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1. Three Types of  Experiments

1. Physical Experiments
 •  Gold standard for establishing cause and effect relationships
 •  Mainstay of Engineering, Agriculture,  Medicine
 •  Principles of randomization, blocking, choice of sample size, and
  stochastic modeling of response variables all developed
  in response to needs of physical experiments

2. Complex physical system each of whose parts behaveSimulation Experiments 
stochastically and interact in a known manner but whose ensemble stochastic
behavior is not understood analytically
 • Used extensively in IE/OR--compare hospital emergency room setups

3.  past 15 yearsComputer Experiments
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#.  What are Computer Experiments?

Idea: Many physical processes can not be studied by conventional experiments
Why?
  (1) technically, the physical process is too difficult (expensive) to study experimentally
  (2) ethical considerations
  (3) number of input variables is too large

If  either
(1) the components of the process of interest and their interactions are adequately
understood so it can simulated (with negligable MC error) or
(2) the physics of the process of interest is
   • sufficiently well understood so it can be described by a mathematical model
         relating the  to the  that affect the output inputs,response potential factors
   • Numerical methods exist for solving the mathematical model
   • The numerical methods can be implemented with computer code
Then proxy the computer code can serve as a for the physical process.  As in a
physical experiment,

B − § Bk ‘ Ò Ò. Code CÐ Ñ
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B − § Bk ‘ Ò Ò. Code CÐ Ñ

Features of Computer Experiments

• CÐ ÑB is deterministic

• Our interest is in settings where very few computer runs are possible due to
 1. Complex codes
 2.  High--dimensional input B

• Traditional principles used in designing physical experimentals
(eg randomization, blocking, ) are irrelevant.á
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$Þ Examples

(1)  Design of VLSI circuits

(2)  Modeling weather or climate

(3)  Design of automobile (components)

(4)  Determine the performance of controlled nuclear fusion devices

(5) Temporal evolution of contained and wild fires

(6) Design of helicopter rotor blades

(7) Biomechanics Design of prosthetic devices
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Example (7) Designing hip and knee implants
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Biomechanics I Design a hip implant

Goal To determine the design of a hip implant, i.e,  that minimizesÐ,ß .Ñ
femoral stress shielding while providing adequate resistance to implant
toggling.
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Inputs

1. (manufacturing design)Engineering Variables 

 • Prosthesis geometry (length, cross-section, width, etc)
 • Prosthesis material
 • Nominal insertion parameters

2.  & Environmental Variables (Patient Surgical Variables)

 • Bone material properties, weight (and other patient variables)
 • Deviation from nominal insertion parameters
   (and other surgical variables)

In the above figure, the  are Engineering Variables

• bullet-tip length, œ
• midstem diameter. œ

the areEnvironmental Variables 
• trabecular bone elastic modulusI œ
• joint force angle) œ
• Implant-bone interface friction0 œ
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Computed Response constructed from:

• ( , , , ) normalized measure of bone stress shieldingW œ W , . I ß 0 œ)
• ( , , , ) normalized measure of implant togglingH œ H , . I ß 0 œ)

      (competing objectives!!)

Formulation #1 Combine  &  because they represent competingW H
objectives.  Goal is to minimize

C , . I ß 0 œ AW , . I ß 0  Ð"  AÑH , . I ß 0( , , , ) ( , , , ) ( , , , )) ) )

where measures the relative importance of the two objectives.A

Formulation #2 minimizeGoal is to 

W , . I ß 0( , , , ))
subject to

H , . I ß 0 Ÿ F( , , , ))
 
where is a given bound (a constrained optimization problem)F
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Biomechanics II  A Computer Model of a Knee Simulator

Three data sources
 1.  Knee Simulator (a machine)
 2.  Computer code that emulates the Knee Simulator

