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Abstract. We introduce a new class of adaptive policies called periodic-affine policies, which
allows a decision maker to optimally manage and control large-scale newsvendor networks
in the presence of uncertain demand without distributional assumptions. These policies are
data-driven and model many features of the demand such as correlation and remain robust
to parameter misspecification. We present a model that can be generalized to multiproduct
settings and extended to multiperiod problems. This is accomplished by modeling the
uncertain demand via sets. In this way, it offers a natural framework to study competing
policies such as base-stock, affine, and approximative approacheswith respect to their profit,
sensitivity to parameters and assumptions, and computational scalability. We show that the
periodic-affine policies are sustainable—that is, time consistent—because they warrant
optimality both within subperiods and over the entire planning horizon. This approach is
tractable and free of distributional assumptions, and, hence, suited for real-world appli-
cations. We provide efficient algorithms to obtain the optimal periodic-affine policies and
demonstrate their advantages on the sales data fromone of India’s largest pharmacy retailers.
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1. Introduction
Despite the physicians’ diagnostic matching of patients
to drugs, the heterogeneity in patients’ illness, drug’s
efficacy, potential side effects, and varying length of
treatment lead to sizable uncertainty in drug’s demand
(Crawford and Shum 2005). Retailers are mandated to
service-level guarantees, and overstocking drugs is nei-
ther economical nor practical because they are perish-
able. Such healthcare problems affect a wide section of
the population and have large societal implications. In
this context, newsvendor models offer a natural frame-
work and are used for decision making.

Practical solutions to such problems are critical to a
broad range of industries. In particular, pharmaceutical
companies with a large turnover are interested in op-
timal inventory management. GlaxoSmithKline spends
over $4.5 billion each year on manufacturing and sup-
plying products. Johnson & Johnson spends approxi-
mately $30 billion annually in leveraging its purchasing
power to set sustainability expectations beyond its op-
erations. Similarly, companies like Teva Pharmaceuti-
cals, Pfizer, and Merck spend millions of dollars to
ensure the safety and supply of their products, even
though they have manufacturing units in multiple lo-
cations. Therefore, any variation in inventories can lead

to multiple disturbances in the system. A pharmacy’s
inventory represents its single largest investment. As
discussed in Webman (2012), in a common pharmacy,
cost of goods sold accounts for approximately 68% of
total expenditures. For every 1% change in costs of
goods, profits may increase or decrease by more than
20% (see Webman 2016). Thus, the sheer magnitude of
dollars involved makes seemingly minor inefficiencies
in purchasing and inventory control matters of great
importance to both cash flow and profitability.
The challenges of such networks are multifold. Real-

world settings are typically high-dimensional with mul-
tiple products and multiple stages of decision-making.
These settings also suffer from substantial uncertainties in
demand. Modeling such demand uncertainty is chal-
lenging because demand is often not stationary, or its
uncertainty can depend on previous decisions (Nohadani
and Sharma 2018).
In this work, we consider a newsvendor networkwith

uncertain and correlated demand.Using the paradigmof
robust optimization, wemodel such demand to reside in
uncertainty sets and provide tractable formulations and
associated algorithms for sustainable policies. To gain
insight from a real-world setting, we apply the results
to a major online pharmacy retailer in India, where a
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prohibitively large penalty occurs when customers’
demand is not satisfied. This company carries over 163
different brands, and the sales grow at about 23% per
year. Their distribution network spans the entire country
through fixed retail locations and online platforms.
The decision makers of this company observe a sizable
uncertainty in demand over the course of the year (in
addition to seasonality) and significant correlations
amongst various product categories. In close collab-
oration with this company’s managers, we seek to
design optimal implementable policies to control their
inventory levels in their network.

Our contributions are as follows:
• Modeling: We provide a distribution-free description

of uncertainty in demand using two types of sets. In-
dependent demands are modeled via budget constraints.
We also incorporate correlated demands using a factor
model approach. The inventory-control problem is then
cast as a multistage robust optimization problem. As a
result, a novel solution concept of periodic-affine policy is
provided for newsvendor networkswith time-dependent
and potentially correlated demand uncertainty.

• Algorithms: We provide a tractable algorithm that
provides periodic-affine policies. These policies de-
compose the overall problem into a more tractable
formulation than affine policies.

• Application: We analyze the sales data of a phar-
macy retailer in India for the fourth quarter of 2016. This
entails 1.5 million transactions for 228 different products.
We construct the demand uncertainty set for the 20 most
popular products, comprising 80% of all transactions.
Our numerical experiments show that even for the
single-station case, the computational burden for the
optimal periodic-affine policies is significantly reduced
over affine policies (by 100× for a 15-period problem),
making the proposed approach practical for real-world
and large-sized problems. Moreover, the periodic-affine
policy improved the cost-effectiveness of the operation
by 19%over a base-stockpolicy for realistic penalty costs.

1.1. Literature Review
The seminal work of Arrow et al. (1951) introduced the
multistage periodic review inventory model, where the
inventory is reviewed once every period and a decision
is made to place an order, if a replenishment is neces-
sary. The (s,S) inventory policy establishes a lower
(minimum) stock point s and anupper (maximum) stock
point S. When the inventory level drops below s, an
order is placed “up to S.” The (s, S) ordering policy has
been proven optimal for simple stochastic inventory
systems. Scarf (1960) proved that base-stock policies are
optimal for a single installation model. Clark and Scarf
(1960) extended the result to serial supply chains
without capacity constraints and showed that the op-
timal ordering policy for the multiechelon system can
be decomposed into decisions based on the echelon

inventories. Karlin (1960) and Morton (1978) showed
that base-stock policies are optimal for single-state
systems with nonstationary demands. Federgruen and
Zipkin (1986) generalized the analysis to a single-stage
capacitated system, and Rosling (1989) extended the
analysis of serial systems to assembly systems. For more
work, refer to Langenhoff and Zijm (1990), Sethi and
Cheng (1997), Muharremoglu and Tsitsiklis (2008), and
Huh and Janakiraman (2008).
Simulation optimization has attempted to take ad-

vantage of the availability of computational resources
and the power of simulation for evaluating functions. For
a comprehensive overview of commonly used simula-
tion optimization techniques, we refer the reader to the
survey by Fu et al. (2005). Fu (1994), Glasserman and
Tayur (1995), Fu and Healy (1997), and Kapuscinski and
Tayur (1999) have developed various gradient-based
algorithms to study inventory systems. These methods
are practicalwhenever the input variables are continuous
and their success depends on the quality of the gradient
estimator.
On the other hand, Scarf (1958), Kasugai and Kasegai

(1961), Gallego andMoon (1993), andGraves andWillems
(2000) developed distribution-free approaches to inven-
tory theory. Bertsimas and Thiele (2006) took a robust
optimization approach to inventory theory and showed
that base-stock policies are optimal in the case of serial
supply chain networks. Bienstock and Özbay (2008)
presented a family of decomposition algorithms aimed
at solving for the optimal base-stock policies using
a robust optimization approach. Rikun (2011) extended
the robust framework introduced by Bienstock and
Özbay (2008) to compute optimal (s, S) policies in sup-
ply chain networks and compared their performance to
optimal policies obtained via stochastic optimization.
Ben-Tal et al. (2004) extended the robust optimization
framework to dynamic settings and explored the use of
disturbance-affine policies by allowing the decision
maker to adjust their strategy, leveraging the information
revealed over time. Bertsimas and Thiele (2006) and
Bienstock and Özbay (2008) studied the performance of
base-stock policies, and Ben-Tal et al. (2005), Kuhn et al.
(2011), and Bertsimas et al. (2010) investigated polices
that are affine in prior demands under a robust opti-
mization lens. Within the robust optimization frame-
work, affine policies have gained much attention due to
their tractability; depending on the class of the nominal
problem, the optimal policy can be solved via linear,
quadratic, conic, or semidefinite programs (see Löfberg
2003 and Kerrigan and Maciejowski 2004). Empirically,
Ben-Tal et al. (2005) and Kuhn et al. (2011) have reported
that affine policies have excellent performance and in
many instances optimal.
Another approach is distributionally robust optimi-

zation, which assumes that the uncertainties follow a
distribution within a prespecified set of distributions.
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Such sets can be based on moment constraints (Delage
and Ye 2010), phi-divergences (Ben-Tal et al. 2013), or
Wassersteinmetric (Mohajerin Esfahani and Kuhn 2018)
to allow tractable reformulations. This approach typi-
cally yields less conservative solutions than determin-
istic robust optimization solutions. For multistage
problems, Van Parys et al. (2016) proposed a tractable
framework for distributionally robust linear feedback
policy for discrete time linear control systems with
quadratic objective functions.

In the context of pharmaceutical systems, Guerrero
et al. (2013) provided a near-optimal base-stock policy for
two-echelon distribution networks with multiple prod-
ucts, where every sink node is replenished by a single
supplier. They provided a Markov chain formulation
and a heuristic algorithm for Poisson distributed and
independent demands. For a combined setting of a
pharmaceutical company and a hospital, Uthayakumar
and Priyan (2013) developed a two-echelon supply chain
model to determine the optimal lot size, lead time, and
total number of deliveries between the pharmaceutical
company and a hospital. Using Lagrange multipliers,
they provided decision tools for optimal costs while
ensuring required service levels. In a two-level phar-
maceutical supply chain, Baboli et al. (2011) studied a
specific product with a constant demand rate and nu-
merically showed that the overall cost is improvedwhen
pharmacies and hospitals are centralized.

Notation. Lowercase italic is used to denote scalars;
lowercase bold is used to denote vectors, and uppercase
bold is used to denote matrices. Sets are in calligraphic.
Section-specific notation is introduced where needed.
All proofs are relegated to the online appendix.

2. Model
We consider a newsvendor network in which inven-
tories are reviewed periodically and unfulfilled orders
are backlogged. For simplicity, we assume zero lead
times throughout the network; however, our framework
can be adapted to systems with nonzero lead times. We
consider a T-period time horizon, and, within each
period, events occur in the following order: (1) the or-
dering decision is made at the beginning of the pe-
riod, (2) demands for the period occur and are filled or
backlogged depending on the available inventory, and
(3) the stock availability is updated for the next period.

