will be gen-
erated and compared. We refer interested readers to
Bertsimas and Nohadani (2010) for further details. For
completeness, however, we summarize the steps of the
algorithm along with the notation in Section 2 of the
online supplement.

2.3. Distributional Robust Maximum
Likelihood Estimators

In some cases, the errors ∆xi are independent of the
samples and among each other, and they follow the
same distribution P. For example, when there is a
fixed error caused by misalignments of the equip-
ment, we can consider them as persistent errors that
lend themselves to a distributional description. For
this, let fP(∆x) be the probability density function for
P. Then, xobsi follows a distribution, whose density is
the convolution
∫

f (θ; xobsi − ∆x) fP(∆x)d∆x !
∫

f (θ; xobsi − ∆x)dP(∆x)

! E∆x~P [ f (θ; xobsi − ∆x)].
(14)

Following the paradigm of distributional robust opti-
mization (Delage and Ye 2010), we consider all possible
distributions to have a bounded support 6 and the
DRE to be the solution to

max
θ

min
P: supp(P)!6

∑n

i!1
logE∆xi~P [ f (θ; xobsi − ∆xi)]. (15)

Because all distributions share 6, problem (15) can be
reformulated as

max
θ

min
∆x∈6

∑n

i!1
log f (θ; xi − ∆x), (16)

which has the same structure as problem (5), and thus
can be solved in a similar fashion as that for the ARE,
using a gradient descent algorithm.

2.3.1. The Case of Multivariate Normal Distribution.
Analogous to AREs, we demonstrate the performance
of DREs by the specific assumption of a multivariate

Bertsimas and Nohadani: Robust Maximum Likelihood Estimation
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2019 INFORMS 5



normal distribution. The inner minimization of prob-
lem (16) is

min
∥∆x∥2≤Γ

ψ(µ,Σ;Xobs − 1n∆xu
)

! min
∥∆x∥2≤Γ

− nm
2

log(2π) − n
2
log|Σ|

+
∑n

i!1
− 1
2
(xobsi − ∆x − µ)uΣ−1(xobsi − ∆x − µ)

(17)

! − nm
2

log(2π) − n
2
log|Σ|

+ min
∥∆x∥2≤Γ

∆xu − n
2
Σ−1

( )
∆x + Σ−1 ∑n

i!1
xobsi − nµ)

( ]u
∆x

[ )(

+
∑n

i!1
− 1
2
(xobsi − µ)uΣ−1(xobsi − µ),

where 1n is a size n vector of ones. Note that prob-
lem (17) is a trust region problem (online supplement,
Section 1.2). In the maximization of problem (16), the
descent direction is projected into the space of positive
semidefinite matrices. Furthermore, problem (17) is a
special case of problem (12) in that all ∆xi are restricted
to be the same. This implies that DREs are less con-
servative than AREs.

2.4. Discussion
When using data for statistical inference, overfitting
has been a central challenge. A variety of machine
learning algorithms have been developed to overcome
these issues, particularly via regularization techniques.
The paradigm of robust optimization provides a uni-
fying justification for the success of many of these
methods. The robustness of a result can be associated
with problem attributes such as consistency and spar-
sity (see Sra et al. 2012 and references within). In this
vein, our presented robust maximum likelihood esti-
mators are also robust against overfitting, as the inner
minimization problem inherently reduces the complex-
ity and improves the predicative power of the esti-
mator. Both of the following numerical experiments
support this observation, as the resulting estimators are
broadly insensitive to error size and sample size.