Inputs (7-10)
 • Loading pattern (Flexion angle, Axial Force, AP Force, IE Torque)
 • Knee design (stem lengths, constrained or not, etc)
 • Frequency with which the loading pattern is applied (running/walking)
 • Elastic modulus of the polyethylene in the tibial tray
 • Polyethylene Irradiated or not
 • Friction between knee and femoral component
 • Surface type (Elemental vs Analytic in finite element code)
 • Mesh Density in finite element code
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Mathematical Model (finite element model 12 hours/per run)
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Output data from Knee simulator & computer code
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Project Goals
  1.  "Calibrate" computer code to mimic knee simulator
   Use calibrated computer code to produce effects seen in retreived2. 
  knees
  Explain the biomechanics of prosthetic joint failure3.  
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%. Nomenclature and a Taxonomy of Problems for Computer Exeriments

Inputs   B B B= ( , ) where- /

B œ B- Engineering Design variables (each choice of  is )c Engineering Design

  B/ œ Environmental Variables (field, noise) , eg, patient bone densities.

Philosophy We often regard  as random variables with aenvironmental variables
distribution that represents target field conditions, i.e.,  F\/ µ Ð Ññ

Outputs
Real-valued : CÐñÑ

or
Multivariate: C ÐñÑß C ÐñÑßá ß C ÐñÑ" # 5

or
Functional: (>ß CÐ>ß ñÑÑ

  • Multivariate data: single or multiple codes, e.g., code computes andCÐñÑ
 all first partial derivatives of CÐñÑ Ñ
  • Functional Data:   APD or IER gait profile
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Special Features of (Biomechanics) Problems

• Codes for are often CÐ ÑB long-running

• Sometimes associated  are available with output, .Physical Experiments ] ÐñÑP

Usual philosophy is that  is a  measurements of the true input-output] : B noisy
relationship, which we denote .  In detail,.X Ð ÑB

] œ Ð Ñ  Ð Ñ: XB B B. %

where the are independent measurement errors having mean zero ande f%Ð ÑB B

unknown variance and we regard  as the i-o relationship.5 .# X
% Ð ÑB true, unknown 

Caveats Sometimes only physical experiments are available for components
of the ensemble process -- nuclear reactor simulator, code that emulates auto crash
test.  In other cases, only experiments that reality are available--kneeapproximate 
simulator

• When there are field variables,  has a distribution.  We might typicallyCÐ ÑB \c, /

be interested in one of several summary quantities associated with the distribution of
CÐ ÑB \- , / . For example,
    (that the quantity around which the computer œ I CÐ Ñ. e fB B \- - , /

   output varies)
   = Var  (one measure of the very ability of the computer ÐCÐ ÑÑ5#

/B B \- - ,
   output due to variation in field inputs)



Taxonomy of Problems

• Given  computer model output at a set of inputs (training data),Interpolation/Emulation 
predict the computer simulation output at a new, untried input settings

• Determine input settings in which to carry out the sequence ofExperimental design 
simulation designs (a "good" design of a physical or computer experiment depends on the
scientific objective  of the research)
 Exploratory Designs ("space-filling")
 Prediction-based Designs
  Optimization-based Designs (e.g., find )B œ CÐBÑ‡ argmin

• Determine the distribution of the computer model outputUncertainty/Output Analysis 
when (some or all of) the inputs are random, i.e., determine the distribution of .CÐ \ ÑB. , /

Examples of randomly varying inputs are patient specific variables (patient weight or patient
bone material properties) or surgeon specific variables (measuring surgical skill)

Example In his Cornell PhD thesis, Kevin Ong studied the effect of Surgical, Patient,
and Fluid Effects on the Stability of Uncemented Acetabular Components

•  Determine how variation in   can be apportioned to theSensitivity Analysis  CÐ ÑB
different computer model inputs B
( Inputs that have relatively little effect on the output  can be set to some nominalPhilosophy 
value and additional investigation restricted to determining how the output depends on the
active inputs)
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• use physical experimental data and computer simulation runs to best estimateCalibration 
the computer code calibration variable (or to update the uncertainty regarding these

parameters)

Example Set Mesh Density ? Load Discretization ? etcœ ß œ ß

• Using the calibrated simulator to give predictions (with uncertainty bounds)Prediction 
for an associated physical system.

