Errata: Second Edition First Edition |
Numerical Optimization
Jorge Nocedal Stephen J. Wright |
1 Introduction
Mathematical Formulation . . . 2
Example: A Transportation Problem . . . 4
Continuous versus Discrete Optimization . . .5
Constrained and Unconstrained Optimization . . . 6
Global and Local Optimization . . . 6
Stochastic and Deterministic Optimization . . . 7
Convexity . . . 7
Optimization Algorithms . . . 8
Notes and References . . . 9
2.1 What Is a Solution? . . . 12
Recognizing a Local Minimum . . . 14
Nonsmooth Problems . . . 17
2.2 Overview of Algorithms . . . 18
Two Strategies: Line Search and Trust Region . . . 19
Search Directions for Line Search Methods . . . 20
Models for Trust-Region Methods . . . 25
Scaling . . . 26
Exercises . . . 27 3.1 Step Length . . . 31
The Wolfe Conditions . . . 33
The Goldstein Conditions . . . 36
Sufficient Decrease and Backtracking . . . 37
3.2 Convergence of Line Search Methods . . . 37
3.3 Rate of Convergence . . . 41
Convergence Rate of Steepest Descent . . . 42
Newton's Method . . . 44
Quasi-Newton Methods . . . 46
3.4 Newton's Method with Hessian Modification . . . 48
Eigenvalue Modification . . . 49
Adding a Multiple of the Identity . . . 51
Modified Cholesky Factorization . . . 52
Modified Symmetric Indefinite Factorization . . . 54
3.5 Step-Length Selection Algorithms . . . 56
Interpolation . . . 57
Initial Step Length . . . 59
A Line Search Algorithm for the Wolfe Conditions . . . 60
Notes and References . . . 62
Exercises . . . 63
Outline of the Trust-Region Approach . . . 68
4.1 Algorithms Based on the Cauchy Point . . . 71
The Cauchy Point . . . 71
Improving on the Cauchy Point . . . 73
The Dogleg Method . . . 73
Two-Dimensional Subspace Minimization . . . 76
4.2 Global Convergence . . . 77
Reduction Obtained by the Cauchy Point . . . 77
Convergence to Stationary Points . . . 79
4.3 Iterative Solution of the Subproblem . . . 83
The Hard Case . . . 87
Proof of Theorem 4.1 . . . 89
Convergence of Algorithms Based on Nearly Exact Solutions . . . 91
4.4 Local Convergence of Trust-Region Newton Methods . . . 92
4.5 Other Enhancements . . . 95
Scaling . . . 95
Trust Regions in Other Norms . . . 97
Notes and References . . . 98
Exercises . . . 98
5.1 The Linear Conjugate Gradient Method . . . 102
Conjugate Direction Methods . . . 102
Basic Properties of the Conjugate Gradient Method . . . 107
A Practical Form of the Conjugate Gradient Method . . . 111
Rate of Convergence . . . 112
Preconditioning . . . 118
Practical Preconditioners . . . 120
5.2 Nonlinear Conjugate Gradient Methods . . . 121
The Fletcher-Reeves Method . . . 121
The Polak-Ribi `ere Method and Variants . . . 122
Quadratic Termination and Restarts . . . 124
Behavior of the Fletcher-Reeves Method . . . 125
Global Convergence . . . 127
Numerical Performance . . . 131
Notes and References . . . 132
Exercises . . . 133
6.1 The BFGS Method . . . 136
Properties of the BFGS Method . . . 141
Implementation . . . 142
6.2 The SR1 Method . . . 144
Properties of SR1 Updating . . . 147
6.3 The Broyden Class . . . 149
6.4 Convergence Analysis . . . 153
Global Convergence of the BFGS Method . . . 153
Superlinear Convergence of the BFGS Method . . . 156
Convergence Analysis of the SR1 Method . . . 160
Notes and References . . . 161
Exercises . . . 162
7.1 Inexact Newton Methods . . . 165
Local Convergence of Inexact Newton Methods . . . 166
Line Search Newton-CG Method . . . 168
