Corrections to Numerical Optimization, Second Edition
 Published August 2006
 (Last updated May 27, 2008)

1. p. 5 , line -11 . "from a a finite" \rightarrow "from a finite"
2. p. 9 , line 18. "n the 1940 s " \rightarrow "in the 1940 s "
3. p. 23 , line -5 . " ∇f " \rightarrow " $\nabla^{2} f$ "
4. p. 25, line 1. "...,is" \rightarrow "is, respectively, (6.25) and"
5. p. 26 , line 8. "positive definite p_{k} " \rightarrow "positive definite"
6. p. 32 , line 8 . " $k=0,1, \ldots$ " \rightarrow " $k=1,2, \ldots$ "
7. pp. 34-35, Figures 3.4 and 3.5. "desired slope" \rightarrow "minimum acceptable slope"
8. p. 40 , line -9 . "will be able" \rightarrow "will not be able"
9. p. 49 , line 15 . "For a proof this result" \rightarrow "For a proof of this result"
10. p. 49, line 15. "For problems in which ∇f^{*} is close to singular" \rightarrow "For problems in which $\nabla^{2} f\left(x^{*}\right)$ is close to singular"
11. p. 55, Example 3.2. Replace formula (3.52) by

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{9} & \frac{2}{3} & 1 & 0 \\
\frac{2}{9} & \frac{1}{3} & \frac{5}{7} & 1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
0 & 3 & 0 & 0 \\
3 & 4 & 0 & 0 \\
0 & 0 & \frac{7}{9} & 0 \\
0 & 0 & 0 & \frac{45}{63}
\end{array}\right] .
$$

Also, make the replacement "Note that both diagonal blocks in B are 2×2 " \rightarrow "Note that the leading diagonal block in B is 2×2 "
12. p. 63 , line 8. Remove the paragraph "Another strategy ... Goldfarb [132])"
13. p. 75 , line -3 . "In the latter case, we compute the appropriate" \rightarrow "When $\left\|p^{\mathrm{U}}\right\| \leq \Delta$, the appropriate value of τ is obtained from

$$
\tau=\frac{\Delta}{\left\|p^{\mathrm{U}}\right\|}
$$

Otherwise, when $\left\|p^{\mathrm{U}}\right\|<\Delta<\left\|p^{\mathrm{B}}\right\|$, we compute the appropriate"
14. p. 80 , line -3 . Delete "for some $t \in(0,1)$,".
15. p. 81, line 1. "to denote the Lipschitz" \rightarrow "to denote half the Lipschitz"
16. p. 84 , line -5 . " $\lambda \neq \lambda_{j} " \rightarrow " \lambda \neq-\lambda_{j} "$
17. p. 85 , on the line after (4.40). "whcih" \rightarrow "which"
18. p. 90, line 9. "global minimum" \rightarrow "global minimizer".
19. p. 93, line 9. "neighborhhod" \rightarrow "neighborhood"
20. p. 99, line 1. "the sequence $\{\|g\|\}$ " \rightarrow "the sequence $\left\{\left\|g_{k}\right\|\right\}$ "
21. p. 99, Exercise 4.6. "positive definite" \rightarrow "symmetric positive definite".
22. p. 145, lines 14-15. Item 2 should read "If $y_{k}=B_{k} s_{k}$, then the trivial updating formula $B_{k+1}=B_{k}$ satisfies the secant condition."
23. p. 158, formula (6.57) should be

$$
\tilde{M}_{k}=\frac{\left\|\tilde{y}_{k}\right\|^{2}}{\tilde{y}_{k}^{T} \tilde{s}_{k}} \leq \frac{\left(1+\bar{c} \epsilon_{k}\right)^{2}}{1-\bar{c} \epsilon_{k}} .
$$

24. p. 158, formula (6.58) should be

$$
\tilde{M}_{k} \leq 1+\frac{3 \bar{c}+\bar{c}^{2} \epsilon_{k}}{1-\bar{c} \epsilon_{k}} \epsilon_{k} \leq 1+c \epsilon_{k}
$$

25. p. 162, exercise 6.5 should read "Prove that if $y_{k} \neq B_{k} s_{k}$ and $\left(y_{k}-B_{k} s_{k}\right)^{T} s_{k}=0$, then there is no symmetric rank-one updating formula that satisfies the secant condition.
26. p. 167, line 9 . The first line of this displayed multiline formula should be

$$
\nabla f_{k+1}=\nabla f_{k}+\nabla^{2} f_{k} p_{k}+\int_{0}^{1}\left[\nabla^{2} f\left(x_{k}+t p_{k}\right)-\nabla^{2} f\left(x_{k}\right)\right] p_{k} d t
$$