•  In experiments with engineering design and patient-specificFind Robust Inputs  ß
enviromental variables, determine robust choices of the engineering design variables. If

  . e fB B \c cœ I CÐ ÑJ /,

then a robust set of inputs   is an engineering  "design" whose output is Bc minimally sensitive
to uncertainty in the distribution •  of  JÐ Ñ \/

Many of the problems above have "natural" solutions obtained by approximating the computer
model by an even "faster" predictor, a .  Statistical issues choosing the bestmetamodel
possible surrogate for the code and devising valid methods to accomplish calibration etc.
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5. Sequential Design of Computer Experiments for Global Optimization

Recall B − § Bk ‘ Ò Ò. Code CÐ Ñ 

• Minimizing the number of function evaluations (computer runs) is critical in many
computer experiments (Many methods, eg, direct search algorithms such as Nelder
Mead "simplex" algorithm, or gradient-based algorithms can require "too many"
function evaluations to be useful in the computer experiment settings)

• Some specific optimization problems
   find Case 1 B B9:> ´ CÐ Ñargmin
   Suppose  whereCase 2 B œ ÐB ßB Ñ- /  
 ( )B œ- control manufacturing, engineering design variables
  ( , ) B œ/ noise field enviromental variables
       Xand  • ("target field conditions'').    is a random variable/ µ JÐ Ñ CÐ ÑB ß\- /

 with distribution induced by Find\/.  
B œ B- 9:> J,  argmin. Ð Ñ-

where.J JÐ Ñ I CÐ ÑB œ B ß\- - /e f
 Suppose  output is FindCase 3  C ÐñÑ C ÐñÑß C ÐñÑßá ß C ÐñÑ0 , . " # 5

B ´ C Ð Ñ‡ argmin 0 B
  subject to

C ÐñÑ Ÿ F Ð Ÿ 3 Ÿ 5Ñ3 3 1
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Goal Describe Efficient Global Optimization EGO AlgorithmsÐ Ñ

Idea  EGO is a  that uses a  predictor, , to exploredirect search algorithm  CÐ Ñ CÐ ÑB Bs
CÐ ÑB  surface and also  in the predictoraccounts for uncertainty

Part 1  The    Predictor!CÐBÑ

Problem Given training data

ˆ ‰ ˆ ‰B B B B" 8 8 "
>< >< >< ><ß CÐ Ñ ß á ß ß CÐ Ñ

predict C ßB B! !where is an untried new input

Idea Regard the function as a realization, a  "draw " from a random functionCÐ Ñ ßB
] B .

Philosophically different than regression, MARS, and other prediction
methods that assume (complicated mean structure + simple correlation
structure) and versus the methodology (below) which is based the
assumptions of (simple mean + complicated correlation structure).
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Issues
• What model for ?  One that permits great flexibility in the form of  ] CÐ ÑxB B

• The simplest possible model for  is] B

] Ð Ñ œ 0 Ð Ñ  ^B B Bðóóñóóò î
4

4 4"

     " "      " "large scale trends smooth deviations

 œ 0Ð Ñ  ^"ð B B
where
 , are known regression functions,0 Ð Ñ á ß 0 Ð Ñ" 5B B
  is an unknown regression vector, and" 
  is a "stationary Gaussian Stochastic Process" (GSP), a random function^ B
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Example Four draws from a zero mean, unit variance GSP from [0,1]   with the^ÐBÑ î ‘
''Gaussian'' correlation function

VÐ2Ñ œ /B:  2ˆ ‰) #

for  0.5 (solid lines),  1.0 (dotted lines), and   10.0 (dashed lines)) ) )œ œ œ

 ## 



 #" 
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• •Smoothness properties of depend on smoothness of  at the originCÐ Ñ VÐ Ñ ß /Þ1ßB

VÐ Ñ œ  l2 l2l0 $ e f
3œ"

5

3 3
:exp 0 3

• Best linear unbiased predictor BLUP or empirical BLUPÐ Ñ0 known
(EBLUP- ) can be calculated to predict • at any  0 estimated CÐ Ñ B

CsÐB Ñ ´ I ] ÐB Ñl! !e fdata

•   Engineering literature often calls such a   CÐ Ñ ´s B metamodel

• In addition,

5#
! ! ! !

