 
         
|   Errata: Second Edition First Edition | Numerical OptimizationJorge Nocedal    Stephen J. Wright | 
|   | |
| 1 Introduction   Mathematical Formulation . . . 2       Example: A Transportation Problem . . . 4     Continuous versus Discrete Optimization . . .5     Constrained and Unconstrained Optimization . . . 6    Global and Local Optimization . . . 6     Stochastic and Deterministic Optimization . . . 7     Convexity  . . . 7     Optimization Algorithms . . . 8     Notes and References . . . 9   2.1 What Is a Solution? . . . 12       Recognizing a Local Minimum . . . 14     Nonsmooth Problems . . . 17     2.2 Overview of Algorithms . . . 18     Two Strategies: Line Search and Trust Region . . . 19     Search Directions for Line Search Methods . . . 20     Models for Trust-Region Methods  . . . 25     Scaling . . . 26     Exercises  . . . 27   3.1 Step Length . . . 31       The Wolfe Conditions . . . 33     The Goldstein Conditions . . . 36     Sufficient Decrease and Backtracking  . . . 37     3.2 Convergence of Line Search Methods . . . 37     3.3 Rate of Convergence . . . 41     Convergence Rate of Steepest Descent  . . . 42     Newton's Method . . . 44     Quasi-Newton Methods  . . . 46     3.4 Newton's Method with Hessian Modification . . . 48       Eigenvalue Modification . . . 49     Adding a Multiple of the Identity . . . 51     Modified Cholesky Factorization . . . 52     Modified Symmetric Indefinite Factorization . . . 54     3.5 Step-Length Selection Algorithms . . . 56     Interpolation   . . . 57     Initial Step Length . . . 59     A Line Search Algorithm for the Wolfe Conditions  . . . 60     Notes and References . . . 62     Exercises  . . . 63   Outline of the Trust-Region Approach . . . 68       4.1 Algorithms Based on the Cauchy Point . . . 71     The Cauchy Point . . . 71     Improving on the Cauchy Point  . . . 73     The Dogleg Method . . . 73     Two-Dimensional Subspace Minimization . . . 76     4.2 Global Convergence  . . . 77     Reduction Obtained by the Cauchy Point . . . 77     Convergence to Stationary Points  . . . 79     4.3 Iterative Solution of the Subproblem . . . 83       The Hard Case . . . 87     Proof of Theorem 4.1 . . . 89     Convergence of Algorithms Based on Nearly Exact Solutions . . . 91     4.4 Local Convergence of Trust-Region Newton Methods . . . 92     4.5 Other Enhancements . . . 95      Scaling   . . . 95     Trust Regions in Other Norms . . . 97     Notes and References . . . 98     Exercises  . . . 98   5.1 The Linear Conjugate Gradient Method . . . 102       Conjugate Direction Methods . . . 102     Basic Properties of the Conjugate Gradient Method . . . 107     A Practical Form of the Conjugate Gradient Method  . . . 111     Rate of Convergence . . . 112     Preconditioning . . . 118     Practical Preconditioners . . . 120     5.2 Nonlinear Conjugate Gradient Methods . . . 121     The Fletcher-Reeves Method  . . . 121     The Polak-Ribi `ere Method and Variants . . . 122       Quadratic Termination and Restarts . . . 124     Behavior of the Fletcher-Reeves Method . . . 125     Global Convergence . . . 127     Numerical Performance . . . 131     Notes and References . . . 132      Exercises . . . 133   6.1 The BFGS Method . . . 136       Properties of the BFGS Method . . . 141     Implementation . . . 142     6.2 The SR1 Method  . . . 144     Properties of SR1 Updating . . . 147     6.3 The Broyden Class  . . . 149     6.4 Convergence Analysis . . . 153     Global Convergence of the BFGS Method . . . 153     Superlinear Convergence of the BFGS Method  . . . 156     Convergence Analysis of the SR1 Method . . . 160       Notes and References . . . 161     Exercises . . . 162   7.1 Inexact Newton Methods . . . 165       Local Convergence of Inexact Newton Methods . . . 166     Line Search Newton-CG Method . . . 168     Trust-Region Newton-CG Method  . . . 