
PRL 95, 227201 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 NOVEMBER 2005
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In disordered spin systems with antiferromagnetic Heisenberg exchange, transitions into and out of a
magnetic-field-induced ordered phase pass through unique regimes. Using quantum Monte Carlo simu-
lations to study the zero-temperature behavior, these intermediate regions are determined to be Bose-glass
phases. The localization of field-induced triplons causes a finite compressibility and, hence, glassiness in
the disordered phase.
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Bose-glass phenomena have recently been reported in a
variety of disordered quantum many-body systems, includ-
ing trapped atoms, vortex lattices, and Heisenberg antifer-
romagnets. These experiments have in common signatures
of finite compressibility in proximity to a Bose-Einstein
condensate. In atomic waveguides, the fragmentation of
such a condensate is caused by a random modulation of the
local atomic density [1]. It was shown that a quantum
phase transition between the superfluid and the insulating
Bose-glass phases can be achieved under realistic experi-
mental conditions [2]. Furthermore, recent transport
measurements of vortex dynamics in high-temperature
superconducting cuprates have shown evidence of a
Bose-glass transition [3]. In the context of quantum anti-
ferromagnetism, recent measurements of the magnetiza-
tion and the specific heat have suggested a glassy regime in
proximity to a magnetic-field-induced triplon condensate
[4,5]. However, a theoretical understanding of the Bose-
glass phenomena in quantum spin systems based on a
microscopic Hamiltonian is still lacking.

In this Letter, we study how disorder affects the quantum
phase transition between a valence bond solid and a
magnetic-field-induced Néel-ordered phase in an antifer-
romagnetic Heisenberg spin system. Using large-scale
quantum Monte Carlo simulations down to ultralow tem-
peratures, we observe that, in cubic dimer systems with
bond randomness, there is an intermediate Bose-glass re-
gime, separating an antiferromagnetically ordered phase of
condensed triplons from a spin liquid phase of localized
triplons at low magnetic fields. For weak interdimer cou-
plings, this model can be mapped onto a lattice boson
model with random potential [6]. The Néel-ordered phase
of delocalized triplons corresponds to the superfluid re-
gime in the bosonic language. It is characterized by a finite
staggered magnetization perpendicular to the applied mag-
netic field m?s , analogous to the superfluid order parameter
in a bosonic system. The Bose-glass phase is distinguished
by a finite slope of the uniform magnetization mu as a
function of the applied magnetic field, i.e., compressible
bosons, whereas the order parameter m?s vanishes.
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In order to probe these observables and, thus, study
emerging quantum phase transitions in such disordered
quantum magnets, we apply the stochastic series expansion
(SSE) quantum Monte Carlo (QMC) method [7]. In par-
ticular, the directed-loop algorithm is used to minimize
bounce probabilities in the loop construction when mag-
netic fields are applied to the system [8]. Ultralow tem-
peratures are chosen such that the relevant thermodynamic
observables reflect true zero-temperature behavior. In this
work, we apply SSE QMC to a dimerized antiferromag-
netic spin-1=2 Heisenberg model on a cubic lattice,
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where h denotes the external magnetic field. The dimers
are aligned along the x direction with the intradimer cou-
pling Jij � J. They are linked with each other via inter-
dimer couplings Jij � J0 in all three spatial directions, as
shown in Fig. 2(a). Disorder is introduced in the intradimer
couplings, which can take values J � J1 or J � J2 ac-
cording to a bimodal distribution P�J; x� � �1� x� �
��J� J1� � x��J� J2� and doping concentration x with
J1 > J2. Typically, up to 500 disorder realizations are
included in the statistics for L � 16 and 8� 103=L for
larger system sizes.