Trust-Region Newton-CG Method . . . 170
Preconditioning the Trust-Region Newton-CG Method . . . 174
Trust-Region Newton-Lanczos Method . . . 175
7.2 Limited-Memory Quasi-Newton Methods . . . 176
Limited-Memory BFGS . . . 177
Relationship with Conjugate Gradient Methods . . . 180
General Limited-Memory Updating . . . 181
Compact Representation of BFGS Updating . . . 181
Unrolling the Update . . . 184
7.3 Sparse Quasi-Newton Updates . . . 185
7.4 Algorithms for Partially Separable Functions . . . 186
7.5 Perspectives and Software . . . 189
Notes and References . . . 190
Exercises . . . 191
8.1 Finite-Difference Derivative Approximations . . . 194
Approximating the Gradient . . . 195
Approximating a Sparse Jacobian . . . 197
Approximating the Hessian . . . 201
Approximating a Sparse Hessian . . . 202
8.2 Automatic Differentiation . . . 204
An Example . . . 205
The Forward Mode . . . 206
The Reverse Mode . . . 207
Vector Functions and Partial Separability . . . 210
Calculating Jacobians of Vector Functions . . . 212
Calculating Hessians: Forward Mode . . . 213
Calculating Hessians: Reverse Mode . . . 215
Current Limitations . . . 216
Notes and References . . . 217
Exercises . . . 217
9.1 Finite Differences and Noise . . . 221
9.2 Model-Based Methods . . . 223
Interpolation and Polynomial Bases . . . 226
Updating the Interpolation Set . . . 227
A Method Based on Minimum-Change Updating . . . 228
9.3 Coordinate and Pattern-Search Methods . . . 229
Coordinate Search Method . . . 230
Pattern-Search Methods . . . 231
9.4 A Conjugate-Direction Method . . . 234
9.5 Nelder-Mead Method . . . 238
9.6 Implicit Filtering . . . 240
Notes and References . . . 242
Exercises . . . 242
10.1 Background . . . 247
10.2 Linear Least-Squares Problems . . . 250
10.3 Algorithms for Nonlinear Least-Squares Problems . . . 254
The Gauss-Newton Method . . . 254
Convergence of the Gauss-Newton Method . . . 255
The Levenberg-Marquardt Method . . . 258
Implementation of the Levenberg-Marquardt Method . . . 259
Convergence of the Levenberg-Marquardt Method . . . 261
Methods for Large-Residual Problems . . . 262
10.4 Orthogonal Distance Regression . . . 265
Notes and References . . . 267
Exercises . . . 269
11.1 Local Algorithms. . . 274
Newton's Method for Nonlinear Equations. . . 274
Inexact Newton Methods . . . 277
BroydenÕs Method . . . 279
Tensor Methods . . . 283
11.2 Practical Methods . . . 285
Merit Functions . . . 285
Line Search Methods. . . 287
Trust-Region Methods . . . 290
11.3 Continuation/Homotopy Methods . . . 296
Motivation . . . 296
Practical Continuation Methods . . . 297
Notes and References . . . 302
Exercises . . . 302
Local and Global Solutions . . . 305
Smoothness . . . 306
12.1 Examples . . . 307
A Single Equality Constraint . . . 308
A Single Inequality Constraint . . . 310
Two Inequality Constraints. . . 313
12.2 Tangent Cone and Constraint Qualifications . . . 315
12.3 First-Order Optimality Conditions . . . 320
12.4 First-Order Optimality Conditions: Proof . . . 323
Relating the Tangent Cone and the First-Order Feasible Direction Set . . . 323
A Fundamental Necessary Condition . . . 325
FarkasÕ Lemma . . . 326
Proof of Theorem 12.1 . . . 329
12.5 Second-Order Conditions . . . 330
Second-Order Conditions and Projected Hessians . . . 337
12.6 Other Constraint Qualifications . . . 338
12.7 A Geometric Viewpoint . . . 340
12.8 Lagrange Multipliers and Sensitivity . . . 341