170     Preconditioning the Trust-Region Newton-CG Method . . . 174     Trust-Region Newton-Lanczos Method . . . 175     7.2 Limited-Memory Quasi-Newton Methods . . . 176     Limited-Memory BFGS . . . 177    Relationship with Conjugate Gradient Methods  . . . 180     General Limited-Memory Updating . . . 181       Compact Representation of BFGS Updating . . . 181       Unrolling the Update . . . 184     7.3 Sparse Quasi-Newton Updates . . . 185     7.4 Algorithms for Partially Separable Functions . . . 186     7.5 Perspectives and Software . . . 189     Notes and References . . . 190      Exercises . . . 191   8.1 Finite-Difference Derivative Approximations . . . 194       Approximating the Gradient . . . 195     Approximating a Sparse Jacobian . . . 197     Approximating the Hessian  . . . 201     Approximating a Sparse Hessian . . . 202     8.2 Automatic Differentiation . . . 204     An Example . . . 205     The Forward Mode . . . 206    The Reverse Mode  . . . 207     Vector Functions and Partial Separability . . . 210       Calculating Jacobians of Vector Functions . . . 212       Calculating Hessians: Forward Mode . . . 213     Calculating Hessians: Reverse Mode . . . 215     Current Limitations . . . 216     Notes and References . . . 217      Exercises . . . 217   9.1 Finite Differences and Noise . . . 221       9.2 Model-Based Methods . . . 223     Interpolation and Polynomial Bases . . . 226     Updating the Interpolation Set  . . . 227     A Method Based on Minimum-Change Updating . . . 228     9.3 Coordinate and Pattern-Search Methods . . . 229     Coordinate Search Method . . . 230     Pattern-Search Methods . . . 231    9.4 A Conjugate-Direction Method   . . . 234     9.5 Nelder-Mead Method . . . 238       9.6 Implicit Filtering  . . . 240       Notes and References . . . 242      Exercises . . . 242   10.1 Background . . . 247       10.2 Linear Least-Squares Problems . . . 250    10.3 Algorithms for Nonlinear Least-Squares Problems . . . 254    The Gauss-Newton Method . . . 254    Convergence of the Gauss-Newton Method  . . . 255     The Levenberg-Marquardt Method . . . 258     Implementation of the Levenberg-Marquardt Method . . . 259     Convergence of the Levenberg-Marquardt Method . . . 261     Methods for Large-Residual Problems . . . 262    10.4 Orthogonal Distance Regression  . . . 265     Notes and References . . . 267      Exercises . . . 269     11.1 Local Algorithms. . . 274       Newton's Method for Nonlinear Equations. . . 274     Inexact Newton Methods . . . 277     BroydenÕs Method  . . . 279     Tensor Methods . . . 283     11.2 Practical Methods . . . 285     Merit Functions . . . 285     Line Search Methods. . . 287    Trust-Region Methods   . . . 290     11.3 Continuation/Homotopy Methods . . . 296       Motivation   . . . 296       Practical Continuation Methods  . . . 297       Notes and References . . . 302      Exercises . . . 302    Local and Global Solutions . . . 305       Smoothness  . . . 306     12.1 Examples  . . . 307     A Single Equality Constraint  . . . 308     A Single Inequality Constraint . . . 310     Two Inequality Constraints. . . 313     12.2 Tangent Cone and Constraint Qualifications . . . 315     12.3 First-Order Optimality Conditions  . . . 320    12.4 First-Order Optimality Conditions: Proof    . . . 323     Relating the Tangent Cone and the First-Order Feasible Direction Set . . . 323       A Fundamental Necessary Condition  . . . 325       FarkasÕ Lemma   . . . 326       Proof of Theorem 12.1  . . . 329       12.5 Second-Order Conditions  . . . 330       Second-Order Conditions and Projected Hessians   . . . 337       12.6 Other Constraint Qualifications  . . . 338       12.7 A Geometric Viewpoint   . . . 340       12.8 Lagrange Multipliers and Sensitivity  . . . 341       12.9 Duality   . . . 343       Notes and References . . . 