(The quantities in the integral should be Hessians, not gradients.)
27. p. 171, line 8 of Algorithm 7.2. Remove "in (4.5)".
28. p. 176, eq (7.14). " Q_{j} " \rightarrow " Q_{j}^{T} ".
29. p. 192, line 5. "its area is $q^{2 "} \rightarrow$ "its area is $q^{-2 "}$
30. p. 232, line 6. " $k=1,2, \ldots " \rightarrow " k=0,1,2, \ldots$ "
31. p. 238, line 18. "toward this value" \rightarrow "toward the best vertex".
32. p. 238, line 19. "after some defining some notation" \rightarrow "after defining some notation".
33. p. 238, line -9 . Should be

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} .
$$

34. p. 239, line 12. " $f_{-1 / 2}=\bar{x}(-1 / 2) " \rightarrow f_{-1 / 2}=f(\bar{x}(-1 / 2)) "$
35. p. 239, line 17. " $f_{1 / 2}=\bar{x}(1 / 2)$ " \rightarrow " $f_{1 / 2}=f(\bar{x}(1 / 2))$ "
36. p. 239, line 23. "three-dimensional" \rightarrow "two-dimensional"
37. p. 240, caption of Figure 9.4. "simplex method in $\mathbb{R}^{3 "} \rightarrow$ "simplex method in $\mathbb{R}^{2 "}$
38. p. 253, line -11 . "less sentitive to" \rightarrow "less sensitive to"
39. p. 255, line -3 . "can applied to study" \rightarrow "can be applied to study"
40. p. 260, lines 2 and 4. " $\lambda I " \rightarrow \sqrt{\lambda} I$ ".
41. p. 269, Exercise 10.1. Delete the phrase ", and let $y \in \mathbb{R}^{m}$ be a vector"
42. p. 269, Exercise 10.5. "Assume also that the r_{j} are bounded on \mathcal{D}, that is, there exists $M>0$ such that $\left|r_{j}(x)\right| \leq M$ for all $j=1,2, \ldots, m$ and all $x \in \mathcal{D}$." \rightarrow "Assume also that the r_{j} and ∇r_{j} are bounded on \mathcal{D}, that is, there exists $M>0$ such that $\left|r_{j}(x)\right| \leq M$ and $\left\|\nabla r_{j}(x)\right\| \leq M$ for all $j=1,2, \ldots, m$ and all $x \in \mathcal{D} . "$
43. p. 276, formula (11.11) should be

$$
\begin{equation*}
w\left(x_{k}, x^{*}\right)=\int_{0}^{1}\left[J\left(x_{k}+t\left(x^{*}-x_{k}\right)\right)-J\left(x_{k}\right)\right]\left(x_{k}-x^{*}\right) d t . \tag{1}
\end{equation*}
$$

44. p. 279, line 11. "at most $1 / 2$ " \rightarrow "at most $3 / 4$ ".
45. p. 294, line -7 . " $\int_{0}^{1} \beta_{L}\left\|p_{k}\right\|^{2} d t " \rightarrow \int_{0}^{1} t \beta_{L}\left\|p_{k}\right\|^{2} d t$ ".
46. p. 295, line -2 . "not be increased" \rightarrow "not be decreased".
47. p. 303, line 1. "decreasing in λ " \rightarrow "decreasing in $\lambda>0$ "
48. p. 314, line -7 . "it s easy to identify vectors d that satisfies" \rightarrow "it is easy to identify vectors d that satisfy"
49. p. 315, line -9. "closed convex set" \rightarrow "closed set"
50. p. 317, line -2 . "sequence are $\left(d=(0, \alpha)^{T}\right.$ " \rightarrow "sequence are $\left(d=(0, \alpha)^{T}\right.$ with $\alpha \geq 0 "$
51. p. 324, line 14. "positive scalars such" \rightarrow "positive scalars such that"
52. p. 324, line -8 . "At $t=0, z=x^{*}$, and the Jacobian of R at this point is" \rightarrow "At $t=0$, we have $z=x^{*}$, and the Jacobian of R with respect to z at this point is"
53. p. 325 , Replace the paragraph starting on line 1 and ending on line 10 (that is, "It remains to verify...." through "proof of (ii) is complete") with the following paragraph: In fact, the solution z of (12.40) is an implicit function of t; we can write it as $z(t)$, and note that $z_{k}=z\left(t_{k}\right)$. The implicit function theorem states that z is a continuously differentiable function of t, with

$$
z^{\prime}(0)=-\nabla_{z} R\left(x^{*}, 0\right)^{-1} \nabla_{t} R\left(x^{*}, 0\right)
$$