The order parameter m?s can be calculated from the
staggered structure factor,
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where L denotes the size of the system.
Figure 1 shows mu and m?s as a function of the applied

magnetic field for J1 � 2J2 � 10J0 and x � 0:1. A rich
field dependence is observed. For h 	 0:75J1, the singlet-
triplet gap closes and mu increases with the magnetic field.
The observed linear dependence on the applied field is
expected from the XY universality class [9]. Furthermore,
the external field induces a finite magnetic moment per-
pendicular to the field direction, m?s [10]. A square-root
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increase of m?s is observed, indicating a field-induced
Bose-Einstein condensation (BEC) of triplons, which ex-
tends up to the saturation field. At higher fields (h 	
1:5J1), all spins polarize fully along the field direction.
Zooming into the field region smaller than 0:75J1 reveals a
small bump in m?s . For finite system sizes, m?s is inversely
proportional to the system length L close to the lower
critical field [9]. The inset in Fig. 1(a) shows m?s for two
field strengths, extrapolated to the thermodynamic limit.
While the offset vanishes for small fields, the small bump
around h � 0:54J1 remains finite as L! 1, indicating an
ordered phase of delocalized triplons from the doped
bonds, which undergo a BEC. Figure 1(b) is a magnifica-
tion of the interesting field region around this bump. It also
contains extrapolated data. They reveal that, for 0:44J1 �
h � 0:5J1, the order parameter vanishes, whereas the uni-
form magnetization has a finite slope. This signifies a new,
disorder-induced phase prior to the BEC.

Since the interdimer coupling is chosen much smaller
than both intradimer couplings, this system can be mapped
onto a hard-core boson model with a random potential as
sketched in Fig. 1(c). Deeper potential dips occur at ran-
dom positions, reflecting that some of the intradimer cou-
plings are weaker. The chemical potential �, correspond-
ing to the applied magnetic field, governs the occupation of
hard-core bosons in the potential dips. At small �, only the
lowest minima are filled, and those spatially closer to each
other cause islands of localized bosons. The finite slope of
the magnetization in Fig. 1(b) indicates a finite compressi-
bility of the triplons in this picture. Hence, in the region
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FIG. 1 (color online). (a) Zero-temperature uniform and trans-
verse staggered magnetization as a function of field for
intradimer couplings J1 � 2J2, interdimer coupling J0 � 0:1J1,
and doping concentration x � 0:1 for 10� 10� 10 spins.
(b) Magnification of the ‘‘minicondensation’’ surrounded by
two neighboring Bose-glass phases, in which mu has a finite
slope, whereas m?s vanishes. mu exhibits a plateau at the doping
fraction of full polarization. The quantum phase transition be-
yond the plateau is a Bose-Einstein condensation of triplons on
the stronger dimer bonds. The effective bosonic random poten-
tial is illustrated in (c), where the magnetic field corresponds to
the chemical potential �, which controls the bosons (circles).
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next to the BEC phase, the system is compressible but not
ordered because of triplon localization. This is the mani-
festation of a Bose-glass phase. The more islands of com-
pressible bosons that are created, the larger the probability
for the islands to come closer to each other. Hence, there
are enhanced correlations between the triplons due to the
background interaction of the undoped bonds. The local-
ization disappears as soon as this interaction becomes
relevant, which occurs at the BEC transition. Therefore,
each transition between the Mott-insulating and the super-
fluid phases should pass through a Bose-glass regime [6].
This study delivers the first numerical evidence for the
existence of a Bose-glass phase in a microscopic spin
model.

Figure 2 provides a schematic picture of the different
phases observed in the QMC data. Planar sections of the
cubic lattice are shown, containing weakly coupled spin
dimers. In the clean case and at sufficiently small fields, the
dimer valence bond solid is energetically the lowest state,
as shown in Fig. 2(a). The quantum phase transition at the
lower critical field may be regarded as a BEC of magnons
in the lowest triplet branch. Ultimately, at the upper critical
field, all spins align fully along the field direction. In the
randomly doped case, Fig. 2(b) shows seven possible
phases. The dimer valence bond solid is the ground state
at small fields (region I). It requires a finite magnetic field
FIG. 2 (color online). Schematic response of the zero-
temperature uniform and staggered magnetizations to an applied
magnetic field. Within the planes of the cubic lattice, dotted lines
denote interdimer couplings J0 and solid lines the intradimer
couplings. At small fields, the weakly coupled dimers form a
valence bond solid state (elliptic bonds). In the pure case (a),
Bose-Einstein condensation occurs at the lower critical field. At
the saturation field, all spins are fully polarized; the system
undergoes another BEC transition. For the doped case (b), intra-
dimer bonds J take the values J � J1 (solid lines) or J � J2