349      Exercises . . . 351    Linear Programming . . . 356       13.1 Optimality and Duality  . . . 358     Optimality Conditions  . . . 358     The Dual Problem  . . . 359     13.2 Geometry of the Feasible Set . . . 362     Bases and Basic Feasible Points. . . 362     Vertices of the Feasible Polytope . . . 365     13.3 The Simplex Method  . . . 366    Outline . . . 366     A Single Step of the Method . . . 370       13.4 Linear Algebra in the Simplex Method  . . . 372       13.5 Other Important Details   . . . 375       Pricing and Selection of the Entering Index  . . . 375       Starting the Simplex Method  . . . 378       Degenerate Steps and Cycling   . . . 381       13.6 The Dual Simplex Method  . . . 382       13.7 Presolving . . . . 385       13.8 Where Does the Simplex Method Fit?   . . . 389       Notes and References . . . 389      Exercises . . . 389    14.1  Primal-Dual Methods   . . . 393      Outline   . . . 393      The Central Path  . . . 394       Central Path Neighborhoods and Path-Following Methods  . . . 393    14.2 Practical Primal-Dual Algorithms  . . . 397     Corrector and Centering Steps  . . . 39     Step Lengths  . . . 407     Starting Point . . . 409     A Practical Algorithm . . . 410     Solving the Linear Systems  . . . 411    14.3 Other Primal-Dual Algorithms and Extensions  . . . 411     Other Path-Following Methods . . . 413       Potential-Reduction Methods   . . . 413       Extensions . . . 414       14.4 Perspectives and Software   . . . 416       Notes and References . . . 417      Exercises . . . 418     15.1 Categorizing Optimization Algorithms  . . . 422     15.2 The Combinatorial Difficulty of Inequality-Constrained Problems  . . . 424     15.3 Elimination of Variables   . . . 426     Simple Elimination using Linear Constraints  . . . 428     General Reduction Strategies for Linear Constraints . . . 431     Effect of Inequality Constraints . . . 434     15.4 Merit Functions and Filters  . . . 435    Merit Functions . . . 435     Filters  . . . 437       15.5 The Maratos Effect  . . . 440       15.6 Second-Order Correction and Nonmonotone Techniques  . . . 443       Nonmonotone (Watchdog) Strategy . . . 444       Notes and References . . . 445      Exercises . . . 445     16.1 Equality-Constrained Quadratic Programs  . . . 451     Properties of Equality-Constrained QPs  . . . 451     16.2 Direct Solution of the KKT System  . . . 454     Factoring the Full KKT System  . . . 454     Schur-Complement Method  . . . 455     Null-Space Method . . . 457     16.3 Iterative Solution of the KKT System . . . 459    CG Applied to the Reduced System . . . 459    The Projected CG Method   . . . 461     16.4 Inequality-Constrained Problems  . . . 463       Optimality Conditions for Inequality-Constrained Problems . . . 464       Degeneracy  . . . 465    16.5 Active-Set Methods for Convex QPs . . . 467       Specification of the Active-Set Method for Convex QP . . . 472       Further Remarks on the Active-Set Method  . . . 476       Finite Termination of Active-Set Algorithm on Strictly Convex QPs . . . 477       Updating Factorizations  . . . 478       16.6 Interior-Point Methods   . . . 480       Solving the Primal-Dual System  . . . 482       Step Length Selection  . . . 483       A Practical Primal-Dual Method  . . . 484       16.7 The Gradient Projection Method  . . . 485       Cauchy Point Computation   . . . 486     Subspace Minimization   . . . 488     16.8 Perspectives and Software   . . . 490     Notes and References . . . 492      Exercises . . . 492     17.1 The Quadratic Penalty Method  . . . 498     Motivation . . . 498     Algorithmic Framework   . . . 501     Convergence of the Quadratic Penalty Method   . . . 502     Ill Conditioning and Reformulations . . . 505     17.2 Nonsmooth Penalty Functions. . . 507     A Practical  1 Penalty Method . . . . 