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Probably one of the most successful interfaces between operations research and computer
science has been the development of discrete-event simulation software. The recent

integration of optimization techniques into simulation practice, specifically into commer-
cial software, has become nearly ubiquitous, as most discrete-event simulation packages
now include some form of “optimization” routine. The main thesis of this article, how-
ever, is that there is a disconnect between research in simulation optimization—which has
addressed the stochastic nature of discrete-event simulation by concentrating on theoreti-
cal results of convergence and specialized algorithms that are mathematically elegant—and
the recent software developments, which implement very general algorithms adopted from
techniques in the deterministic optimization metaheuristic literature (e.g., genetic algo-
rithms, tabu search, artificial neural networks). A tutorial exposition that summarizes the
approaches found in the research literature is included, as well as a discussion contrast-
ing these approaches with the algorithms implemented in commercial software. The article
concludes with the author’s speculations on promising research areas and possible future
directions in practice.
(Simulation Optimization; Simulation Software; Stochastic Approximation; Metaheuristics)

1. Introduction

Until the end of the last millennium, optimization and
simulation were kept pretty much separate in prac-
tice, even though there was a large body of research
literature relevant to combining them. In the last
decade, however, “optimization” routines (the reason

for the quotes will be explained shortly) have promi-
nently worked their way into simulation packages.
That this is a fairly recent development is revealed
by the fact that all of the software routines for per-
forming simulation optimization listed in the cur-
rent edition of Law and Kelton (2000, p. 664, Table
12.11)—AutoStat, OptQuest, OPTIMIZ, SimRunner,
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Table 1 Optimization for Simulation: Commercial Software Packages

Optimization Package Vendor Primary Search
(Simulation Platform) (URL) Strategies

AutoStat AutoSimulations, Inc. evolutionary,
(AutoMod) (www.autosim.com) genetic algorithms

OptQuest Optimization Technologies, Inc. scatter search and tabu
(Arena, Crystal Ball, et al.) (www.opttek.com) search, neural networks

OPTIMIZ Visual Thinking International Ltd. neural networks
(SIMUL8) (www.simul8.com)

SimRunner PROMODEL Corp. evolutionary,
(ProModel) (www.promodel.com) genetic algorithms

Optimizer Lanner Group, Inc. simulated annealing,
(WITNESS) (www.lanner.com/corporate) tabu search

and WITNESS Optimizer (shown in Table 1)—were
not in existence at the time of the earlier printings.
The goal of these routines is to seek improved set-
tings of user-selected system parameters with respect
to the performance measure(s) of interest, but con-
trary to the use of mathematical programming soft-
ware packages, the user has no way of knowing if an
optimum has actually been reached (hence the quo-
tations around optimization at the beginning of this
paragraph). Like so many other developments in the
OR/CS interface, this has only become practical with
the immense leaps in computational power, which
have greatly benefited both optimization and simu-
lation. For optimization, this has led to the solution
of large-scale decision-making problems in the real
world, whereas for simulation, it has meant that entire
complex systems could be realistically modeled to the
point of providing useful operational and manage-
rial decision support. It used to be that for a realistic
system of interest (e.g., a manufacturing plant), esti-
mation by itself (perhaps with some basic sensitivity
analysis) all but expended the simulation “budget”
in terms of computing time (hours or days), so that
performing optimization was unthinkable, because it
would require at least another order of magnitude of
computational resources. Now these “optimization”
routines can be performed on PCs in roughly the
same amount of time as estimation required previ-
ously. This, however, may still mean days:

Optimization analyses take a large number of runs.
You can use AutoStat to make runs on multiple

machines on your network � � � You can take advan-
tage of other machines to make runs overnight or on
weekends (Bitron 2000).