#
ÐB Ñ œ I ] ÐB Ñ  ÐB Ñ l œ ÐB Ñls sŠ ‹C Cdata Var( data)

is a measure of our uncertainty about the predicted value of  CÐ ÑÞB

 "* 



Example 8 œ (ß "-dim

The BLUP and corresponding pointwise 95% prediction interval limits for forCÐ ÑB
8 œ ( training data observations
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Properties of CÐ Ñs B!

• Simple to compute (linear in training data i.e.,ÐCÐ Ñßá ß CÐ ÑÑÑßB B"
>< ><

8

CÐ Ñ œ -  - CÐ Ñs B B! ! 4

4œ"

8
><
4

• Viewed as a function ofB!

CÐ Ñ œ .  . VÐ  Ñs B B B! ! 4 !

3œ"

8
><
3

• interpolates the training data, i.e.,CÐ Ñs B

CÐ Ñ œ CÐ Ñ 3 œ "ßá ß 8s B B>< ><
3 3  for 

• Splines, neural networks and other well-known interpolators correspond to specific
choices of correlation function •VÐ Ñ

• Software
 1. SAS Proc Mixed
 2. PErK (B. J. Williams)
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Part 2 Designing Computer Experiments to Find Global Optima

Expected Improvement-I

Goal  Find  B B9:> œ CÐ Ñargmin
Implicit keep number of  evaluations "small''CÐ ÑB

Idea of Sequential Design Algorithm for the Computer Experiment
Given training data

ˆ ‰ ˆ ‰B B B B" 8 8 "
>< >< >< ><ß CÐ Ñ ß á ß ß CÐ Ñ

choose to be that   which maximizes an  criterion asB B8"
>< expected improvement

the "best'' input  at which to compute •B9:> CÐ Ñ

Improvement Let

C œ CÐ Ñ8 3
><min min

" Ÿ 3 Ÿ 8
B

´ CÐ Ñ 8best (smallest) •  calculated through the evaluationth
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Let

C œ CÐ Ñ8 3
><min min

" Ÿ 3 Ÿ 8
B

´ CÐ Ñ 8 Þbest (smallest) •  calculated through the evaluation Consider newth potential 
site .  ThenB define

MÐ Ñ œ
!ß CÐ Ñ   C

C  CÐ Ñß CÐ Ñ  C
B

B

B B
œ 8

8 8

min

min min

      œ !ß C  CÐ Ñmax˜ ™
8
min B

is the improvement in using as the  minimizer over current training data.B B  CÐ Ñ

Warning  In ,  is  BUT  and (hence)  are :--(.MÐ Ñ C CÐ Ñ MÐ ÑB B B8
min known unknown 
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Idea of the Algorithm

1. Obtain a starting design, ie., set of initial inputs  at which to calculate y(•)ß ßB3

(eg Space-filling "Latin Hypercube Design")

2. Evaluate  at the starting design and use the data to estimate any unknownCÐ ÑB
correlation parameters 0

3. Choose to maximize the expected improvement the current dataB8"
>< given 

(and ), i.e.,0

B B B B8" 3 3
>< 8 >< ><

3œ"

8
´ I MÐ Ñl] ´ ß CÐ Ñargmax ˜ ™˜ ™ˆ ‰ (1)