• 1 : Set of all installations where ordering de-
cisions are made (source nodes) with |1| ! m

• 6 : Set of all installations with external demand
(sink nodes) with |6| ! n

• + : Set of all links (edges) within the inventory
network with |+| ! p

• 1k : Set of source nodes supplying stock to a sink
node k ∈6

• 6v : Set of sink installations that are fed from a
source node v∈1
• svt : Amount of order at the beginning of period t at

a source v ∈1
• dkt : Demand observed at a sink k ∈6 throughout

time period
• xℓt : Stock delivered along a link ℓ ∈+ at time t
• us,vt : Stock available after the period t at a source

node v ∈1
• ud,kt : Backorders after the period t at a sink node

k ∈6.
To track the system’s operation, we capture infor-

mation about the stock available and the stock ordered
at source installations at the beginning of each time
period as well as the demand at each sink installation
throughout each time period (Figure 1). Specifically,
assuming zero initial input and demands, we can ex-
press the dynamics of inventory levels and backlogged
demands for t ! 1, . . . , T as

us,vt ! us,vt−1 + svt −
∑

ℓ!(v,k),k∈6v

xℓt !
∑t

τ!1
svτ −

∑

ℓ!(v,k),k∈6v

∑t

τ!1
xℓτ

∀ v∈1, (1)
ud,kt ! ud,kt−1 + dkt −

∑

ℓ!(v,k),v∈1k

xℓt !
∑t

τ!1
dkτ −

∑

ℓ!(v,k),v∈1k

∑t

τ!1
xℓτ

∀ k ∈6.
Note that the ordering quantities svt ! svt (π,d), and
therefore the amount of available stock us,vt ! us,vt (π,d)
and backorders ud,kt ! ud,kt (π,d), are functions of the
ordering policy π and the demand d.
The high-dimensional nature of modeling demand

uncertainty probabilistically and the complex de-
pendence on random variables underscore the diffi-
culty of analyzing and optimizing the expected total
cost. Instead, we propose a framework that builds
upon the robust optimization paradigm.

Figure 1. (Color online) Example of a Nine-Installation
Network with n ! 4 Sink Nodes and m ! 5 Source Nodes
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2.1. Robust Newsvendor Network Formulation
To describe our framework, we first introduce a robust
approach to single-period models. Our models are
based on the assumption that we have the following
cost and revenue structure:

• cvS: Purchasing cost per unit at the source node
v ∈1;

• cvH : Holding cost per unit for the leftover stock at
the source node v∈1;

• ckP: Penalty cost per unit for the unsatisfied de-
mand at the sink node k ∈6;

• rℓ: Revenue by satisfying a unit demand occurred
at the sink node k via ℓ ! (v, k) ∈+.

The goal of the decision maker is to order a proper
amount of products {sv : v ∈1} and to process network
activities {xℓ : ℓ ∈+} to satisfy the customer demand at
the sink nodes, so that the firm maximizes an overall
profit. If we denote8 as a demand uncertainty set, then
a single-period problem is formulated as a two-stage
robust optimization problem

max
sv≥0

[
−
∑

v∈1
cvSsv +min

d∈8
max
xℓ≥0

[∑

ℓ∈+
rℓxℓ −

∑

k∈6
ckP
(
dk −

∑

ℓ!(v,k),v∈1k

xℓ
)

−
∑

v∈1
cvH

(
sv −

∑

ℓ!(v,k),k∈6v

xℓ
)]]

s.t.
∑

ℓ!(v,k),k∈6v

xℓ ≤ sv ∀ v∈1,
∑

ℓ!(v,k),v∈1k

xℓ ≤ dk ∀ k ∈6,

(2)

where the constraints are network constraints and affect
the inner maximization problem. Note that the order
quantities {sv : v∈1} are “here-and-now” decisions; it
must be placed before demands are realized, whereas
the network activities {xℓ : ℓ ∈+} are “wait-and-see”
solutions and assigned after demands are observed.

Notation. To simplify (2), we define cS ∈Rm
+ , cH ∈Rm

+ ,
cP ∈Rn

+, and r∈Rp
+ as cost and revenue vectors, and

define RS ∈Rm×p
+ and RD ∈Rn×p

+ as matrices that de-
scribe the two constraints, respectively. Decision var-
iables and uncertain demands are s∈Rm

+ , x∈R
p
+, and

d ∈Rn
+. We obtain

max
s≥0

[
− (cS + cH)us + min

d∈8
max
x≥0

[
vux − cuPd

]]

s.t. RSx≤ s, RDx≤d,

with v ! r + Ru
ScH + Ru

DcP.

2.2. Modeling Demand Uncertainty
For the sake of simplicity, we assume that there is no
demand seasonality and that the demand realizations are
light-tailed in nature (i.e., the demand variance is finite).
For each sink installation k ∈6, we denote the demand
mean by µk and the demand standard deviation by σk.
Our framework also captures correlation among the
demand, where we denote Σ∈Rn×n as the nominal

covariance matrix. Note that all these values can be
inferred from historical data. Instead of describing the
demand as a random variable, we describe the demand
and its correlation by using budget uncertainty sets
(Bertsimas and Sim 2004) and a factor-based approach
(Bandi and Bertsimas 2012). Such sets do not require any
distributional assumption other than first two moments,
and, consequently, they are robust to the distribution
choice.
We capture the correlations via the covariance matrix

Σ with rank l≤n. This means, there exist A and
λ1, . . . ,λl > 0 that satisfy Σ ! A ·diag(λ2

1, . . . ,λ2
l ) ·Au.

Definition 1 (Single-Period Uncertainty Set). The un-
certainty set for correlated demands at sink nodes d !
(d1, . . . , dn) with variability parameters Γ, ΓB ≥ 0 is

8 !
{
d ∈Rn

+

∣∣∣∣ d ! µ +A · z,
∑l

i!1

zi
λi

∣∣∣∣
∣∣∣∣≤Γ,

zi
λi

∣∣∣∣
∣∣∣∣≤ΓB

∀ i ! 1, . . . , l
}
. (3)

Note that in this definition, Γ and ΓB control the degree
of conservatism. The first constraint in 8 captures
correlation, and the others are budget constraints that
limit the absolute deviation from its nominal value.
Although 8 is data driven, it also captures previous
results on the effect of mean and standard deviation on
the profit in newsvendor networks. In particular, 8
recovers the insightful properties in van Mieghem and
Rudi (2002), as proposed in the following.

Proposition 1. For a single-period robust newsvendor
network with the uncertainty set 8, the worst-case profit
increases in µi and decreases in λi.

This proposition shows that our framework gener-
alizes the structural properties from stochastic net-
works without distributional assumptions. We extend
our model to multiperiod cases in the next section.

3. Multiperiod Robust
Newsvendor Networks

To extend the single-period models into dynamic cases,
we consider a decision maker who has multiple pro-
cessing points of T periods. We assume that all param-
eters cS, cH , cP, r and matrices RS,RD remain constant
over the time horizon. As in Section 2, on-hand input
stocks at source nodes and unsatisfied demand at sink
nodes are backlogged to the next periods. We also as-
sume that the demands are correlated over sink nodes,
but independent over time, with nominal mean vector
µt and covariance matrix Σt for each time period
t ! 1, . . . ,T.

Notation. Order quantities at time t are denoted by st,
customer demands by dt, and network activities by xt.
Single-station quantities are denoted by st, dt, xt.
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Aggregated amount of orders up to time t are
denoted by s̃t, customer demands by d̃t, and net-
work activities by x̃t ( s̃t,d̃t, x̃t for single-station).
Inventory levels and backlogged demands after
time t are denoted by us

t and ud
t . Finally, D[t1: t2] !

(dt1, . . . ,dt2) ∈Rn×(t2−t1+1)
+ contains every realized de-

mand from time t1 to t2. Other quantities such as
S[t1:t2] and X[t1:t2] are defined similarly. We define
At and λt,1, . . . ,λt,lt for each t, with rank(Σt) ! lt
and Σt ! At ·diag(λ2

t,1, . . . ,λ
2
t,lt) ·Au

t .
In the following, we generalize Definition 1 for

multiperiod demand.

Definition 2 (Multiperiod Uncertainty Set). The uncertainty
set for the demand at sink nodes (d1, . . . ,dT) ∈ Rn×T over
T periods is

8T !
{
(d1, . . . ,dT)

∣∣∣∣dt ! µt +Atzt ∀t ! 1, . . . ,T

∑T

t!1

∑lt

i!1

∣∣∣∣
zt,i
λt,i

∣∣∣∣≤ Γ,
∑lt

i!1

∣∣∣∣
zt,i
λt,i

∣∣∣∣≤ Γt,
∣∣∣∣
zt,i
λt,i

∣∣∣∣≤ ΓB

∀i ! 1, . . . , lt, t ! 1, . . . ,T
}
.

In this set, the additional constraint controls the ab-
solute deviation over nodes and time periods. It pre-
vents the demand to take extreme values in every
period t, which reduces the conservatism over time.
This definition can also describe seasonality of de-
mands, which applies to many areas. When there is an
explicit time dependence between the periods, 8T can
be expressed as a conic set (Nohadani and Roy 2017).

For the multiperiod newsvendor networks, we can
express the dynamics of inventories and backlogged
demands in (1) with vectors and matrices as

us
t ! us

t−1 + st − RSxt !
∑t

τ!1

(
sτ − RSxτ

)

ud
t ! ud

t−1 + dt − RDxt !
∑t

τ!1

(
dτ − RDxτ

)
,

and model a multistage robust optimization problem as

max
s̃t(D[1 :t−1])

min
D[1 :T]∈8T

max
x̃t∈3(s̃t,d̃t,x̃t−1)[

− cuS s̃T(D[1:T−1]) − cuH
∑T

t!1

[
s̃t(D[1:t−1]) − RSx̃t(D[1:t])

]

−cuP
∑T

t!1

[
d̃t − RDx̃t(D[1:t])

]
+ rux̃T(D[1:T])

]
, (4)

whereD[1:0] ! 0, x̃0 ! 0. Note that x̃t is determined after
s̃t and d̃t, within a set

3( s̃t, d̃t, x̃t−1) !
{
x̃t ∈Rp

+

∣∣∣∣RSx̃t ≤ s̃t, RDx̃t ≤ d̃t, x̃t ≥ x̃t−1

}
,

which is defined for x̃t tomaximize profit, where the last
constraint requires nonnegative network activities. The
main difference between single-period and multiperiod
models is that the order quantities are not static. That
means, in order to obtain an optimal solution, one
should find s̃t as a function of D[1:t−1] so that they
are fully adjustable to all previous demands. Such policies
also need to be nonanticipative—that is, adjustable de-
cisions should only be based on realized uncertainties.
Even for T ! 1, the problem (4) is a two-stage robust

optimization problem and shown to be nondetermin-
istic polynomial time (NP)-hard (Ben-Tal et al. 2004). For
amultiperiod setting, the complexity only worsens, and,
to our knowledge, no tractable algorithm has been
proposed to exactly solve the general problem in (4).
Because of this, restrictions to specific policies have been
considered. In particular, affine policies have been pro-
posed, where adaptive decisions are assumed to be
affine functions of realized uncertainties.