12.9 Duality . . . 343
Notes and References . . . 349
Exercises . . . 351
Linear Programming . . . 356
13.1 Optimality and Duality . . . 358
Optimality Conditions . . . 358
The Dual Problem . . . 359
13.2 Geometry of the Feasible Set . . . 362
Bases and Basic Feasible Points. . . 362
Vertices of the Feasible Polytope . . . 365
13.3 The Simplex Method . . . 366
Outline . . . 366
A Single Step of the Method . . . 370
13.4 Linear Algebra in the Simplex Method . . . 372
13.5 Other Important Details . . . 375
Pricing and Selection of the Entering Index . . . 375
Starting the Simplex Method . . . 378
Degenerate Steps and Cycling . . . 381
13.6 The Dual Simplex Method . . . 382
13.7 Presolving . . . . 385
13.8 Where Does the Simplex Method Fit? . . . 389
Notes and References . . . 389
Exercises . . . 389
14.1 Primal-Dual Methods . . . 393
Outline . . . 393
The Central Path . . . 394
Central Path Neighborhoods and Path-Following Methods . . . 393
14.2 Practical Primal-Dual Algorithms . . . 397
Corrector and Centering Steps . . . 39
Step Lengths . . . 407
Starting Point . . . 409
A Practical Algorithm . . . 410
Solving the Linear Systems . . . 411
14.3 Other Primal-Dual Algorithms and Extensions . . . 411
Other Path-Following Methods . . . 413
Potential-Reduction Methods . . . 413
Extensions . . . 414
14.4 Perspectives and Software . . . 416
Notes and References . . . 417
Exercises . . . 418
15.1 Categorizing Optimization Algorithms . . . 422
15.2 The Combinatorial Difficulty of Inequality-Constrained Problems . . . 424
15.3 Elimination of Variables . . . 426
Simple Elimination using Linear Constraints . . . 428
General Reduction Strategies for Linear Constraints . . . 431
Effect of Inequality Constraints . . . 434
15.4 Merit Functions and Filters . . . 435
Merit Functions . . . 435
Filters . . . 437
15.5 The Maratos Effect . . . 440
15.6 Second-Order Correction and Nonmonotone Techniques . . . 443
Nonmonotone (Watchdog) Strategy . . . 444
Notes and References . . . 445
Exercises . . . 445
16.1 Equality-Constrained Quadratic Programs . . . 451
Properties of Equality-Constrained QPs . . . 451
16.2 Direct Solution of the KKT System . . . 454
Factoring the Full KKT System . . . 454
Schur-Complement Method . . . 455
Null-Space Method . . . 457
16.3 Iterative Solution of the KKT System . . . 459
CG Applied to the Reduced System . . . 459
The Projected CG Method . . . 461
16.4 Inequality-Constrained Problems . . . 463
Optimality Conditions for Inequality-Constrained Problems . . . 464
Degeneracy . . . 465
16.5 Active-Set Methods for Convex QPs . . . 467
Specification of the Active-Set Method for Convex QP . . . 472
Further Remarks on the Active-Set Method . . . 476
Finite Termination of Active-Set Algorithm on Strictly Convex QPs . . . 477
Updating Factorizations . . . 478
16.6 Interior-Point Methods . . . 480
Solving the Primal-Dual System . . . 482
Step Length Selection . . . 483
A Practical Primal-Dual Method . . . 484
16.7 The Gradient Projection Method . . . 485
Cauchy Point Computation . . . 486
Subspace Minimization . . . 488
16.8 Perspectives and Software . . . 490
Notes and References . . . 492
Exercises . . . 492
17.1 The Quadratic Penalty Method . . . 498
Motivation . . . 498
Algorithmic Framework . . . 501
Convergence of the Quadratic Penalty Method . . . 502
Ill Conditioning and Reformulations . . . 505
17.2 Nonsmooth Penalty Functions. . . 507
A Practical 1 Penalty Method . . . . 511