3. Computational Results with
Simulation Data

To evaluate the robust estimators, we conduct exper-
iments using computer-generated random data. The
purpose of using simulated data is that we have ac-
curate information about the true data that can serve as
a reference, allowing us to directly measure the quality
of robust estimators on observed data. We generate
samples following a multivariate normal distribution.
As our estimators are designed to deal with errors

in the samples, we generate errors following both a
normal and a uniform distribution, and use them to
contaminate our samples.
More specifically, the experiments are conducted in

the following fashion. A number of n ! 400 samples in
R4 are generated randomly, following the multivariate
normal distribution with some randommean and some
random covariance matrix. Let Xtrue be the 400× 4
matrix containing the samples xtruei , i ! 1, 2, . . . , 400, in
its rows. The vectors xtruei are the true samples and are
not affected by errors.
Furthermore, we generate errors on the samples in

the following way: ∆Xk, k ! 1, 2, . . . , 40, is a 400× 4
matrix containing errors corresponding to the samples
in the 400× 4 matrix Xtrue. The errors in ∆Xk follow a
normal distribution with mean 0 and covariance matrix
I4, where 0 is the zero vector in R4, and I4 is the 4× 4
identity matrix. In the experiments, we will use the
parameter ρ to scale the magnitude of contamination.
Correspondingly, we also employ ρ to tune the un-
certainty set size. In this context, Γ is used for a constant
set size, as will be discussed in Section 3.2.
For the uncertainty set that contains the simulated

errors, we evaluate the performance of the estimators
using the worst-case and average values of the prob-
ability density, as well as their distance from the value
of the nominal estimator on the true data. Initially, we
use the normally distributed errors. Later, we compare
the resultswith the case of uniformly distributed errors.
In each case, we consider both AREs and DREs.
The experimental section is organized as follows.

In Section 3.1, we evaluate the estimators based on
the worst-case and average values of the probability
density. In Section 3.2, we evaluate the estimators based
on their distance from the nominal estimator on the true
data. In Section 3.3, we compare the robust estimators to
the nominal one, using the local and the global search
methods for the ARE and DRE cases. In Section 3.4, we
discuss the effects of different distributions for the errors,
in particular, whenwe have uniformly distributed errors.

3.1. Worst-Case and Average Probability Density
To probe the efficiency of the proposed robust estimators,
we will check the worst-case and average values of the
probability density, as we add properly scaled errors
from the set of errors ∆Xk to the true values of the data.
In particular, we calculate the AREs for the true data

Xtrue, for varying sizes of the assumed uncertainty set,
as defined in (4), between ρ ! 0 and 3with a step size of
0.1.We denote themby µ̂rob.a.(Xtrue,ρ) and Σ̂rob.a.(Xtrue,ρ).
Moreover, we calculate the DREs in the same cases
and denote them by µ̂rob.d.(Xtrue,ρ) and Σ̂rob.d.(Xtrue,ρ).
For ρ!0, we have the nominal estimates, which co-
incide with the true estimators, denoted by µ̂true(Xtrue)
and Σ̂true(Xtrue). To calculate the robust estimators,
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we use a first-order gradient descent method. The initial
point is the robust estimate for the previous value of ρ,
within the considered ρ sequence. For each computed
estimate µ̂, Σ̂, we determine the log-likelihood density
of the observed samples ψ(µ̂,Σ̂,Xtrue+αρ∆Xk), k!1,
2, ... ,40. We record the worst-case value as well as the
average value over the set of errors indexed by k to rule
out data-specific artifacts in our observations. We
consider the cases α!0.5, α!1.0, and α!1.5.

3.1.1. ARE Case. Figure 1 (top row) shows the results
in the ARE case. The worst-case and average values of
the log-likelihood density function are plotted over the
size of the perturbation ρ. For better comparison, these
values are normalized to the corresponding unper-
turbed values.We observe that for small values of ρ, the
nominal and robust estimators depict the same per-
formance. As ρ grows, however, the difference between
them increases, with the robust always showing a
better performance than the nominal. This observation

holds for both the worst-case value and the average
value of the probability density. This is because the
robust estimator always protects against the worst-
case scenario; thus, it does not degrade as fast as the
nominal estimators for increasing error sizes.