Definition 3 (Affine Policy). A policy is called an affine
policy if there exist {wt ∈Rm : 1≤ t≤T} and {Wτ,t ∈
Rm×n : 1≤ τ≤ t − 1, 1≤ t≤T} such that

s1 ! w1, st ! wt +
∑t−1

τ!1
Wτ,tdτ t ! 2, . . . ,T. (5)

Affine policies have exhibited excellent performance
in many real-world applications. With such policies, the
multiperiod problem (4) converts to determining the
affine weights. These policies force nonanticipativity of
st, and one can reformulate (4) as a two-stage adaptive
linear optimization problem

max
wt,Wτ,t

min
dt

max
x̃t

[
− cuS s̃T − cuH

∑T

t!1

(
s̃t − RSx̃t

)

− cuP
∑T

t!1

(
d̃t − RDx̃t

)
+ rux̃T

]
(6)

s.t. wt +
∑t−1

τ!1
Wτ,tdτ ≥ 0, w1 ≥ 0

}
∀ t ! 2, . . . ,T,

∀ (d1, . . . ,dT) ∈8T

(7)
s̃1 ! w1

s̃t ! w1 +
∑t

j!2

(
wj +

∑j−1

τ!1
Wτ,jdτ

)

RSx̃t ≤ s̃t
RDx̃t ≤ d̃t
x̃T ≥ x̃T−1 ≥⋯≥ x̃1 ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀t ! 1, . . . ,T. (8)

Constraint (7) implies that the order quantities are
nonnegative for any realizations of past demands, and
constraint (8) affects the inner maximization problem,
which determines the processing activities.
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Proposition 2. Finding an optimal affine policy for a mul-
tiperiod newsvendor network in (6–8) is a convex optimi-
zation problem.

Remark 1. The network activities xt maximize the net
profit over the entire horizon, not just at time t—that is,
we relax nonanticipativity of xt in the optimization
problem (6–8). However, we claim that this relaxation
will not be loose, because penalty cost and holding cost
force xt to maximize profit in the corresponding period.
As a special case, one can show that in single-station
models, xt maximizes the overall profit if and only if it
maximizes the profit at time t. This relaxation facilitates
generality, as problem (6–8) is defined for any poly-
hedral uncertainty sets, whereas in the stochastic case,
optimal strategies are only available for restricted cases
(demands are independent and identically distributed
over time as in van Mieghem and Rudi 2002).

Because the inner minimization problem over dt in
(6–8) is nonconvex, the overall problem is solved with
cut generation. If the uncertainty set8T is a polyhedron,
then it is guaranteed to find an optimal solution within
finite number of iterations (cuts). Therefore, our method
only requires a polyhedral structure of8T. Note that the
solution procedure does not exploit a specific structure
of our uncertainty sets in Definition 2, and the main
purpose of using the budgeted uncertainty sets is to
reduce conservatism. Even though an optimal solution
can be obtained within finite iterations, the problem is
still NP-hard (Ben-Tal et al. 2004), and the computation
grows significantly as T increases.

Although affine policies assume affine dependence
of order quantities to realized demands, one can think
of another class of policies, for which both ordering
decisions and network activities are given as affine
functions. We call these policies as affine-approximation
policies, which are defined below.

Definition 4 (Affine-Approximation Policy). An adaptive
policy is called an affine-approximation policy (Aff-
approx) if there are {wt ∈Rm : 1≤ t≤T} and {Wτ,t ∈
Rm×n : 1≤ τ≤ t − 1, 1≤ t≤T}, {yt ∈Rp : 1≤ t≤T} and
{Yτ,t ∈Rp×n : 1≤ τ≤ t, 1≤ t≤T} such that

s1 ! w1, st ! wt +
∑t−1

τ!1
Wτ,tdτ t ! 2, . . . ,T

xt ! yt +
∑t

τ!1
Yτ,tdτ t ! 1, . . . ,T.

(9)

Note that xt depends on D[1:t], whereas st is a function
of D[1:t−1], as network activities are assigned after the
demand is realized at each time. We provide two ob-
servations for affine-approximation policies.

(1) Aff-approx policies find affine parameters yt and
Yτ,t, so that xt is feasible to the innermost max operator.
Thus, they give lower bounds to the affine policies.

(2) When Aff-approx policies are used, the problem
(6–8) converts to a maximum-minimum (max-min)
problem, where all the affine weights (both for st and
xt) are determined in the outer max operator. Using (9),
both the objective function and the constraints can be
expressed as functions ofwt,Wτ,t, yt, Yτ,t, and dt, which
possibly include bilinear terms between the affine
weights and dt. This type of problem is referred to as a
(static) robust linear optimization problem, and they can
be reformulated to a linear program, whenever 8T is a
polyhedron. Therefore, Aff-approx policies are tractable.
So far,we formulatedmultiperiod robust newsvendor

network problems and introduced two policies. Affine
policies convert the multiperiod problem into a two-
stage problem, which is computationally intractable. On
the contrary, Aff-approx policies solve a tractable linear
program, but it only provides suboptimal solutions to
affine policies (we will numerically study their sub-
optimality in Section 6). Our main contribution is mo-
tivated by taking an alternative approach to these
policies, as presented in the next section.

4. Periodic-Affine Policies for
Single-Station Models

As discussed, affine policies face computational diffi-
culties when a decision maker has a larger number of
resources and products over an extended period of time.
We propose a new solution concept, denoted as periodic-
affine policies (PA), where the overall time horizon is
separated into subperiods, which are interconnected by
the preceding surplus to become the proceeding de-
mand. In this approach, the order quantities are de-
termined as an affine function of past demands realized
only within its subperiod, as opposed to affine and
affine-approximation policies where all previous de-
mands are considered. This scheme reduces the number
of decision variables and consequently the computation
time. Our framework constructs this policy by first
formulating a dynamic programming (DP) problem,
where each stage corresponds to a subperiod. We also
propose an algorithm to compute such periodic-affine
policies and show that they are computationally more
tractable than affine policies. In addition, we present
a sufficient condition that this algorithm provides the
optimal solution to the DP problem. We first consider
T-period single-station models in this section. However,
our framework is naturally extended to multistation net-
works, which we discuss in the subsequent section.

Notation
We use same notations for all cost parameters cS,
cH, cP with revenue per item, r, and wemay assume that
RS ! RD ! 1 without loss of generality in single-station
models. In this section, d ! (d1, . . . , dT), s ! (s1, . . . , sT),
and x ! (x1, . . . , xT). We denote π(wt,Wτ,t) as an affine
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policy with affine parameters {wt,Wτ,t : 1≤ τ≤ t − 1,
1≤ t≤T}. Furthermore, the problem of a T-period single-
station newsvendor model is denoted as Φ(s0, d0) for
an uncertainty set 8T with initial input s0 ≥ 0 and
demands d0 ≥ 0.

Analysis of Initial Input and Demand
We first study the role of initial input and demand for
the optimal affine policy in the multiperiod model,
given by

Φ(s0, d0)≔max
π

min
d∈8T

max
x,s∈-(π,d,s0,d0)

P
(
π(wt,Wτ,t),d, x; s0, d0

)
,

where the profit during the period is

P
(
π(wt,Wτ,t),d, x; s0, d0

)

! − cS
(∑T

t!1
st
)
− cH

∑T

t!1

(
s0 +

∑t

τ!1
(sτ − xτ)

)

− cP
∑T

t!1

(
d0 +

∑t

τ!1
(dτ − xτ)

)
+ r

(∑T

t!1
xt
)
,

and the feasible set -(π,d, s0, d0) is given by

-(π,d, s0, d0)

! s, x≥ 0

s1 ! w1, st ! wt +
∑t−1

τ!1
Wτ,tdτ

∀ t ! 2, . . . ,T
∑t

τ!1
xτ ≤ s0 +

∑t

τ!1
sτ ∀ t ! 1, . . . ,T

∑t

τ!1
xτ ≤ d0 +

∑t

τ!1
dτ ∀ t ! 1, . . . ,T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

The result is intuitive and plays a key role in estab-
lishing periodic-affine policies.

Proposition 3. For an optimal affine policy π∗(w∗
t ,W∗

τ,t) of
Φ(0, 0) with no initial input and demand, if s0 ≤w∗

1, then:
(1) An optimal affine policy π ! π(w∗

t ,W
∗
τ,t) of Φ(s0, d0)

is characterized as

w∗
1 ! w∗

1 − s0 + d0
w∗

t ! w∗
t ∀ t ! 2, . . . ,T

W∗
τ,t ! W∗

τ,t ∀ τ ! 1, . . . , t − 1, ∀ t ! 1, . . . ,T.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(11)

(2) There exists a single worst-case demand d∗ ∈8T for
both Φ(0, 0) and Φ(s0, d0).

This result implies that for small enough connecting
inventories, the subperiods become effectively decoupled.