A General Class of Nonsmooth Penalty Methods . . . 513
17.3 Augmented Lagrangian Method: Equality Constraints . . . 514
Motivation and Algorithmic Framework . . . 514
Properties of the Augmented Lagrangian . . . 517
17.4 Practical Augmented Lagrangian Methods . . . 519
Bound-Constrained Formulation . . . 519
Linearly Constrained Formulation . . . 522
Unconstrained Formulation . . . 523
17.5 Perspectives and Software . . . 525
Notes and References . . . 526
Exercises . . . 527
18.1 Local SQP Method . . . 530
SQP Framework . . . 531
Inequality Constraints . . . 532
18.2 Preview of Practical SQP Methods . . . 533
IQP and EQP . . . 533
Enforcing Convergence . . . 534
18.3 Algorithmic Development . . . 535
Handling Inconsistent Linearizations . . . 535
Full Quasi-Newton Approximations . . . 536
Reduced-Hessian Quasi-Newton Approximations. . . 538
Merit Functions . . . 540
Second-Order Correction . . . 543
18.4 A Practical Line Search SQP Method . . . 545
18.5 Trust-Region SQP Methods . . . . 546
A Relaxation Method for Equality-Constrained Optimization . . . 547
S 1 QP (Sequential 1 Quadratic Programming) . . . 549
Sequential Linear-Quadratic Programming (SLQP) . . . 551
A Technique for Updating the Penalty Parameter . . . 553
18.6 Nonlinear Gradient Projection . . . 554
18.7 Convergence Analysis . . . 556
Rate of Convergence . . . 557
18.8 Perspectives and Software . . . 560
Notes and References . . . 561
Exercises . . . 561
19.1 Two Interpretations . . . 564
19.2 A Basic Interior-Point Algorithm . . . 566
19.3 Algorithmic Development . . . 569
Primal vs. Primal-Dual System . . . 570
Solving the Primal-Dual System. . . 570
Updating the Barrier Parameter. . . 572
Handling Nonconvexity and Singularity . . . 573
Step Acceptance: Merit Functions and Filters . . . 575
Quasi-Newton Approximations . . . 575
Feasible Interior-Point Methods . . . . 576
19.4 A Line Search Interior-Point Method . . . 577
19.5 A Trust-Region Interior-Point Method . . . 578
An Algorithm for Solving the Barrier Problem . . . 578
Step Computation . . . 580
Lagrange Multipliers Estimates and Step Acceptance . . . 581
Description of a Trust-Region Interior-Point Method . . . 582
19.6 The Primal Log-Barrier Method . . . 583
19.7 Global Convergence Properties. . . 587
Failure of the Line Search Approach . . . 587
Modified Line Search Methods. . . 589
Global Convergence of the Trust-Region Approach . . . 589
19.8 Superlinear Convergence . . . 591
19.9 Perspectives and Software . . . 592
Notes and References . . . 593
Exercises . . . 594
A.1 Elements of Linear Algebra . . . 598
Vectors and Matrices . . . 598
Norms . . . 600
Subspaces . . . 602
Eigenvalues, Eigenvectors, and the Singular-Value Decomposition . . . 603
Determinant and Trace . . . 605
Matrix Factorizations: Cholesky, LU, QR . . . 606
Symmetric Indefinite Factorization . . . 610
Sherman-Morrison-Woodbury Formula . . . 612
Interlacing Eigenvalue Theorem . . . 613
Error Analysis and Floating-Point Arithmetic . . . 613
Conditioning and Stability . . . 616
A.2 Elements of Analysis, Geometry, Topology . . . 617
Sequences . . . 617
Rates of Convergence . . . 619
Topology of the Euclidean Space IRn. . . 620
Convex Sets in IRn . . . 621
Continuity and Limits . . . 623
Derivatives . . . 625
Directional Derivatives . . . 628
Mean Value Theorem . . . 629
Implicit Function Theorem . . . 630
Order Notation . . . 631
Root-Finding for Scalar Equations . . . 633
|