3.1.2. DRE Case. Figure 1 (bottom row) shows the
performance of log-likelihood density function ψ as a
function of the error size in the DRE case. We observe
a similar behavior as in the ARE case. The difference
between the DRE and the nominal grows at a higher
rate than the difference between the ARE and the nom-
inal. In all cases, the superiority of the robust estimator
is detected for values of ρ greater than or equal to 1. The
ARE is better than the nominal up to a factor of 10%,
and the DRE is better than the nominal up to a factor of
15%. As α increases, both nominal and robust per-
formances deteriorate at a higher rate.
Note the smooth transition between the nominal

(i.e., ρ ! 0 in ψ(µ̂, Σ̂,Xtrue + αρ∆X)) and the robust

Figure 1. (Color online) Comparison: (Left)Worst-Case and (Right) Average Log-Likelihoodψ for Changing Perturbation Size
ρ for the (Top) ARE and (Bottom) DRE Cases
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log-likelihood (ρ> 0) for both the ARE and DRE cases,
suggesting the identifiability of estimators.

3.2. Distance From Nominal Estimators
To evaluate how robust estimators perform in the
presence of errors, we compute both the nominal and
the robust estimators on contaminated data with errors
of different sizes and compare them to nominal esti-
mators computed on the true data.

More specifically, we compute the AREs µ̂rob.a.(Xtrue +
δ∆Xk, ρ), Σ̂rob.a.(Xtrue + δ∆Xk,ρ) on the contaminated
data for error sets k ! 1, 2, . . . , 40, for the values of δ !
[0, 1]with 0.05 steps, and for the value of ρ ! [0, 1]with
0.1 steps. We also compute the DREs in the same
fashion. For ρ ! 0, we have the nominal estimators. For
each estimate, Figure 2 shows the calculated distances

Errorµ !
22µ̂rob

(
Xtrue + δ∆Xk, ρ

) − µ̂true
(
Xtrue)22

2, (18)

ErrorΣ !
22Σ̂rob

(
Xtrue + δ∆Xk,ρ

) − Σ̂true
(
Xtrue)22

fro. (19)

Note that ∥A∥fro is the Frobenius norm of an n×m
matrix A defined by

∥A∥fro !
33333333333333
∑n

i!1

∑m

j!1
A2

i, j

√
,

where Ai, j is the (i, j) element of matrix A. We av-
erage the calculated distances over the error sets k,
k ! 1, 2, . . . , 40. We use the Frobenius norm because it
takes into consideration the differences of the variances
of the variables as well as their cross correlation terms.
The range of uncertainty size (ρ) where the robust

estimator outperforms the nominal (true) depends on δ,
the size of the errors, illustrated in Figure 2. When
encountered errors are small sized, the robust solutions
coincide with their nominal counterparts; that is, the
difference between the robust and true estimators is in-
dependent of ρ. For a range of error sizes, the observ-
able dip demonstrates that robust estimators clearly

Figure 2. (Color online) Range of Effectiveness of Robust Estimators as the Distance to True Estimators: (Left) Equation (18) for
µ and (Right) Equation (19) for Σ for the (Top) ARE and (Bottom) DRE Cases
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improve in accuracy. As δ increases, the interval with
improved performance moves to higher ρ. This is
explained by the fact that the robust estimator is se-
cured against errors with the norm up to some ρ, and
thus it cannot deal with higher errors. In data-driven
applications, the analysis of the dip can be used re-
versely to motivate the appropriate size of the uncer-
tainty set Γ ! ρ∗.

3.3. Comparison of the Local and Global Estimators
In this section, we compare our gradient-based method
with the global search algorithm. Both methods are
employed to evaluate the ARE, as defined in prob-
lem (5). Because the inner problem is the same, we con-
tinue using the same algorithm for the inner problem,
as described in Section 2.2, to enable a quantifiable
comparison.