4.1. Model Formulation
We now introduce the DP formulation for a multi-
period newsvendor network.

Notation. For a T-period single-station model, we par-
tition the timeperiod intoN subperiods sorted as 0 ! t0 <
t1 <⋯< tN−1 < tN ! T. In interval Ij ! {tj−1+1, . . . , tj},
the uncertainty set 8j ∈R|Ij |

+ for every j ! 1, . . . ,N. The
amount of on-hand input stock and backlogged de-
mands after time t are ust and udt . A class of affine
policies for jth subperiod is denoted byΠaff(8j,Ξj−1) on
the uncertainty set 8j, where the state Ξj−1 contains all
past information at the beginning of jth period with
Ξ0 ! 0. In this section, dj ! (dtj−1+1, . . . , dtj) ∈R

|Ij |
+ denotes

the demand at the jth subperiod for j ! 1, . . . ,N. We
proceed similarly for sj and xj.

DP Formulation. We consider an N-stage robust DP
problem, where each stage corresponds to each sub-
period. At the beginning of the jth subperiod, a decision
maker obtains an affine policy πj ∈Πaff(8j,Ξj−1) to
make adaptive ordering decisions for the current
subperiod. This can be formulated as

max
π1∈Πaff(81,Ξ0)

[
min
d1∈81

max
x1,s1∈-1

[
P1

(
π1,d1, x1; 0, 0

)

+ max
π2∈Πaff(82,Ξ1)

[
min
d2∈82

max
x2,s2∈-2

[
P2

(
π2,d2, x2; ust1 , u

d
t1

)
⋯

+ max
πN∈Πaff(8N ,ΞN−1)

[
min
dN∈8N

max
xN ,sN∈-N

PN

(
πN ,dN , xN ;

ustN−1 , u
d
tN−1

)]
⋯

]]]]
, (12)

where Pj
(
πj,dj, xj;ustj−1 , u

d
tj−1

)
is a profit generated dur-

ing the jth subperiod with an initial input and
demand

Pj

(
πj,dj, xj; ustj−1 ,u

d
tj−1

)

! − cS
∑

t∈Ij
st

( )
− cH

∑

t∈Ij

(
ustj−1 +

∑t

τ!tj−1+1
(sτ − xτ)

)

− cP
∑

t∈Ij

(
udtj−1 +

∑t

τ!tj−1+1
(dτ − xτ)

)
+ r

∑

t∈Ij
xt

( )
,

(13)

and sj and xj are determined within a feasible set -j !
-
(
πj,dj, ustj−1 ,u

d
tj−1

)
from (10). In (13), st denotes the order

quantity at time t, if ordering decision is made by πj and
dj is realized. The only constraint for π1, . . . ,πN is to
ensure nonnegative order quantities for any demand
realizations.
Recall that affine and Aff-approx policies are ob-

tained before any demand realizations in (6–8), and
the parameters are fixed over all time periods. In the
DP formulation (12), the affine parameters are chosen
dynamically at each subperiod, depending on the
past information. Specifically, the affine parameters
w ( j)

t (Ξj−1) and W ( j)
τ,t (Ξj−1) of πj can be any function of
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the past realizationΞj−1. Hence, we can write the order
quantities in (12) as

st(dj,Ξj−1) !
w ( j)

1 (Ξj−1) t ! tj−1 + 1

w ( j)
i (Ξj−1) +

∑i−1

τ!1
W ( j)

τ,i (Ξj−1)dtj−1+τ
t ! tj−1 + i, i≥ 2, t∈ Ij.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Every feasible affine and Aff-approx policy ensures
nonnegative orders and, hence, is also feasible in (12).
This implies that by solving (12), one can propose
policies that have better worst-case profit than an
optimal affine policy.

Periodic-Affine Policy Formulation. With initial input
us bounded above with w ( j)

1 , we define affine-Initial
Base-Stock (affine-IBS) policies by modifying the initial
period of an affine policy πj(w ( j)

t ,W ( j)
τ,t ).

Definition 5 (Affine-IBS). For jth subperiod, the affine
Initial Base-Stock policy πj(w ( j)

t ,W ( j)
τ,t ) associated with an

affine policyπj(w ( j)
t ,W ( j)

τ,t ) determines order quantity by

st
(
us,ud,dj

) !
w ( j)

1 − us + ud t ! tj−1 + 1

w ( j)
i +

∑i−1

τ!1
W ( j)

τ,i dtj−1+τ

t ! tj−1 + i, i≥ 2, t∈ Ij.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Note that at each subperiod, affine-IBS policies adapt to
initial input and demand by adjusting the order quantity
at the first period. From the second period, affine-IBS
and its associated affine policies are equivalent.

We now consider a sequence of affine-IBS policies
π ! (π1, . . . ,πN), where each πj ! πj(w ( j)

t ,W ( j)
τ,t ) is for jth

subperiod. Note that this policy may not be well de-
fined for each subperiod because it does not guarantee
that every order quantity is nonnegative. Thatmeans, if an
input stock after tj is greater than w ( j+1)

1 , then the policy
would not be feasible. To account for this, we impose

w ( j+1)
1 ≥ ustj ! ustj

(
πj,dj

)
∀dj ∈8j ∀j ! 1, . . . ,N − 1.

By Definition 5, the right-hand side is equivalent to

ustj
(
πj,dj

)
!max

(
0,

(
ustj−1 +

∑

t∈Ij
st(ustj−1 , udtj−1 ,dj)

)

−
(
udtj−1 +

∑

t∈Ij
dt
))

!max 0,
( ∑tj−tj−1

t!1
w ( j)

t +
∑tj−tj−1

t!2

∑t−1

τ!1
W ( j)

τ,t dtj−1+τ
)(

−
∑tj−tj−1

t!1
dtj−1+t

)
.

Because w ( j+1)
1 has to be nonnegative for any demand

realization, the periodic-affine policy is well-defined if

w ( j+1)
1 ≥ θ∗

j ≔max
dj∈8 j

∑tj−tj−1

t!1
w ( j)

t +
∑tj−tj−1

t!2

∑t−1

τ!1
W ( j)

τ,t dtj−1+τ

[

−
∑tj−tj−1

t!1
dtj−1+t

]
, (14)

for every j ! 0, . . . ,N − 1, where θ∗
j denotes the maxi-

mum leftover input after jth subperiod with θ∗
0 ! 0.

Now we can define periodic-affine policies.

Definition 6 (Periodic-Affine Policy). A periodic-affine
policy πPA ≔ (π1, . . . ,πN) is an affine-IBS policy πi sat-
isfying (14) for affine policies πi.
For a periodic-affine policy πPA ! (π1, . . . ,πN), where

πj ! πj(w ( j)
t ,W ( j)

τ,t ), order quantities at time t are deter-
mined as follows:

st ! st(πPA)

!
w ( j)

1 − ustj−1 + udtj−1 ∀ t ! tj−1 + 1

w ( j)
i +

∑i−1

τ!1
W ( j)

τ,i dtj−1+τ ∀ t ! tj−1 + i, i≥ 2, t∈ Ij,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(PA)

for every j ! 1, . . . ,N. Because πj ∈Πaff(8j,Ξj−1) and
πPA satisfies (14), every periodic-affine policy is a fea-
sible solution to the DP in (12).
In the next section, we present our algorithm to

compute periodic-affine policies.

4.2. Periodic-Affine Algorithm
Our algorithm obtains affine-IBS policies for each sub-
period by solving smaller subproblems. However, be-
cause affine-IBS policies take initial input and demands
into account, we construct the objective function to
account for leftover resources and demands.We identify
such objective functions from the DP problem (12). We
first show that if initial input is small, an affine-IBS
policy will be optimal among Πaff(8N ,ΞN−1). The proof
is similar to the Proposition 3 and is omitted.

Corollary 1. Let πN(w(N)
t ,W(N)

τ,t ) be an optimal affine policy
with zero initial input and demands. If ustN−1 ≤w(N)

1 for any
realization of ustN−1 , then its associated affine-IBS policy πN is
an optimal solution among Πaff(8N ,ΞN−1). Moreover,

max
π∈Πaff(8N ,ΞN−1)

min
dN∈8N

max
xN∈-N

PN(π,dN , xN ; ustN−1 ,u
d
tN−1)

[ ]

! cSustN−1 + (r − cS)udtN−1 + max
π∈Πaff(8N ,0)

min
dN∈8N

max
xN∈-N[

PN(π,dN , xN ; 0, 0)
]
. (15)

Using this corollary, we reformulate an optimality
condition for the last stage as
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max
πN∈Πaff(8N ,ΞN−1)

min
dN∈8N

max
xN∈-N

[
PN

(
πN ,dN , xN ;ustN−1 ,u

d
tN−1

)]

! cSustN−1 + (r − cS)udtN−1

+ max
πN∈Πaff(8N ,0)

min
dN∈8N

max
xN∈-N

[
PN

(
πN ,dN , xN ; 0, 0

)]
.

In single-station cases, ustN−1 and udtN−1 can be rewritten as

ustN−1 ! ustN−2 +
∑

t∈IN−1

(
st − xt

)
,

udtN−1 ! udtN−2 +
∑

t∈IN−1

(
dt − xt

)
.

This can be incorporated with PN−1
(
πN−1,dN−1, xN−1;

ustN−2 ,u
d
tN−2

)
as

PN−1
(
πN−1,dN−1, xN−1;ustN−2 ,u

d
tN−2

)
+ cSustN−1+ (r − cS)udtN−1

! −cS
∑

t∈IN−1

st

( )
− cH

∑

t∈IN−1

(
ustN−2 +

∑t

τ!tN−2+1
(sτ − xτ)

)

−cP
∑

t∈IN−1

(
udtN−2 +

∑t

τ!tN−2+1
(dτ − xτ)

)

+ r
∑

t∈IN−1

xt

( )
+ cS

(
ustN−2 +

∑

t∈IN−1

(st − xt)
)

+ (r − cS)
(
udtN−2 +

∑

t∈IN−1

(dt − xt)
)

! cSustN−2 + (r − cS)udtN−2 − cH
∑

t∈IN−1

(
ustN−2 +

∑t

τ!tN−2+1
(sτ − xτ)

)

−cP
∑

t∈IN−1

(
udtN−2 +

∑t

τ!tN−2+1
(dτ − xτ)

)
+ (r − cS)

∑

t∈IN−1

dt

( )
.

