System Improvement Using Structural Conservation

Stephen M. Robinson
Industrial and Systems Engineering
University of Wisconsin-Madison

ACNW Workshop, Chicago, June 2005
Sponsored by ARO and AFOSR
Outline

- Two examples of a modeling strategy
- Stochastic network improvement via 2-moment approximations
 - Current work of Julien Granger
 - Uses deterministic approximation to estimate an optimizer
 - Validates “betterness” with simulation
- Generalized equations
 - Developed area, payoffs now better known
- Can we push this farther? If so, how?
Network improvement

- Stochastic networks with parameters
 - Service rates, # of servers, etc.
 - Can (pay to) change parameters
 - Try to improve a performance measure
 - E.g. steady-state mean throughput

- Idea: use 2-moment approximations
 - Replace nodes by renewal processes with infinite buffers
 - Can model hard constraints with fork/join, kanban
 - Characterize process by mean, SCV
 - Form system of nonlinear equations
Network improvement 2

- Nonlinear system: parameters plus other performance measures
- Use deterministic methods to adjust parameters for good performance
 - 1 simulation to validate improvement (not necessarily optimization) at end
- Previous work: Whitt, Sanders, Suri, Kamath, Krishnamurthy, others
 - Current work is thesis of J. Granger
 - More info: granger@cae.wisc.edu
What’s the abstract approach?

- We have a system involving
 - Nodes (servers) of various forms
 - A topology that connects them and enforces certain relationships

- Model this for improvement by:
 - *Simplifying* the nodes (perhaps greatly)
 - *Retaining* the structure to connect the simplified nodes

- This we’ve seen before
Generalized equations

- This same idea occurs in solving generalized equations
 - Original: $0 \in f(x) + N_C(x)$, where C is closed convex, N_C is normal cone to C
 - Approximation: $0 \in a(x) + N_C(x)$, with a being a function much simpler than f
 - Here N_C represents “system topology,” e.g. introducing corners into problem

- Contrasts with direct approximation
Empirical insight, and question

- This approach, conserving system *structure* while simplifying system *elements*, has produced good tools
 - These have performed very well vs. attempts at direct approximation of the system output
- Is it more generally applicable?
- If so, what guides does it provide to where we might concentrate effort?
Implications for investigation

- If we wanted to learn more about exploiting this idea, we could ask:
 - For common systems, *what kinds of simplified elements* would make it easy to estimate the system performance?
 - *What elements of system structure* are particularly critical to defining the important output characteristics?
 - *How good* is resulting approximation, & why?

- Answers could pay off in better methods
Questions?