Using the same data set as before, we compare the
corresponding robust estimators to the nominal (true)
counterparts for various values of δ, analogous to the
previous experiment. We evaluate both estimators on
data contaminated with errors that are scaled with δ.
For values of δ ranging between 0 and 1 with a step
of 0.1, we compute the nominal (true) and the robust
estimates on the contaminated data (Xtrue + δ∆Xk). From
the region of best performance of the robust estimator,
as illustrated in Figure 2, we extract the best parameter
value ρ∗ that yields the lowest robust estimate errors for a
particular δ, as defined in Equations (18) and (19). This ρ∗

is used in the experiments to evaluate the performance.
To come close to a global optimum, we conduct the

gradient-based local search from 100 different initial
estimates. These are chosen as nodes of a uniform grid

that covers the entire parameter space, belonging to the
data set at hand. For each run, the performance is again
evaluated by measuring the distance to the nominal
estimators on the true data. Furthermore, for each
initial point, all performances are averaged over the
set of the errors used.
Figure 3 depicts the comparison between the local and

the global search algorithms in the ARE case. For
completeness, we also show the DRE case, which fol-
lows the same trend. These results show that as δ grows,
the performance of all estimators deteriorates, but the
deterioration has a smaller rate in the case of the robust
estimators. The DREs show a slightly better perfor-
mance than the AREs. This is because the errors for the
samples in the ARE case are not correlated, whereas all
sample errors in theDRE case follow the sameperturbed
distribution and, thus, are less conservative. For small
size errors, both the local and the global as well as the
ARE and DRE cases perform similarly. On the other
hand, the robust simulated annealing algorithm out-
performs the gradient-based local search algorithm for
δ> 0.3, despite the 100 initial points for the local search.
However, the global estimators come at a higher com-

putational expense. Whereas the gradient ascent method
requires approximately 100 seconds on a Intel Xeon 3.4
GHz desktop machine, the simulated annealing method
terminated after approximately 215 seconds for one
particular instance of the samples. Therefore, for small-
sized errors, it is moremeaningful to employ the gradient
ascent method to evaluate local robust estimators. On the
other hand, when errors are larger, using the more costly
simulated annealing method leads to better-performing
global robust estimators.

Figure 3. (Color online) Comparison of the Errors in (Left) µ and (Right) Σ in the ARE and DRE Cases Using the Local and
Global Robust Algorithms for Different Levels of Contamination δ

Note. All errors follow a normal distribution.

Bertsimas and Nohadani: Robust Maximum Likelihood Estimation
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2019 INFORMS 9



3.4. Comparison Between the Error Distributions
In this section, we investigate whether the above ob-
servations and, thus, the quality of the proposed robust
estimators depend on the source of errors. For this, we
conduct the same experiments using a different error
distribution, namely, when errors are uniformly dis-
tributed. Now, ∆Xk, k ! 1, 2, . . . , 40, is a 400× 4 matrix,
where each of its rows follows the uniform distribution
in a ball with radius 1.

Whenmeasuring the distances to the true estimators,
as in (18) and (19), we observe that for the same δ, the
region where the robust estimator is superior is shifted
to smaller values of ρ (not shown here, but comparable
to Figure 2). This is because the samples from a uniform
distribution are contained in the ball with radius δ,
whereas normally distributed samples can reside outs-
ide this region. Overall, we observe similar trends for
the ARE and DRE cases as in the case of the normally
distributed errors, as exemplified in Figure 4. There-
fore, we can conclude that robust estimators are also
robust to the source of uncertainty. Because we do not
expect any additional insight by a comparison with
global estimates, we omit the discussion here.

3.5. Comparison with Factor Analysis
In this section, we compare the proposed method
with an existing method. We select an extreme case,
where the distribution of the data uncertainty is fully
accounted for. Consider the observed dataXobs ! (x1, x2)
to be generated by the following factor analysis model:

x1 ! xtrue + ∆x1 and x2 ! b · xtrue + ∆x2,

where xtrue is normal distributed 1(0, 1). The uncertain
∆x1 and ∆x2 are independent of each other and of xtrue
and are also normal distributed but with variances < 1,
respectively. This means Xobs follows a bivariate nor-
mal distribution with zero mean, variances of 1 and b2,