(16)

We define a modified objective function P̃N−1 as

P̃N−1
(
πN−1,dN−1, xN−1;ustN−2 ,u

d
tN−2

)

! −cH
∑

t∈IN−1

(
ustN−2 +

∑t

τ!tN−2+1
(sτ − xτ)

)

− cP
∑

t∈IN−1

(
udtN−2 +

∑t

τ!tN−2+1
(dτ − xτ)

)
+ (r − cS)

∑

t∈IN−1

dt

( )
.

(17)

If we assume that both ustN−2 and ustN−1 are small, we can
rewrite

max
πN−1∈Πaff(8N−1,ΞN−2)

min
dN−1∈8N−1

max
xN−1∈-N−1[

PN−1
(
πN−1,dN−1, xN−1; ustN−2 , u

d
tN−2

)

+ max
πN∈Πaff(8N ,ΞN−1)

min
dN∈8N

max
xN∈-N

[
PN

(
πN ,dN , xN ;ustN−1 ,u

d
tN−1

)]]

! max
πN−1∈Πaff(8N−1,ΞN−2)

min
dN−1∈8N−1

max
xN−1∈-N−1[

PN−1
(
πN−1,dN−1, xN−1,ustN−2 ,u

d
tN−2

)
+ cSustN−1

+ (r − cS)udtN−1 + max
πN∈Πaff(8N ,0)

min
dN∈8N

max
xN∈-N

[
PN

(
πN ,dN , xN ; 0, 0

)]]

! max
πN−1∈Πaff(8N−1,ΞN−2)

min
dN−1∈8N−1

max
xN−1∈-N−1

[
cSustN−2+ (r − cS)udtN−2

+ P̃N−1
(
πN−1,dN−1, xN−1;ustN−2 ,u

d
tN−2

)]

+ max
πN∈Πaff(8N ,0)

min
dN∈8N

max
xN∈-N

[
PN

(
πN ,dN , xN ; 0, 0

)]

! cSustN−2+ (r − cS)udtN−2 + max
πN−1∈Πaff(8N−1,0)

min
dN−1∈8N−1

max
xN−1∈-N−1[

P̃N−1
(
πN−1,dN−1, xN−1; 0, 0

)]

+ max
πN∈Πaff(8N ,0)

min
dN∈8N

max
xN∈-N

[
PN

(
πN ,dN , xN ; 0, 0

)]
. (18)

Note that the second equality comes from (16), and one
can verify similarly fromCorollary 1 that the last equality
holds. This reformulation shows that if leftover input
after every subperiod is small enough, we can solve the
DP problem in (12) by solving smaller subproblems.
These subproblems are defined with modified objective
function P̃j with no backlogged input and demand;
hence, we can solve them independently. Proceeding

iteratively, we define an objective PPA
j

(
πj,dj, xj

)
as

PPA
j

(
πj,dj, xj

)

!

− cH
∑

t∈Ij

( ∑t

τ!tj−1+1
(sτ − xτ)

)

− cP
∑

t∈Ij

( ∑t

τ!tj−1+1
(dτ − xτ)

)

+ (r − cS)
∑

t∈Ij
dt, j ! 1, . . . ,N − 1

− cS
∑

t∈Ij
st − cH

∑

t∈Ij

( ∑t

τ!tj−1+1
(sτ − xτ)

)

− cP
∑

t∈Ij

( ∑t

τ!tj−1+1
(dτ − xτ)

)
+ r

∑

t∈Ij
xt, j ! N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

We now propose the periodic-affine algorithm. This
algorithm (1) ensures that the solution is well-defined
and (2) exploits the modified objective functions PPA

j .
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The jth subproblem can be solved by the following
optimization problem

max
πj∈Πaff(8 j ,0)

min
dj∈8 j

max
xj ,sj

PPA
j

(
πj,dj, xj

)

s.t. (xj, sj)∈-(πj,dj, 0, 0)
w ( j)

1 ≥θ∗
j−1.

(20)

The last constraint ensures that periodic-affine policy is
well-defined, where θ∗

j−1 is the maximum amount of
on-hand input after ( j − 1)th subperiod, computed by
(14). The overall procedure solves (20) and (14) itera-
tively, as summarized in Algorithm 1.

Algorithm 1 (Periodic-Affine Algorithm for Single-Station
Problems)

Given. Time indices 0 ! t0 < t1 <⋯< tN ! T, uncer-
tainty set 8 ! 81 ×⋯×8N , j ! 1, and θ∗

0 ! 0.
Step 1. Solve (20) to obtain πj for the jth subperiod.
Step 2. Using πj, compute the maximum leftover

input θ∗
j by (14).

Step 3. If j ! N, return πPA ! (π1, . . . ,πN) and STOP.
Otherwise, j← j + 1 and go to Step 1.

We present an additional useful property of the
periodic-affine algorithm, namely, that the worst-case
scenario can be obtained from each iteration.

Proposition 4. Let πPA be a solution of periodic-affine al-
gorithm and d∗

j be a worst-case scenario from the jth sub-
problem. Then πPA has a worst-case scenario (d∗

1, . . . ,d∗
N).

So far, we discussed a single-station, multiperiod
robust newsvendor model, where the uncertainty set
over time periods is defined as a Cartesian product of
prespecified uncertainty sets for each subperiod. We
formulated a dynamic programming problem, where
each stage corresponds to each subperiod. Motivated
from this formulation, we developed an algorithm to
find a periodic-affine policy, by defining the modified
objective functions PPA

j ’s.

Computational Advantages. We provide two theoreti-
cal evidences that periodic-affine policies are compu-
tationally advantageous over affine policies. First, the
number of affine parameters in PA grows linearly in T,
whereas it increases quadratically in affine policies.
Second, solving subproblems in PA requires signifi-
cantly less computational effort than solving one large
problem in affine policies. This is because an optimal
affine policy solves (6–8) by cut generation. The number
of extreme points in multiperiod uncertainty sets (Def-
inition 2) grows exponentially in T, and this results in
a very large number of iterations for affine policies. In
PA, however, one can arbitrarily choose the length of
subperiods. Hence, the number of iterations grows at
most linearly in T. Strong empirical evidence in Section 6
demonstrate these advantages.

Also note that PA does not suffer from the curse of
dimensionality. Even though PA is motivated from the

DP formulation (12), an optimal solution is not obtained
by solving the Bellman equation; our algorithm de-
composes the overall problem into smaller subproblems
in order to achieve tractable solutions.
In the next section, we present theoretical properties

of periodic-affine policies, where we provide a sufficient
condition for the algorithm to have an optimal solution
to the DP (12).

4.3. Optimality of Periodic-Affine Policies
In this section, we present theoretical properties of PA by
analyzing the effect of base-stock levels on the worst-case
performance. Specifically, we provide a sufficient con-
dition under which the periodic-affine algorithm solves
the DP problem (12). To compare the worst-case per-
formance of PA with affine policies, we consider affine
policies under the rectangular uncertainty set 8 !
81 ×⋯×8N so that both policies are defined equiva-
lently.Moreover, we present an analytical approximation
for the suboptimality of PA. Note that this is a posterior
approximation—that is, it is computedduring the algorithm.
Let the worst-case profit of the two policies be V∗

PA
and V∗

Aff, which are evaluated by (12), and V∗
DP as an

optimal value of the DP problem (12).
The following assumption guarantees the optimality

of PA policies.

Assumption 1. For a solution of the PA algorithm πPA,
assume that the maximum leftover input level after each
subperiod θ∗

j satisfies the last constraint in (20).
In other words, for a solution of the PA algorithm, the

last constraint in (20) is not active at every iteration.
Because an optimal periodic-affine policymaximizes the
overall profit, it tends to have lower leftovers at each
time period and, hence, is likely to satisfy Assumption 1.
This assumption is not too restrictive as evidenced in the
numerical experiments in Section 6.

Remark 2. We also suggest that it is possible to enforce
Assumption 1 to hold, or reduce the suboptimality of PA,
by a proper choice of partitioning the time horizon. For
example, consider a problem with T ! 12, where the
nominal mean is 10 for the first 6 periods and decreases
to 2 for the last 6 periods. Then, Assumption 1 may not
hold if PA is obtained by partitioning 12 periods into 2 (of
each 6 periods). However, one can obtain a better result
by partitioning the periods into 3 subperiods of each 4
periods.

Theorem 1. For a single-station network, if Assumption 1
holds, then V∗

Aff ≤V∗
PA ! V∗

DP.

Because affine policies are defined on a subset of
every feasible solution of the DP, the worst-case profit
of PA is guaranteed to be greater than or equal to that of
affine policies under Assumption 1. We show in the
following proposition that in single-station problems,
their worst-case performance is indeed equal.
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Proposition 5. For single-stationmodels underAssumption 1,
V∗

Aff ! V∗
PA ! V∗

DP.

Remark. All previous theoretical properties of PA rely
on Assumption 1. In other words, the worst-case per-
formance of PA may not match that of affine policies
without the assumption.

We now relax Assumption 1 and provide a sub-
optimality bound for PA. For this, we compare the
solutions of the following optimization problems

3j ≔ max
πj∈Πaff(8 j,0)

min
dj∈8 j

max
xj ,sj

PPA
j

(
πj,dj, xj

)

s.t. (xj, sj) ∈-(πj,dj, 0, 0)
w ( j)

1 ≥θ∗
j−1,

3̃j ≔ max
πj∈Πaff(8 j ,0)

min
dj∈8j

max
xj ,sj

PPA
j

(
πj,dj, xj

)

s.t. (xj, sj) ∈-(πj,dj, 0, 0),

where 3j is the jth subproblem during the PA algo-
rithm and 3̃j solves a subproblem with assuming no
leftover input from the previous subperiods.

Theorem 2. For any single-station newsvendor networks
with an objective value f̃ ∗j of 3̃j,

V∗
PA ≤ V∗

Aff ≤ V∗
DP ≤ Ṽ∗

PA ≔
∑N

j!1
f̃ ∗j .

Theorem 2 provides a tight bound. All the inequalities
hold with equalities if Assumption 1 holds. Note that
one may not need to resolve a problem 3̃j; recall that
every subproblem in the periodic-affine algorithm is
solved by generating cuts. Once a solution of 3j is
obtained, one can relax the last constraint in 3j and
continue cut generation in order to solve 3̃j. This re-
quires fewer iterations, because (1) an optimal solution
of 3j serves as a warm-start initial point for additional
cuts, and (2) the previously generated cuts are still valid
without any modifications to 3̃j.