and we can use (12.40) and (12.41) to deduce that $z^{\prime}(0)=d$. Since $z(0)=x^{*}$, we have that

$$
\frac{z_{k}-x^{*}}{t_{k}}=\frac{z(0)+t_{k} z^{\prime}(0)+o\left(t_{k}\right)-x^{*}}{t_{k}}=d+\frac{o\left(t_{k}\right)}{t_{k}}
$$

from which it follows that (12.29) is satisfied (for $x=x^{*}$), Hence, $d \in T_{\Omega}\left(x^{*}\right)$ for an arbitrary $d \in \mathcal{F}\left(x^{*}\right)$, so the proof of (ii) is complete.
54. p. 325 , line -11 . "at which all feasible sequences" \rightarrow "at which all feasible sequences approaching $x "$
55. p. 328 , line 6. " $2 t$ " \rightarrow " 2α " in the second equation of this line.
56. p. 329 , formula (12.51). " $A\left(x^{*}\right)^{T} \lambda^{*} " \rightarrow " A\left(x^{*}\right)^{T} \lambda$ "
57. p. 333 , formula (12.63). replace the term

$$
\frac{1}{2} t_{k}^{2} w^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right)
$$

by

$$
\frac{1}{2} t_{k}^{2} w^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) w
$$

58. p. 333 , line -7 . "condition (12.65) by" \rightarrow "condition (12.65) can be replaced by"
59. p. 336 , line -3 . The matrix in the formula should be

$$
\left[\begin{array}{cc}
-0.8 & 0 \\
0 & 1.4
\end{array}\right]
$$

60. p. 337, add after line 12: "where $\left|\mathcal{A}\left(x^{*}\right)\right|$ denotes the cardinality of $\mathcal{A}\left(x^{*}\right)$."
61. p. 341, statement of Lemma 12.9. "Then t the normal cone" \rightarrow "Then the normal cone"
62. p. 341 , lines 16 and 19. In these two displayed formulae, replace \Rightarrow by \Leftrightarrow.
63. p. 344, line 3. " $q: \mathbb{R}^{n} \rightarrow \mathbb{R} " \rightarrow " q: \mathbb{R}^{m} \rightarrow \mathbb{R} "$
64. p. 344 , formula (12.84) should be

$$
\begin{equation*}
\max _{\lambda \in \mathbf{R}^{m}} q(\lambda) \quad \text { subject to } \lambda \geq 0 \tag{2}
\end{equation*}
$$

65. p. 351, in formula (12.96), replace $x^{6} \sin (1 / x)=0$ by $x^{6} \sin (1 / x)$.
66. p. 443, line 15. "from from" \rightarrow "from".
67. p. 444, line 14. "if does not" \rightarrow "if it does not".
68. p. 455 , line 15. "to obtain \hat{y} " \rightarrow "to obtain \hat{z} ".
69. p. 461, line 15. "the scaled $n \times n$ projection matrix" \rightarrow "the $n \times n$ matrix".
70. p. 468, line -6 . "positive definite" \rightarrow "positive semidefinite".
71. p. 488, line -13. "else (ii) $\Delta t^{* *} \rightarrow$ "else (ii) if Δt^{*} ".
72. p. 600, line -6 . "is a nonnegative multiple" \rightarrow "is a multiple"
73. p. 602, line 16. "(i) the whole space $\mathbb{R}^{n "} \rightarrow$ "the whole space $\mathbb{R}^{2 "}$
74. p. 609, line 14. "set $x=P^{T} z " \rightarrow$ "set $x=P z$ "
75. p. 615. lines -12 to -9 . Replace this sentence by the following: "By combining these expressions, we find that the difference between this result and the true value $x-y$ may be as large as a quantity that is bounded by $\mathbf{u}(|x|+|y|+|x-y|)$ (ignoring terms of order \mathbf{u}^{2})."
76. p. 616, displayed formula on line -4 . " \approx " \rightarrow " $\leq "$
77. p. 617, formula (A.32). " $\approx " \rightarrow " \leq "$
78. p. 618, line 7. This displayed formula should be

$$
\left\|x_{k}-\hat{x}\right\| \leq \epsilon, \quad \text { for some } k \geq K
$$

79. p. 620, line 16. "have $\left(1+(0.5)^{k}\right)-1 \mid=(0 .)^{k "} \rightarrow$ "have $\left|\left(1+(0.5)^{k}\right)-1\right|=(0.5)^{k "}$
80. p. 629 , line -1 . " $1 / \sqrt{13}$ " \rightarrow " $1 / \sqrt{3}$ "

Thanks to Carlos Henao, Jorgen Sand, Marc Steinbach.