(the expected value of  under the stochastic process model)MÐ ÑB

%.   when the maximum expected improvement is "small,'' and setStop

B B
• •
9:> œ CÐ Ñßargmin

where is the EBLUP of  CÐ Ñ CÐ Ñ
•
B B

Fact

B B B
B B

B B8" 8
>< 8 8´ ÐC  CÐ ÑÑ  Ð Ñs

C  CÐ Ñ C  CÐ Ñs s

Ð Ñ Ð Ñ
argmax

k
F 5 9

5 5
 œ Œ Œmin

min min



B B B
B B

B B8" 8
>< 8 8´ ÐC  CÐ ÑÑ  Ð Ñs

C  CÐ Ñ C  CÐ Ñs s

Ð Ñ Ð
argmax

k
F 5 9

5 5
 
Ú Þ
Û ßÜ àðóóóóóóóóóóóóóóóñóóóóóóóóóóóóóóóò ðóóóóóóóóóñóóóóóóóóóòŒ Œmin

min min

Ñ

Ð"Ñ Ð#Ñ

Ð"Ñ B B Bis large at if the predicted is "much lower" than the current CÐ Ñß CÐ Ñßs
champion  minimum, , i.e. both factors are large in this caseC8

min

Ð#Ñ B B B  is large at if there is large uncertainty in our prediction of , i.e., CÐ Ñ Ð Ñ5

is "large" and is "small"  - remember that (h) is max at ¹ ¹C CÐ Ñs
Ð Ñ

8
min B

B5 9 2 œ !Þ
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Example (Hartman Function)

0ÐB ß B ß B ß B ß B ß B Ñ œ  -  B  :" # $ % & ' 3 34 4 34

3œ" 4œ"

% '
#Ÿexp α

! Ÿ B Ÿ " 3 œ "ßá ß '3 34for , ( ) are given byα
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and ( ) are given by:34

Characteristics
 • has a unique has a unique minimum value of 0Ð Ñ  3.322375

EGO Algorithm
1. Initial sample 8 œ &"
2. Additional observations 74 (125 total)

(stopping when max expected improvement 0001Ÿ

Result  09Minimum identified B 
•
9:> 3.3223
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Expected Improvement-II

• Setup:
1. whereInputs B œ ÐB ßB Ñ- /  
 ( )B œ- control manufacturing, engineering design variables
  ( , ) B œ/ noise field enviromental variables
      (model variables)
2. has known distribution with support  and probabilities  i.e.,X/ /ß4

=?:

4œ"

8 8
4 4œ"

˜ ™ ˜ ™B / /: ß

: œ T œ " Ÿ 4 Ÿ 84 / //ß3
=?:˜ ™X B for  

("target field conditions'')

3. In this case  which we can summarize in the usual ways.CÐ ÑB ß\- / distribution 
The simplest summary of the performance of the design is B-  ß

.Ð Ñ I CÐ ß Ñ œ : CÐ ß ÑB œ B \ B B-  e f- / 3 -

3œ"

8

3
=?:

/

Ð œ Z +< CÐ ß Ñ ß á ÑVar( )B B \- e f- /

• Goal Find B B-ß9:> œ Ð Ñargmin. -
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• Goal     Find B B-ß9:> ´ Ð Ñargmin. -

• Training Data B B B B B3 -ß3 /ß3 -ß3 /ß3
>< >< >< >< ><œ ß CÐ ß Ñ " Ÿ 3 Ÿ 8( ) and  for 

• Bad News  We don't know and won't computeÐ Ñ

. . . .8 -ß" -ß8 -ß8
>< >< ><min ´ Ð Ñß Ð Ñßá ß Ð Ñmin˜ ™B B B

because we would need  for for example,CÐ ß Ñ " Ÿ 4 Ÿ 8 ßB B-ß"
><

/ß4
=?:

/

.Ð Ñ œ : CÐ ß ÑB B B-ß" -ß"
>< ><

4œ"

8

3 4
=?:

/

/ß

• Good News Can predict  because we can predict each component  . .8 -ß3
><min ß Ð ÑßB

by

.s sÐ Ñ œ : CÐ ß ÑB B B-ß3 -ß3
>< ><

4œ"

8

4 4
=?:

/

/ß

and, in addition   has a prior distribution induced by the .Ð Ñ ] Ð ß ÑB B B-ß3
><

-ß3 4
=?:
/ß

QÐ Ñ œ : ] Ð ß ÑB B B-ß3 -ß3
>< ><

4œ"

8

3 4
=?:

/

/ß



Idealized Improvment Function  Define the improvement at (generic) control
variable site B-

MÐ Ñ œ
!ß Ð Ñ  

 Ð Ñß Ð Ñ 
B

B

B B
-

-

- -
œ . .