and covariances equal to zero. For this strictly pa-
rametrized setting, we estimate the parameters by the
proposed robust MLE method and by conventional
factor analysis. In this experiment, we scale the results
in terms of b for a direct comparison.
We observe that both methods comparably estimate

the variances to an accuracy of ± b/10. In fact, the es-
timator provided by robust maximum likelihood esti-
mation improves slightly over factor analysis within an
uncertainty size window, similar to the observations in
Section 3.2 and displayed in Figure 2. On the other hand,
factor analysis outperforms robust maximum likelihood
estimation in estimating the covariances. The Frobenius
norm of the difference between the estimated and gen-
erated covariance matrices is 0.6b smaller for factor
analysis than robust maximum likelihood estimation,
demonstrating the advantage of thematching parametric
model. However, this advantage deteriorates when an
incorrect parametric factor analysis model is used.

3.6. Summary of Simulation Results
In our computer simulations, we applied the local and
the global RO methods to randomly generated data
sets that were contaminated in two different ways:
the ARE case and the DRE case. First, we investigated
the performance of the log-likelihood density function
values ψ as the error size increases. Using the local
gradient-based robust method to estimate the param-
eters, we observed thatψ degrades at amuch lower rate
than when using the nominal estimators, demonstrating
that the robust method protects against worst-case sce-
narios. This behavior was confirmed by both the worst-
case performance and the average performance of ψ, as
well as for both cases, the ARE and DRE cases.
Next, we compared the local and global robust al-

gorithms by computing the distance of the robust es-
timates to their “true” and unperturbed counterparts.

Figure 4. (Color online) Comparison of the Errors in (Left) µ and (Right) Σ for Uniformly Distributed Errors
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Obviously, as the size of error increases, this distance
grows for all methods. However, because this distance
grows linearly for the nominal method, we observe
a clear advantage using the robust methods. Because
the DRE case is less conservative, it shows a slightly
better performance than the ARE. As we encounter
larger errors, the robust simulated annealing method
finds the global robust optima and, thus, outperforms all
other local methods. This comes at a higher computa-
tional cost. Independent of approach, we also studied
the range of effectiveness for robust estimators, because
for small-sized errors, the robust and nominal estimates
coincide, and for too large errors, any method fails.

We also probed the sensitivity of the estimators
with respect to the sources of errors. Using the local
robust method, we compared two DRE cases: (a) when
the errors follow a normal distribution and (b) when
the errors followauniformdistribution.We show that the
proposed estimators remain robust even when the
errors follow a different distribution than the one we
prepared for.

Last, we compared the robust MLE method against
a fully parametric model of factor analysis. We observe
that the semiparametric robust MLE method compares
well with factor analysis for estimating variances but
underperforms for covariances. This demonstrates that
although robust maximum likelihood estimation of-
fers advantages to estimates of uncertain input data,
it underperforms when the data-generating process is
known and can be leveraged.

4. Cancer Radiation Therapy
Plan Evaluation

Intensity-modulated radiation therapy has the advan-
tage of delivering highly conformal dose distribu-
tions to tumors of geometrically complex shapes. The
treatment-planning process involves iterative interac-
tions between a commercial software product and a
group of planners, dosimetrists and medical physicists.
Therefore, the final product is the unpredictable outcome
of a series of trial-and-error attempts at meeting com-
peting clinical objectives. To guide the decision making
and to assure plan quality, institutional and interna-
tional recommendations are followed (International
Commission on Radiation Units and Measurements
2010). Even though these constraints are rigorously
imposed, substantial deviations can occur (Das et al.
2008, Roy et al. 2013). These often occur because some
of the guidelines cannot be followed because some of
them are competing or infeasible in certain cases. In
practice, these deviations are statistically analyzed for
both reporting and process control purposes. For this,
conventional statistical estimators (sample mean and
covariances) are used. However, these estimators are
sensitive to sample quality and sample size, rendering

the conclusions less dependable. Our goal is to
demonstrate that robust estimators are more accurate in
the presence of uncertainties. They can produce more
reliable guidelines that can be followed in practical set-
tings and prevent undesirable deviations.
In this section, we focus on radiation dose to tumor