So far, we introduced theoretical properties of
periodic-affine policies. We showed that under mild
condition, the algorithm finds an optimal solution to the
DP problem, and thus achieve aworst-case performance
equal to that of an optimal affine policy for single-station
problems. If this assumption does not hold, we pro-
vided a tight bound that can measure the gap between
periodic and affine policies. Moreover, this gap can
be computed by minimally modifying the algorithm
with similar computational requirements. In the pro-
ceeding section, we extend this framework to general
multistation newsvendor networks and infinite-horizon
problems.

5. Extensions of Periodic-Affine Policies
We extend our approach in Section 4 to general multi-
station networks,where adecisionmaker intends to satisfy
customers’ demand at multiple locations. First, we extend

Algorithm 1 for multistation networks. Then, we develop
periodic-affine policies for infinite horizon problems.

5.1. Multistation Networks
Here, we follow the flow of Section 4. To set this up, we
define a matrix that plays a key role in implementing
periodic-affine policies.

Definition 7 (Basic Matrix). Let ℓk ∈+ be an optimal
solution to satisfy a unit demand at a sink node k ∈6.
A basic matrix RB ∈Rp×n is given by

RB(ℓ, k) ! 1 if ℓ ! ℓk ∀k, and 0 otherwise.

Using such a basic matrix, we obtain closed-form ex-
pressions of ordering quantities and network activities
if the demand is deterministic. In particular, for any
d∈Rn

+, an optimal decision is given by s ! RSRBd
and x ! RBd.
Recall that we have defined a modified objective

functions for each stage of the DP problem (12) to
separate the overall problem into subproblems. In
single-station models, the values of on-hand products
and backlogged demands at the beginning of the
( j + 1)th subperiod are expressed as

cSustj ! cS ·
∑

t∈Ij

(
st − xt

)
,

(r − cS)udtj ! (r − cS) ·
∑

t∈Ij

(
dt − xt

)
,

which are taken into jth subproblem. After the jth
subperiod, us

tj and ud
tj are deterministic, and, hence,

their values can be expressed by using the basic matrix
RB as

cuS u
s
tj ! cuS

∑

t∈Ij

(
st − RSxt

)
,

(
Ru

B r − Ru
BR

u
S cS

)
uud

tj !
(
Ru

B r − Ru
B Ru

S cS
)u

·
∑

t∈Ij

(
dt − RDxt

)
.

Note that the value of ud
tj is determined by ordering

RBud
tj and processing RSRBud

tj . This allows us to extend
the definition of affine-IBS policies as follows.

Definition 8 (Affine-IBS for Multistation). For jth sub-
period, the affine-IBS policy πj(w ( j)

t ,W ( j)
τ,t ) associated

with an affine policy πj(w ( j)
t ,W ( j)

τ,t ) determines order
quantity by

st(us,ud,Dj)

!
w ( j)

1 − us + RSRBud t ! tj−1 + 1

w ( j)
i +

∑i−1

τ!1
W ( j)

τ,i dtj−1+τ t ! tj−1 + i, i≥ 2, t∈ Ij.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
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Periodic-Affine Policy for Multistation Networks. As in
Definition 6, periodic-affine policies are defined as
a sequence of affine-IBS policies. Equation (14), which is
required for periodic-affine policies to bewell defined, is
readily extended by replacing with a vector inequality.
With this generalization, all the arguments in Section 4.2
can be repeated in multistation network setting.

As a result, the objective function for each sub-
problem is given by

PPA
j

(
πj,Dj,Xj

)

!

− cuH
∑

t∈Ij

( ∑t

τ!tj−1+1
(sτ − RSxτ)

)

− cuP
∑

t∈Ij

( ∑t

τ!tj−1+1
(dτ − RDxτ)

)

+vud
∑

t∈Ij
dt + vux

∑

t∈Ij
xt,

j≤N − 1

− cuS
∑

t∈Ij
st − cuH

∑

t∈Ij

( ∑t

τ!tj−1+1
(sτ − RSxτ)

)

− cuP
∑

t∈Ij

( ∑t

τ!tj−1+1
(dτ − RDxτ)

)
+ ru

∑

t∈Ij
xt, j ! N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

wherevd!Ru
B r−Ru

B Ru
S cS and vx! r−Ru

S cS−Ru
DRu

B r+
Ru

DRu
B Ru

S cS.

Periodic-Affine Algorithm for Multistation Networks. As
in Section 4, Problem (20) can be readily converted into
multidimensional form by replacing the last inequality
with a vector inequality. However, it is challenging to
obtain the multistation version of (14), which computes
the maximum amount of leftover resources. Therefore,
we incorporate these into a single robust two-stage
optimization problem, as follows:

max
θj ,πj∈Πaff(8 j,0)

min
Dj∈8 j

max
Sj,Xj

PPA
j

(
πj,Dj,Xj

)
− δ · 1uθj

s.t. (Sj,Xj) ∈-(πj,Dj, 0, 0)
w ( j)

1 ≥ θ∗
j−1∑

t∈Ij
(st − RSxt) ≤ θj,

where δ> 0 is a small real number. In this way, the
periodic-affine algorithm for multistation networks
proceeds by iteratively solving subproblems, similar to
Algorithm 1.

Properties of Periodic-Affine Policies for Multistation
Networks. Wenow generalize the theoretical properties
for the multistation networks. We consider the DP prob-
lem (12) by replacing every single-dimensional quantity
by multidimensional quantities. Assumption 1 is ex-
tended with vector inequalities, each of which is for

each source node. We use V∗
Aff, V

∗
PA, and V∗

DP for the
worst-case objective values for affine, PA, and the
DP problem, and define Ṽ∗

PA similar to single-station
problems.

Theorem 3. For multistation networks, if Assumption 1 holds,
then V∗

Aff ≤V∗
PA ! V∗

DP. Otherwise, V∗
PA ≤ V∗

DP ≤ Ṽ∗
PA.

Note that Proposition 5 cannot be extended to multi-
station networks. In other words, PA policies for mul-
tistation networks are not necessarily affine policies.
Theorem 3 implies that an optimal PA policy has a
worst-case performance not less than an optimal affine
policy. However, for multistation networks, we cannot
compare the two policies without Assumption 1.

5.2. Infinite Horizon Problems
So far, PA policies are based on multiperiod problems
of finite horizon. In this section, we extend these PA
policies to infinite horizon problems with a discount
factor of β< 1. For this, we assume that nominal means
and covariances of demands have periodicity with the
period T0 ≥ 1. We then define an uncertainty set 8T0 ∈
Rn×T0 to describe demand uncertainties for each period.
This framework models settings where demand has
stationary mean and covariance along the periods.

Definition 9 (Infinite-Horizon Uncertainty Set). The infinite-
horizon demand uncertainty set is a Cartesian product of
8T0 via

8∞ ! 8T0 ×8T0 ×8T0 ×⋯ .

We implement PA policies for infinite horizon prob-
lems by replicating policies over the periods. We con-
struct a PA policy of period T0 by solving a single
problem of duration T0. As in previous sections, we
define the objective function (π,D[1 :T0],X[1 :T0]) by tak-
ing leftover inventories, unsatisfied demands, and the
discount factor into account as

PPA
∞

(
π,D[1 :T0],X[1 :T0]

)

! −cuH
∑T0

t!1
βt
(∑t

τ!1
(sτ − RSxτ)

)

− cuP
∑T0

t!1
βt
(∑t

τ!1
(dτ − RDxτ)

)
+ ru

∑T0

t!1
βtxt

− cuS
∑T0

t!1
βtst + βT0+1cuS

∑T0

t!1
(st − RSxt)

+ βT0+1
(
Ru

B r − Ru
B Ru

S cS
)u ∑T0

t!1
(dt − RDxt)

! −
∑T0

t!1
βt c∗uS,t st −

∑T0

t!1
βt c∗uH,t

(∑t

τ!1
(sτ − RSxτ)

)

−
∑T0

t!1
βt c∗uP,t

(∑t

τ!1
(dτ − RDxτ)

)
+
∑T0

t!1
βt r∗ut xt,
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where c∗S,t ! cS, r∗t ! r for t ! 1, . . . ,T0, and

c∗H,t !
cH 1≤ t≤T0 − 1
cH − βcS t ! T0

{

c∗P,t !
cP 1≤ t≤T0 − 1
cP − βRu

B r + βRu
B Ru

S cS t ! T0.

{

As a result, an optimal PA policy is obtained by solving
a single optimization problem

max
θ,π

min
D[1 :T0]∈8T0

max
S[1 :T0],X[1 :T0]

PPA
∞

(
π,D[1:T0],X[1:T0]

)
(22)

s.t. (S[1:T0],X[1:T0]) ∈-(π,D[1:T0], 0, 0)
w1 ≥ θ,

where the last constraint ensures that the solution is
replicable over time periods. Based on the solution of
(22), an infinite PA policy determines order quantity as

st !

w1 − us
t−1 + RSRBud

t−1
t ! nT0 + 1, n ! 0, 1, 2, . . .

wi +
∑i−1

τ!1
Wτ,idnT0+τ

t ! nT0 + i, 1< i<T0, n ! 0, 1, 2, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

We next present our main result for infinite-horizon
cases.

Theorem 4. For an infinite-horizon multistation network
and the uncertainty set 8∞, if Assumption 1 holds, then
the infinite periodic-affine policy (23) is optimal to the DP
in (12).

In summary, we generalized the periodic-affine pol-
icies into multistation networks and infinite horizon
problems. In both these cases, we presented periodic-
affine algorithms and showed that the theoretical
properties hold. We next discuss a numerical case study
to demonstrate the practical applicability of these find-
ings and the performance of the proposed policies.