511    A General Class of Nonsmooth Penalty Methods . . . 513     17.3 Augmented Lagrangian Method: Equality Constraints  . . . 514       Motivation and Algorithmic Framework  . . . 514       Properties of the Augmented Lagrangian . . . 517       17.4 Practical Augmented Lagrangian Methods . . . 519       Bound-Constrained Formulation . . . 519       Linearly Constrained Formulation . . . 522       Unconstrained Formulation  . . . 523       17.5 Perspectives and Software  . . . 525       Notes and References . . . 526      Exercises . . . 527     18.1 Local SQP Method . . . 530    SQP Framework . . . 531    Inequality Constraints . . . 532     18.2 Preview of Practical SQP Methods   . . . 533     IQP and EQP . . . 533     Enforcing Convergence . . . 534     18.3 Algorithmic Development . . . 535     Handling Inconsistent Linearizations  . . . 535    Full Quasi-Newton Approximations  . . . 536     Reduced-Hessian Quasi-Newton Approximations. . . 538       Merit Functions  . . . 540       Second-Order Correction . . . 543       18.4 A Practical Line Search SQP Method  . . . 545       18.5 Trust-Region SQP Methods .  . . . 546       A Relaxation Method for Equality-Constrained Optimization  . . . 547       S 1 QP (Sequential  1 Quadratic Programming) . . . 549       Sequential Linear-Quadratic Programming (SLQP) . . . 551       A Technique for Updating the Penalty Parameter  . . . 553       18.6 Nonlinear Gradient Projection   . . . 554       18.7 Convergence Analysis . . . 556       Rate of Convergence . . . 557       18.8 Perspectives and Software  . . . 560       Notes and References . . . 561      Exercises . . . 561     19.1 Two Interpretations  . . . 564     19.2 A Basic Interior-Point Algorithm  . . . 566     19.3 Algorithmic Development   . . . 569     Primal vs. Primal-Dual System  . . . 570     Solving the Primal-Dual System. . . 570     Updating the Barrier Parameter. . . 572     Handling Nonconvexity and Singularity  . . . 573    Step Acceptance: Merit Functions and Filters . . . 575     Quasi-Newton Approximations   . . . 575       Feasible Interior-Point Methods .  . . . 576       19.4 A Line Search Interior-Point Method  . . . 577       19.5 A Trust-Region Interior-Point Method . . . 578       An Algorithm for Solving the Barrier Problem . . . 578       Step Computation . . . 580       Lagrange Multipliers Estimates and Step Acceptance  . . . 581       Description of a Trust-Region Interior-Point Method . . . 582       19.6 The Primal Log-Barrier Method  . . . 583       19.7 Global Convergence Properties. . . 587       Failure of the Line Search Approach  . . . 587       Modified Line Search Methods. . . 589       Global Convergence of the Trust-Region Approach . . . 589       19.8 Superlinear Convergence . . . 591       19.9 Perspectives and Software . . . 592       Notes and References . . . 593      Exercises . . . 594     A.1 Elements of Linear Algebra  . . . 598     Vectors and Matrices . . . 598     Norms  . . . 600     Subspaces . . . 602     Eigenvalues, Eigenvectors, and the Singular-Value Decomposition . . . 603     Determinant and Trace . . . 605     Matrix Factorizations: Cholesky, LU, QR . . . 606    Symmetric Indefinite Factorization . . . 610     Sherman-Morrison-Woodbury Formula   . . . 612       Interlacing Eigenvalue Theorem . . . 613       Error Analysis and Floating-Point Arithmetic  . . . 613       Conditioning and Stability . . . 616       A.2 Elements of Analysis, Geometry, Topology . . . 617       Sequences . . . 617       Rates of Convergence . . . 619       Topology of the Euclidean Space IRn. . . 620       Convex Sets in IRn  . . . 621       Continuity and Limits . . . 623       Derivatives  . . . 625       Directional Derivatives . . . 628       Mean Value Theorem . . . 629       Implicit Function Theorem . . . 630       Order Notation  . . . 631       Root-Finding for Scalar Equations . . . 633    |