(dashed lines). A field scan reveals the following phases:
region I, valence bond solid; region II, Bose-glass phase;
region III, minicondensation; region IV, another Bose-glass
phase; region V, an intermediate plateau at mu � x �msat

u ;
region VI, BEC; region VII, full polarization.
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FIG. 3 (color online). Zero-temperature uniform and staggered
magnetization as a function of field (a) for different doping
concentrations x at J1 � 2J2 � 10J0; (b) for different interdimer
couplings J0 between the decoupled and strongly coupled dimer
limits, with J1 � 2J2 and x � 0:1; (c) for different intradimer
coupling strengths of the doped bonds J2, with J1 � 10J0 and
x � 0:1.
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strength to overcome the lowest singlet-triplet gap. Since
the doped bonds are weaker (J2 < J1), these dimers break
first. Their spins respond to the increasing field, leading to
a finite slope of uniform magnetization as a function of the
applied field. In the bosonic picture, this implies a finite
compressibility of the field-induced triplons on the doped
dimer bonds. These triplons are localized, and the absence
of phase coherence causes m?s � 0. Region II in Fig. 2(b)
illustrates this Bose-glass phase. Upon further increasing
the magnetic field, delocalization of triplons sets in as they
undergo a BEC transition, with m?s > 0 as in region III. In
Fig. 1(b), this phase occurs in the interval 0:5J1 � h �
0:59J1, where the triplons on the doped bonds interact with
each other via an exponentially small effective hopping
term on the background of the remaining bonds (J0eff 
 J0)
[11]; i.e., the triplons become delocalized. In the bosonic
picture, this ordered regime is the superfluid phase. Upon
further increasing the field, the spins align progressively
along the field direction. Eventually, m?s vanishes and the
delocalization disappears, which constitutes another Bose-
glass phase upon exiting the ordered regime. In Fig. 1(b),
this occurs for 0:59J1 � h � 0:71J1, corresponding to
region IV in Fig. 2(b).

The glassy phase of localized triplons disappears when
all the spins of the doped bonds become fully polarized. If
the lower critical field of the undoped bonds hc1�J1; J0� is
larger than the upper critical field of the doped bonds
hc2�J2; J0eff�, a magnetization plateau is expected.
Region II in Fig. 2(b) illustrates such a regime, in which
the uniform magnetization takes a constant value of mu �
x �msat

u . Here msat
u is the saturation magnetization and x is

the doping rate. The present QMC data reveal a range of
fields for which such a plateau is observed, as shown in
Fig. 1(b). Moreover, it is seen that a transition into and out
of the superfluid phase passes through a Bose-glass phase
before entering the Mott-insulating phase; i.e., region III in
Fig. 2(b) is flanked by region II and region IV before
entering region I and region V, respectively. Furthermore,
there are no detectable bond-disorder effects observed at
and beyond the plateau, even though the fully polarized
spins on the doped bonds are still randomly distributed in
the system and should contribute to another Bose-glass
phase after the plateau. This can be attributed to the
negligible randomness effect at this level, since all of the
spins on the doped bonds are saturated, both the hopping
term J0 and the doping rate x are small, and the doping
obeys a bimodal distribution.

A further increase of the magnetic field breaks the
remaining dimer singlets, as argued in region VI in
Fig. 2(b), thus driving the quantum phase transition to
antiferromagnetic long-range order of delocalized triplons
and inducing a linear response to the magnetic field. This
transition is a field-induced BEC of triplons on the bonds
with strong intradimer coupling J1. For T > 0, the quan-
tum critical field strength depends on temperature as jh�
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hcj / T
�
c , where, in a narrow critical regime, � is deter-

mined to be 3=2 [12]. This value agrees well with the
mean-field prediction for BEC of bosons in the dilute limit
[13]. Ultimately, at very high fields, all spins align along
the field direction, and the system saturates magnetically,
as illustrated in region VII in Fig. 2(b). At this threshold,
another BEC with the same critical properties occurs. For
this high-field transition, no Bose-glass phase is detected,
as argued previously [14].