6. Discussion: Insights and Implications
In this section, we present various implications of our
modeling and solution approach and demonstrate the
following advantages of our modeling approach and
solution algorithm:

• Practical Relevance: The relevance of an approach
and corresponding algorithms hinges on the ability to
model features in a real-world setting and provide
implementable solutions. We demonstrate that our ap-
proach is able to achieve this. In particular, we show
that PA policies perform well in large-scale and data-
driven environments by studying the case of a major
pharmacy retailer in India. We also demonstrate that
we are able to model the service level guarantees by
using the robust optimization approach. This ensures
that the demands are satisfied for all scenarios in an

uncertainty set. We also demonstrate the robustness to
misspecification and study the performance for a spec-
trum of various cost parameters.
• Generalizability and Extendability: It is also impor-

tant for the approach to be generalizable and extendable
in order to accommodate higher-dimensional versions
of the problem and newer types of demand information.
We achieve this by modifying the uncertainty set based
on the available demand information and by showing
that our approach naturally extends to multidimen-
sional settings. In particular, we incorporate correlation
information in computing the optimal PA policy and
demonstrate our algorithm on the high-dimensional
real-world case study.
• Computational Tractability: An algorithm suited for

real applications needs to be tractable and implement-
able. We demonstrate tractability of the PA policies by
presenting empirical evidence on the computational
times on simulated data.
Next, we elaborate on each of these advantages.

6.1. Practical Relevance: Case Study of a
Pharmacy Retailer

We analyze the sales data of a leading pharmacy re-
tailer in India to probe the performance of the policies
in a real-world setting. A common problem in fore-
casting demands is that sales records do not necessarily
imply customers’ demands, because product shortage
is not reflected in sales data. However, because phar-
macy retailers in India face a prohibitively large pen-
alty for unmet demand, we can interpret the sales
records as demands for this numerical study.
The data consists of more than 1.5 million transactions

over 40 days (end of September to early November of
2016) for 228 different products. To reduce the problem
size, we analyzed the 20 most popular products, com-
prising nearly 80% of all transactions. Hierarchical clus-
tering (Maechler et al. 2016) is used to bundle the
products into groups, within which demands are highly
correlated. Moving averages and residuals are extracted
from the sales records and used as nominal means and
variances to define data-driven uncertainty sets for each
group. Penalty and holding costs are not revealed in the
sales records. Therefore, we fix penalty and holding cost
rates, and compute penalty and holding costs as a
product of the corresponding rates andnet profit per unit.

Uncertainty Sets. We defined the multiperiod un-
certainty sets following Definition 2, where the vari-
ability parameters are defined as Γ ! 2

;;;;
nT

√
, Γt ! 2

;;
n

√
,

and ΓB ! 2. The factor 2 is inspired from the fact that
P(|Z| ≤ 2)≃ 0.95 for a standard normal random variable
Z. Such a setting is typical in the robust optimization
literature for describing random variables bounded by
uncertainty sets (Bertsimas et al. 2017). The parameters
Γt and Γ are chosen to be proportional to

;;
n

√
and

;;;;
nT

√
,
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motivated by the central limit theorem (Bertsimas and
Sim 2004).

Performance of PA Policies. We compute ordering
policies for each product group. We begin by assuming
that the sales of different product groups are in-
dependent of each other, and later consider the more
realistic case of correlated sales. We compare the per-
formance of three policies: PA, Aff-approx, and base-
stock policies for these product groups. We implement
two different base-stock policies. Myopic base-stock
policies are implemented, where the order-up-to level
at each period is determined myopically by using the
nominal means and variances, assuming normally dis-
tributed demand. We also compute the base-stock levels
with sample average approximation (SAA), using the
approach discussed in Bertsimas et al. (2018).

For precomputed policies, we generate random de-
mand samples to evaluate the two policies. The samples
are generated independently over time with normal
distributions, in which nominal mean and variances
are used. For given cost and revenue parameters, profit
is calculated for each sample. We compare 5%, 25%
quantiles, and median for the policies.

Table 1 displays performance of various policies for
different values of the penalty cost rate. We observe
that PA performs better than Aff-approx in terms of
worst-case performance. In Section 6.3, we will show
that this is also consistent with synthetic data. On the
other hand, if the penalty cost is low, both PA and Aff-
approx are not effective, and the base-stock policy
outperforms them. However, PA yields better lower-
percentile performance than the other policies for in-
creased penalty cost. This is because PA maximizes

the worst-case profit. We also observe that under
significant penalty costs, PA not only protects the
worst-case performance and lower percentiles (im-
proves by 19% over base-stock at 5th percentile for cost
of 10) but also leads to better average profit and his-
torical backtesting than the other policies. We also
notice that although SAA improves over the myopic
policy, both Aff-approx and PA outperform it.

Sensitivity to Model Misspecification. Given that all
these policies are implemented by using the nominal
mean and variance inferred from past records, it is
important to measure their robustness to errors in
model calibration. For this, we consider demand re-
alizations to havemean greater than (Figure 2(a)), same
as (Figure 2(b)), or less than (Figure 2(c)) their nominal
values for varying holding and penalty costs. We ob-
serve that when the realized demand distribution
differs from the assumed one, the region of parameters
(phase), for which PA outperforms base-stock policy,
changes. For example, for a holding cost of 0.1 and
penalty of 1, the PA policy outperforms base-stock, if
the mean of the assumed demand coincides with the
realized one (see Figure 2(b)). However, only 5% in-
crease of the means is sufficient for the base-stock to
prevail (see Figure 2(a)).

Performance Dependence on Holding and Penalty Cost.
As the costs vary, we observe a phase transition between
a phase where PA outperforms the base-stock policies
and a phase in which the base-stock policy outperforms.
The phase diagrams in Figure 2 allow the decision maker
to select the policy based on the given cost and demand
structure. In fact, for pharmacy retailers, who face a

Table 1. Performance of Policies for Different Penalty Cost Rates

Penalty cost rate Policy Worst 5% quantile 25% quantile Median Historical

0.2 Affine approximation 2.68 3.50 3.64 3.74 3.81
Periodic-affine 2.72 3.64 3.77 3.85 3.97
Sample average approximation N/A 3.73 4.02 4.13 4.41
Myopic N/A 3.80 4.16 4.37 4.67

1.0 Affine approximation 1.96 2.87 3.27 3.51 3.86
Periodic-affine 2.49 3.30 3.41 3.48 3.56
Sample average approximation N/A 3.43 3.53 3.81 3.96
Myopic N/A 3.27 3.66 3.96 4.25

5.0 Affine approximation 1.49 3.31 3.60 3.79 4.04
Periodic-affine 1.78 3.37 3.64 3.82 3.83
Sample average approximation N/A 3.21 3.58 3.61 3.52
Myopic N/A 2.85 3.27 3.58 3.68

10.0 Affine approximation 1.26 3.10 3.45 3.68 4.15
Periodic-affine 1.39 3.28 3.62 3.84 3.77
Sample average approximation N/A 3.12 3.39 3.64 3.61
Myopic N/A 2.76 3.19 3.49 3.40

Notes. All values are multiplied by 106. Percentiles and medians are calculated from 1,000 samples. The last column is from the historical sales
data. N/A, not applicable.
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substantial penalty with unsatisfied demand, it shows
that our proposed PA policy is preferable. On the other
hand, if the decision maker is committed to a certain
ordering policy (e.g., contractually), the phase diagrams
in Figure 2 can suggest suitable changes to the cost struc-
ture in order to make the policy superior.

Impact of High Penalty Cost. When analyzing back-
logged demands and inputs for different values of the
penalty cost, Figure 3 shows that the three policies react
differently for high penalty costs. First, the base-stock
policy does not effectively control the backlogged de-
mands. Although the penalty cost is accounted for in the
newsvendor quantile to avoid high backlogs, increasing
it slightly decreases the amount of backlogged demands.
On the other hand, Aff-approx determines order
quantities more conservatively than PA. Under high
penalty cost, Aff-approx satisfies nearly all customer
demands by ordering an excessive amount of input. This
causes a significantly larger holding cost and leads to
less profit than PA. Finally, PA controls both leftover
input and backlogged demands. As the penalty cost
increases, PA not only reduces backlogged demands
(same as Aff-approx), but also maintains much lower

input levels than Aff-approx. This leads to a higher
profit than the other policies.

Summary. In summary, the case study with pharmacy
retailer’s data demonstrates sizable increase in perfor-
mance for the periodic-affine policies. In particular, in the
presence of high penalty cost, PA improves the lower-
quantile performance by more than 10% than the base-
stock policies. It also allows decision makers to identify
the optimal policy based on their respective cost and
demand structures.

6.2. Generalizability and Extentability: Modeling
Correlation and Solving Multistation
Newsvendor Problems

To adequately discuss the performance of PA under
a multistation setting, we take demand correlation
information into account. We model correlations in
demand using the correlated uncertainty sets presented
in (3) by using a factor model approach. For the nu-
merical analysis, we consider two products over 15
time periods with subperiods of length 5.
The benefits of modeling correlation become apparent

when comparing the following two policies: single-station

Figure 3. (Color online) Impact of Penalty Cost on Backlogged Demands (a) and Leftover Resources (b) on Random Samples

Note. Aff-approx, affine approximation; PA, periodic-affine.

Figure 2. Phase Diagram of Periodic-Affine and the Base-Stock Policies

Note. The realized demand means are increased by 5% (a), not changed (b), and decreased by 5% (c) from the nominal values.
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PA (PA-single) for each product using marginal mean and
variance and multistation PA (PA-multi) using the corre-
lated uncertainty set. For comparison, we compute the
relative performance (RP) of PA-multi over PA-single as

RP ! profit of PA-multi − profit of PA-single
profit of PA-single

.

After the two policies are implemented, we generate
random demand with nominal mean and covariance
and evaluate the relative performance for each sample.
For each correlation ρ, correlated uncertainty sets are
defined by substituting

A ! ρ
;;;;;;;;
1 − ρ2

√

0 1

[ ]
,

into (3), and the same matrix is used to generate mul-
tivariate normal random demands. Figure 4 displays

this relative performance for different correlation co-
efficient ρ. We observe that the median RP for every ρ is
positive. However, the behavior differs for positively or
negatively correlated products. Although for highly cor-
related products, the RP slightly decreases with growing
ρ, significant improvements are made for negatively
correlated products. In fact, RP increases by more than
17%, when the products have a strong negative corre-
lation (ρ ! −0.9).
This observation can be interpreted by the structure of

the uncertainty sets, as shown in the insets of Figure 4.
Positively correlated products lead to sets that allowboth
uncertain demands d1 and d2 to be concurrently at their
maximumorminimumvalue. As ρ decreases, the area of
the polyhedron shrinks; however, the extreme points are
unaffected.However,when ρ becomes negative—that is,
the products are negatively correlated—if one of the
uncertain demands can take its maximum value, the

Figure 4. (Color online) Relative Performance for Different Correlations ρ

Note. Insets are the corresponding uncertainty sets.