structures and defer the discussion on other organs to
a more dosimetric study. In clinical practice, spatial
dose distributions are evaluated with a cumulative
dose–volume histogram (DVH). It measures the por-
tion of the volume (e.g., of tumor) that receives a certain
fraction of the prescribed dose. Figure 5 illustrates two
acceptable tumor DVHs. The ideal distribution is to
deliver 100% of the prescribed dose to the entire vol-
ume (dotted step function). Note that the DVH, by
design, normalizes over anatomical sites and volume
differences, enabling direct comparisons across pa-
tients. Guidelines are typically imposed as DVH con-
trol points, for example, for the doseDx to a tumor. The
quantity Dx measures the percentage of the prescribed
dose that was received by x% of the volume and is
typically implemented as a soft constraint during plan
optimization. Figure 5 also shows three such control
points. Despite international and institutional recom-
mendations, the delivered values often differ from
protocols (Nohadani et al. 2015).
As input data, we employ Dx control points of 491

treatment plans that have already been delivered.
Specifically, the treated tumors are in the abdomen,
brain, bladder, breast, eyelid, esophagus, head and
neck, liver, lung, pancreas, parotid gland, pelvis,
prostate, rectum, thyroid, tongue, tonsil, and vagina.
This range serves to limit site-specific bias, and the
use of the DVH enables comparability. Note that all
treatments followed the same clinical protocols and
were optimized with the same commercial software

Figure 5. (Color online) Dose–Volume Histogram of Two
Clinically Acceptable Treatment Plans for Tumor

Note. The dotted line is a guide for the eye for the ideal plan, and the
dashed lines mark three dose control points Dx.
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(Pinnacle 2012). Therefore, the remaining sources of
uncertainty are in the variations among the patients
and the path of decision making that clinicians have
taken to arrive at these final plans. We compute the
corresponding AREs for these plans.

4.1. Summary of Results
We evaluate DVH dose points D100, D98, D95, D50, and
D2 on the treated tumors. Specifically, we simulate
a typical institutional analysis, where means and co-
variances ofDx are reported. A report on a protocol (not
data) is considered reliable when the estimator values
remain stable for differing sets of data. In other words,
insensitivity to sample and sample size is given, when
estimators exhibit a narrow spread over the sampled
data (and size). In the following, we describe two ex-
periments, probing the dependence on samples and on
sample size.

To simulate semiannual report scenarios, we ran-
domly divide the 491 five-dimensional plan data into
a subset of 50. For each set, we evaluate estimators for
µ and Σ. First, we compute the corresponding AREs
of 3,000 such samples. Next, the standard (nominal)
estimators on the same samples are calculated for
comparison. In the first experiment, an estimator is
considered superior when its value is not sizably af-
fected by the choice of the sample, that is, the estimator
spread is narrower. In the second experiment, only 80
randomly chosen samples (each having 50 plans) are
considered, and the results are denoted by superscript “s.”
Therefore, the difference from the subsampled estimator

displays sample dependence. In both experiments, the
independence among patients justifies the assumption
of a normal distribution for the deviations from pro-
tocol. Therefore, the corresponding uncertainty set can
be modeled as in (4).
Figure 6 (left) shows that for the three key clinical

control points, the spread of µrob.a. is stable and at the
same level as the nominal estimator (at ρ ! 0) up to
ρ≤ 2 Gy. Beyond this point, the performance de-
teriorates (also observed in Section 3.2). However, with
regard to sample-size dependence, µnom exhibits a sizable
sensitivity (seen by the difference ∆

s ! |std(µnom)−
stds(µnom)| > 0), as opposed to µrob.a., which remains
unchanged (hence, not plotted). This observation applies
to all DVH control points Dx. Furthermore, a deviation
beyond 2 Gy is typically considered clinically unac-
ceptable during planning. Therefore, it is justified to
state that the stability of the robust estimator is superior
over the clinically relevant range.
The true advantage of the robust method becomes

apparent when comparing higher estimators. Figure 6
(right panels) illustrates the coefficient of variation
(cv ! σ