The dependence of mu and m?s on doping concentration
and the coupling strengths are studied in Fig. 3. Different
parameter sets are considered to explore the effects of bond
disorder close to the quantum phase transition. The data for
the doping rate x � 0:1 in Fig. 3(a) are the same as shown
in Fig. 1. When x � 0:9, analogous behavior is observed
for the regime 0:98J1 � h � 1:24J1, due to the abundance
of weaker bonds J2. In this case, the effects of randomness,
being two Bose-glass phases flanking the superfluid phase,
occur as a mirror image in the vicinity of the upper critical
field h � 1:24J1 instead of the lower critical field h �
0:44J1. A plateau with finite width occurs for x � 0:1, as
shown in the inset in Fig. 3(a). For intermediate doping
concentrations, 0:2< x< 0:8, the plateau is smeared out
by the dimer-bond randomness. Figure 3(b) shows how the
critical fields and the width of the plateau depend on the
interdimer coupling J0. The plateau has its maximum ex-
tent in the limit of decoupled dimers, i.e., J0 � 0. This
width decreases with increasing interdimer coupling
strength and vanishes at a critical value J0 � 0:15J1.
Therefore, simulations for J0 � 0:1J1 reveal a finite width
of the plateau as well as Bose-glass phases flanking the
triplon condensate on the weaker dimer bonds. Further-
more, the ratio between the stronger and weaker intradimer
bonds J1 and J2 controls the width of the plateau, as shown
1-3



FIG. 4 (color online). Zero-temperature phase diagram of
three-dimensional weakly coupled dimers with random intra-
dimer coupling at a doping rate of x � 15%. The plateau is most
pronounced at weak interdimer couplings. For �J0=J1�>
�J0=J1�c � 0:249, the gap vanishes, and the order sets in at
infinitesimal fields. For small x, we do not expect to detect
any effects of randomness at saturation fields.
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in Fig. 3(c). If the values of J1 and J2 are too close, the
effects of randomness are suppressed, smearing out both
the magnetization plateau and the Bose-glass phase.
However, upon decreasing the ratio J2=J1, a magnetiza-
tion plateau appears. A ratio of J2=J1 � 1=2 was found to
be sufficiently low to clearly reveal the novel, disorder-
induced quantum phases.

Indications of a Bose-glass phase between a gapped
incompressible phase and a field-induced antiferromag-
netic phase were recently suggested by high-field magne-
tization measurements on bond-disordered Tl�1�x�KxCuCl3
for x < 0:36 [4]. More recent specific heat measurements
on this compound with doping rates up to x � 0:22 exam-
ined the effect of randomness on the phase boundaries as a
function of temperature. They observed the emergence of a
novel phase prior to the field-induced BEC [5]. However,
the linear response of the measured magnetization to the
applied field starting at h � 0 indicates that nonmagnetic
K doping of TlCuCl3 not only introduces bond disorder
but also a pronounced directional Dzyaloshinskii-Moriya
vector [16]. Therefore, Bose-glass effects are likely to be
suppressed. Hence, doped compounds with negligible
spin-orbit coupling and vanishing directionality are ex-
pected to reveal Bose-glass features.

We conclude by proposing a phase diagram of weakly
coupled dimers with random intradimer coupling strengths
(J1 > J2) in Fig. 4. Quantum Monte Carlo data show that,
at finite randomness, a field-induced quantum phase tran-
sition into and out of an ordered Bose-Einstein condensate
22720
passes through a Bose-glass phase. The localization of
the bosons and the finite compressibility manifests this
unique regime. Once delocalized, the triplons condense
and Néel order sets in. Depending on coupling ratios, an
intermediate plateau can occur, in which the spins of the
doped bonds are fully polarized. This rich field dependence
is expected to be experimentally detectable in weakly
coupled dimer compounds with small doping and negli-
gible spin-orbit coupling or directionality effects.
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