Figure 5. (Color online) An Illustrative Example for Correlation and Multistation Modeling

Notes. Two products are perfectly correlated (a), uncorrelated (b), and perfectly anticorrelated (c). Uncertainty sets are defined as within the
contours along with the profit of optimal policies for extreme and nominal points.
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other is forced to its lowest, and vice versa. This effect
forces an increase in RP as ρ→ −1. The extreme cases are
illustrated in the example of Figure 5. For perfectly
correlated products, Figure 5(a) shows that even though
the uncertainty set is dramatically shrunk, theworst-case
profit cannot be improved over the uncorrelated demand
setting (Figure 5(b)), because the worst-case is often
capturedwhen both demands are high or low.However,
for negatively correlated demands, the uncertainty set
does not contain this region (high/high or low/low),
allowing for substantial improvement in worst-case
profit, as shown in Figure 5(c).

Case Study of a Pharmacy Retailer—Revisited. Here,
we account for correlation amongst the product groups
and compare the following five policies in Table 2:
PA-multi, PA-single, Aff-approx with correlated un-
certainty set (Aff-approx-multi), Aff-approx for each
group (Aff-approx-single), SAA base-stock, and Myo-
pic policies. For lower quantiles, we observe that the
base-stock policy performs poorly compared with the
single-station models. Both PA-single and PA-multi
yield significantly greater profit in lower quantiles
than the base-stock policy. The multistation framework
and correlated demand uncertainty sets offer better
performance than the single-station framework. In par-
ticular, PA-multi achieves at least 7% more profit than

PA-single for moderate choice of the penalty cost.
However, for extremely high penalty cost rates (e.g., 10),
PA-single performs slightly better than PA-multi for
lower quantiles, even though the worst-case objective
value is lower. This is due to samples that are generated
outside of the correlated uncertainty sets. Note that SAA
and the Myopic policies do not take correlations into
account and hence underperform.

Summary. In summary, Table 2 demonstrates that
capturing correlation using the periodic-affine policies
in multistation setting outperforms the base-stock pol-
icies for moderate penalties. Because the demand of the
studied pharmaceutical product groups is positively
correlated, variability of the base-stock policy increases,
causing a sizable degradation of the profit when com-
pared with periodic-affine policies.

6.3. Computational Tractability
In order to focus on computational performance in
a sterile environment, we consider the following sim-
ulation environment. We simulate three cases with
duration T ∈ {10, 15, 20} with a subperiod consisting of
five time periods. We randomly generate 100 instances
of single-station newsvendor problems for each T.
Nominal means are generated by autoregression pro-
cesses AR(1) and nominal coefficient of variations are

Table 2. Performance of Policies for Two Correlated Product Groups for Different Penalty Cost Rates

Penalty cost rate Policy Worst 5% quantile 25% quantile Median Historical

0.2 Single-station affine approximation 6.20 9.09 9.65 10.03 10.60
Multistation affine approximation 7.03 8.65 9.72 10.31 9.51
Single-station periodic-affine 6.32 8.59 8.97 9.21 9.66
Multistation periodic-affine 7.17 9.24 10.24 10.71 11.12
Sample average approximation N/A 9.12 10.04 10.51 10.93
Myopic N/A 8.50 9.97 10.74 10.81

1.0 Single-station affine approximation 4.07 6.44 7.59 8.15 8.39
Multistation affine approximation 5.29 8.22 8.83 9.34 10.02
Single-station periodic-affine 5.69 7.76 8.07 8.31 8.97
Multistation periodic-affine 6.64 8.65 9.30 9.70 10.54
Sample average approximation N/A 7.49 7.82 9.35 9.13
Myopic N/A 6.70 8.10 9.21 8.98

5.0 Single-station affine approximation 2.63 5.19 6.82 7.90 7.21
Multistation affine approximation 4.20 7.44 8.44 9.01 9.37
Single-station periodic-affine 3.44 7.57 8.33 8.77 9.75
Multistation periodic-affine 4.95 7.82 8.73 9.43 9.25
Sample average approximation N/A 6.41 7.23 8.61 8.92
Myopic N/A 5.04 6.61 7.76 7.03

10.0 Single-station affine approximation 1.69 5.06 6.67 7.64 6.88
Multistation affine approximation 3.46 7.07 8.17 8.85 9.88
Single-station periodic-affine 2.11 7.26 8.24 8.81 9.01
Multistation periodic-affine 3.98 7.04 8.25 8.98 8.87
Sample average approximation N/A 6.01 7.12 7.83 7.61
Myopic N/A 4.61 6.27 7.40 6.42

Notes. All values are multiplied by 106. Percentiles and medians are calculated from 1,000 samples. The last column is from the historical sales
data. N/A, not applicable.
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chosen uniformly in (0.3, 0.5). Unless modified, cost
parameters are cS ! 20, r ! 120, and cH ! cP ! 20, and
all variability parameters are set similarly as in Section
6.1. We then compare the PA policies with affine and
Aff-approx policies.

Although we evaluate the worst-case performances
of PA using (12) with Proposition 4, the other policies
are calculated using (6–8) to overcome tractability is-
sues. Note that for any nonanticipative policies, (6–8) is
an upper bound for the DP (12). Hence, the optimality
gap between PA and the other policies, evaluated in (12),
is closer than the gaps presented in Table 3 and Figure 6.

For the three policies, Table 3 displays the compu-
tation times and worst objective values on the same
uncertainty set. We observe that the computation of PA
is significantly faster than affine policies, because PA is
tractable. However, the worst objective values of PA
are very close (within 0.1%) to affine policies, whereas
Aff-approx consistently deviates by ≥10% from the
others. Indeed, only 13 out of the 300 artificial instances
have greater worst objective values in affine policies.
Moreover, there is only one instance in which PA loses
more than 1%of optimality. This implies thatAssumption 1,
which is a sufficient optimality condition of PA, holds
for fairly general settings. This means that PA is as com-
petitive as affine policies in worst-case values.

Comparison of PA and Aff-Approx Policies on Syn-
thetic Data. We next compare the performance of PA
and Aff-approx policies for a spectrum of parameters.

Figure 6 shows that the gap between the two policies are
different for holding and for penalty cost. Figure 6(a) shows
that the gap between PA and Aff-approx decreases as
holding cost increases. However, PA protects the worst-
case profit significantly better than Aff-approx as pen-
alty cost increases, shown in Figure 6(b). These results
suggest that depending of the holding and penalty
costs, PA orders the proper amount of input to meet
demands—that is, both on-hand input and unsatisfied
demands are well-controlled. Therefore, its worst-case
performance is far less affected by larger cost param-
eters than Aff-approx. On the other hand, Figure 6(b)
indicates that Aff-approx may not manage the left-
over resources and backlogged demands as well as
PA, which yields poor performance for higher pen-
alty cost.
The significant relative decrease of worst objective

values between the two policies of up to 35%, as shown
in Figure 6 and also observed in Table 3, implies that
the degree of suboptimality of Aff-approx may render
it inferior to PA. Although theoretical bounds of affine
approximation have been proposed (Bertsimas and
Goyal 2012, Bertsimas and Bidkhori 2015), these re-
sults indicate that the affine approximation cannot be
successfully applied to general settings, despite its
computational advantage of tractability.

Summary. In summary, the experiment on artificial
data reveals the optimality and tractability of periodic-
affine policies, whereas the other methods did not

Figure 6. (Color online) Impact of Holding Cost (a) and Penalty Cost (b) on Worst-Case Performance

Note. PA, periodic-affine.

Table 3. Average Performance of Three Policies on Randomly Generated Instances

Policy Affine Periodic-affine Affine approximation

Time periods 10 15 20 10 15 20 10 15 20
Computation time (seconds) 3.8 88.5 1388.3 0.18 0.24 0.29 0.02 0.09 0.22
Worst objective value 11,035 16,833 22,440 11,033 16,831 22,438 9,523 14,601 19,479
Difference to affine (%) — — — −0.015 −0.011 −0.006 −13.39 −13.03 −12.96
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achieve both properties. In addition, we observe that
periodic-affine policies perform substantially better
for larger T than Aff-approx in terms of protecting its
worst-case performance at high penalty cost. This
implies that PA is particularly useful when a decision
maker faces amassive penalty for unsatisfied demands,
such as in the case of the pharmacy retailer in India.

7. Conclusions
In this paper, we consider the problem of optimal control
inmultiperiod andmultistage newsvendor networks. To
this end, we introduce a new class of adaptive policies
called periodic-affine policies. These policies are data-
driven and incorporate the correlation amongst prod-
ucts, which is an instrumental feature of real-world
settings. These policies also remain robust to parame-
ter misspecification. For this, we model the uncertain
demand via sets, which can incorporate correlations and
can be generalized to multiproduct settings and ex-
tended to multiperiod problems. This approach offers
a natural framework to study current competing policies
of base-stock, affine, and approximative approaches
with respect to their profit, sensitivity to parameters and
assumptions, and computational scalability. We show
that the periodic-affine policies are sustainable—that is,
time consistent—because they warrant optimality both
within subperiods and over the entire planning horizon.

We presented empirical evidence of tractability and
robustness, which makes our approach well suited for
real-world applications. We demonstrate the advan-
tages of our approach by considering the problem of one
of India’s largest pharmacy retailers using their sales
data. We show that the periodic-affine policies are ca-
pable to increase the profits by up to 17% over base-
stock policies. This study reveals that capturing the
demand correlation can sizably affect the performance.
Furthermore, we offer a phase diagram for managers to
select the optimal policy based on their cost and demand
structures.

In the future, we intend to incorporate time-dependent
uncertainty sets (Nohadani and Roy 2017) to more
accurately model seasonal demand. This step forward
will lend itself well to incorporate returns—that is,
feedback from satisfied demand that can guide the next
period’s decisions.
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