. . . .
8

8 8

min

min min

      œ !ß  Ð Ñmax˜ ™. .8
min B-

is the improvement in using the mean response at .B-

[all terms are :-(, BUT all terms  :-)]unknown can be predicted

:

 ) 



Idea of the Algorithm

1. Obtain a starting design, ie., set of initial inputs at which toB B B3 - 3 /ß3
>< >< ><œ Ð ß Ñ,

  calculate y(•)  e.g., Space-filling "Latin Hypercube Design")Ð

2. Evaluate • •  at the starting design and use the training data toCÐ ß Ñ Ð ß Ñ˜ ™B B>< ><
- 3 /ß3 3œ"

8
,

estimate any  unknown correlation parameters 0

3. Choose to maximize the posterior expected improvement, i.e.,B-ß8"
><

B B B B-ß8" 3 3
>< 8 >< ><

3œ"

8
´ I MÐ Ñl] ´ C ß CÐ Ñargmax ˜ ™˜ ™ˆ ‰- (1)

(the expected value of  under the stochastic process modelMÐ ÑB

%.  Choose  in the enviromental variable space to minimize Var( ( ))^B B/ß8" -ß8"
>< ><.

where ( ) is the predicted mean (over the environmental variables) at the.̂ B-ß8"
><

selected next control variable

&Þ Stop when the maximum expected improvement is "small,'' and set

B B
• •
-ß9:> -œ Ð Ñßargmin.

where is the EBLUP of  .  OW, augment the current design.. .
•
Ð Ñ Ð ÑB B
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The mean surface and the estimated  based on a maximintrue . .ÐB ß B Ñ ÐB ß B Ñ" # " #

LHD of size 40.  The minimizer is (0.2036, 0.2545) withglobal B-ß9:>

. .Ð Ñ œ $#$Þ!""(% Ð ÐB ß B Ñ !Þ#&%%&B-ß9:> " # has minimum at (1, ) andlocal 
(0.46287, ))!Þ#&%%&

 & 
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1. The initial fit is poor
2. Running the algorithm with the Matern correlation function, stopping occurs after
156 total (•) function evaluations with C œ Ð!Þ#"!*'ß !Þ#$$#%ÑB

•
-ß9:>

Ð œ $#'Þ'(!!&Ñand ( ). B
•
-ß9:>

$ÞThe global minimum of (•) is within 1.15% of the true global minimum.

 $ 
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6. Take Home Points

". An increasing number of phenomenon that could be previously be studied only by
physical experiments, can now be investigated using "computer experiments''

#. Modeling responses from computer experiment must account for the (highly)
correlated nature of the output  over the input space.  Predictive models are usedCÐ ÑB
to interpolate the computer response at untried locations

$.  The design of most computer experiments is naturally sequential; we evaluate
CÐ Ñ CÐ Ñ•  at one set of inputs , learn more about • , and select new inputs to achieveB
some objective

%. EGO algorithms balance sampling an output (surface) where the predictor
indicates the minimum is located, with improving our knowledge of the surface at
points having large prediction error.

&.  The EGO algorithms can be modified to accomodate optimization with noisy
output (simulation error/numerical or modeling bias) or from calibrated computer
and physical experiments

'Þ Pattern search and other algorithms have been used for the same purpose (Booker,
Dennis, Torozon, Trosset).  Their usefulness depends on the cost of • evaluations.CÐ Ñ
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