µ) that measures the normalized spread of the
covariances. With regard to the sample dependence, the
spread of Σrob.a.(D50,D2) and Σrob.a.(D95,D50) is com-
parable toΣnom over all samples (see Figure 6, (d) and (f)).
However, Σrob.a.(D95,D2), which measures the relation
across the full DVH range and is clinically most mean-
ingful, exhibits a narrower spread over the entire region,
as shown in Figure 6(e)), demonstrating the superi-
ority of Σrob.a. for this key metric. Note that only

Figure 6. (Color online) Stability of Estimators: Dependence on the Size of Uncertainty Set ρ

Note. The figure shows the standard deviation of the mean (left) and coefficient of variation (cv ! σ
µ) of the covariance matrix elements over the

samples (right).
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Σrob.a.(D95,D2) (Figure 6(e)) is inferior for ρ≤ 0.8,which
is expected, as the performance of any robust quantity
sets in beyond a specific uncertainty size, also demon-
strated in Figure 2with computer-simulated data.When
probing the sample-size dependence, a sizable variation
is observed for the nominal estimator. Furthermore, all
matrix elements of Σrob.a. display a near constant spread
over an extended range of uncertainty size ρ. Also in this
application, we observe a smooth transition between the
nominal and the robust estimators, supporting the
identifiability of estimators.

4.2. Clinical Implications
The mean of dose points Dx is often used to track both
planners and the institutional performance. It is also
used to analyze outcome data (survival, toxicity, and
pain levels), both for monitoring and for reporting.
Here, we presented three dose points for the sake of
exposition (the other two revealed qualitatively com-
parable results). The covariance between dose points is
often recorded and analyzed to track the efficacy of the
guidelines. In fact, in a recent study using nominal
estimators on 100 head-and-neck cases, D95 was found
to be negatively correlated toD50 (Nohadani et al. 2015,
Roy et al. 2016). This means that these two criteria,
although recommended, cannot be satisfied concur-
rently. Robust estimators are suited to providing more
reliable recommendations.

In medical research and practice, statistical estima-
tors are arguably among the most prevalent quanti-
tative tools. These results show that taking errors into
account with a robust approach can significantly ad-
vance the reliability of conclusions. Furthermore, in
clinical trials, large samples are required to control
errors. The presented robust approach can significantly
mediate the sample size and cost while ensuring the
same, if not a better, level of reliability of results.

5. Conclusions
In this work, we extend the method of maximum
likelihood estimation to also account for errors in input
data, using the paradigm of robust optimization. We
introduce two types of robust estimators to cope with
adversarial and distributional errors. We show that
adversarial robust estimators can be efficiently com-
puted using a directional gradient–based algorithm. In
the distributional case, we show that the inner infinite
dimensional optimization problem can be solved via a
finite dimensional problem, constituting a special case
of the adversarial estimators. For multivariate normally
distributed errors, arising in many practical cases, we
develop local and global search algorithms to effi-
ciently calculate the robust estimators.

We demonstrate the performance of the robust es-
timators in two types of data sets. Computer-simulated
data serve for a controlled experiment. We observe that

the robust estimators are significantly more protected
against errors than nominal ones. For small errors, the
local and global robust estimators are comparable.
However, for larger errors, the global estimators out-
perform the local ones. Moreover, we show that the
proposed estimators remain stable even when errors
follow a different distribution than assumed.
In the second application, a large data set of cancer

radiation therapy plans that have been delivered serve
to probe the estimators in clinical decision making. We
show that whereas conventional estimators lead to
heavily sample-dependent conclusions, the robust es-
timators exhibit a narrow spread across samples. This
sample independence allows for reliable decisions.
Given the independence of possible data structure and
the generic error models, we believe that our proposed
methods are directly applicable to a wide variety of
real-world maximum likelihood settings.
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