Here are some important pieces of evidence indica-
tive of the new marriage between optimization and
simulation in practice.
• At present, nearly every commercial discrete-event
simulation software package contains a module that
performs some sort of “optimization” rather than just
pure statistical estimation. Contrast this with the sta-
tus in 1990, when none of the packages included such
an option.
• The most recent editions of two widely used
discrete-event simulation textbooks, Law and Kelton
(2000) (“used by more than 70,000 people world-
wide!” screams the cover of the March–May 2001
brochure announcement of Simulation Short Courses
given by first author) and Banks et al. (2000) have
added new sections (12.6 and 12.4, respectively) ded-
icated to the topic.
• The term “simulation optimization” has itself
become more widespread; for example, it is one of
the new entries in the updated second edition of the
Encyclopedia of Operations Research and Management Sci-
ence (Gass and Harris 2000).
The first question one might ask is, “Why can’t

one just pop the simulation box into one of the exist-
ing optimization packages?” That is basically the phi-
losophy behind the so-called sample path optimiza-
tion approach, to be described later. On the other
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hand, here is the counter view of one of the software
providers (www.opttek.com, November 2000):

The most commonly used optimization procedures—
linear programming, nonlinear programming and
(mixed) integer programming—require an explicit
mathematical formulation. Such a formulation is gen-
erally impossible for problems where simulation is
relevant, which are characteristically the types of
problems that arise in practical applications.

The term “simulation” will henceforth be short-
hand for stochastic discrete-event simulation, mean-
ing that the random nature of the system will be
implicitly understood and the underlying models are
discrete-event systems such as queueing networks.
In fact, it is the stochastic nature that is key in all
of the discussion, and one central thesis of this arti-
cle is that the currently implemented optimization
algorithms do not adequately address this charac-
teristic. The focus on discrete-event simulation has
two rationales: It is the primary domain of opera-
tions researchers in stochastic simulation (as opposed
to, for example, stochastic differential equations in
the fields of computational finance or stochastic con-
trol), and it is where optimization and simulation
have come together most prominently in commercial
software. The primary application areas are manufac-
turing, computer and communications networks, and
business processes.
The selection of the title of this article, “Optimiza-

tion for Simulation,” was made quite deliberately. The
two most recent comprehensive survey articles on
the subject, Fu (1994) and Andradóttir (1998), are
titled “Optimization via Simulation” and “Simulation
Optimization,” respectively, reflecting the two terms
most commonly used in the field (see also Swisher
et al. 2001). These two titles more accurately reflect
the state of the art in the research literature, whereas
the purpose of this article is to explore the linkages
(and lack thereof) with the practice of discrete-event
simulation. In that sense, it is not an equal partnership
but a subservient one, in which the optimization rou-
tine is an add-on to the underlying simulation engine,
as depicted in Figure 1. In contrast, one can view the
recent developments in stochastic programming as
the converse, simulation for optimization, as depicted
in Figure 2, where Monte Carlo simulation is the add-
on used to generate scenarios for math programming

Figure 1 Optimization for Simulation: Commercial Software

formulations from a relatively small underlying set of
possible realizations. One of the primary application
areas of this approach is financial engineering, e.g.,
portfolio management.
In the literature, there is a wide variety of terms

used in referring to the inputs and outputs of a
simulation optimization problem. Inputs are called
(controllable) parameter settings, values, variables,
(proposed) solutions, designs, configurations, or fac-
tors (in design of experiments terminology). Out-
puts are called performance measures, criteria, or
responses (in design of experiments terminology).
Some of the outputs are used to form an objec-
tive function, and there is a constraint set on the
inputs. Following deterministic optimization common

Figure 2 Simulation for Optimization: Stochastic Programming
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usage, we will use the terms “variables” and “objec-
tive function” in this article, with the latter comprised
of performance measures estimated from simulation
(consistent with discrete-event simulation common
usage). A particular setting of the variables will be
called either a “configuration” or a “design.”
The general setting of this article is to find a

configuration or design that minimizes the objective
function:

min
�∈�

J ���= E�L��
���
 (1)

where � ∈� represents the (vector of) input variables,
J ��� is the objective function, � represents a sam-
ple path (simulation replication), and L is the sam-
ple performance measure. We will use Ĵ to represent
an estimate for J ���, e.g., L��
�� would provide one
such estimator that is unbiased. The constraint set �
may be either explicitly given or implicitly defined.
For simplicity in exposition, we assume throughout
that the minimum exists and is finite, e.g., � is com-
pact or finite, as opposed to using “inf” and allowing
an infinite value. Throughout, J will be scalar and
an expectation; multiple performance measures can
be handled simply by assigning appropriate weights
and combining to form a single objective function,
though this may not always be desirable or practi-
cal (but very little has been done on multi-response
simulation optimization). Note that probabilities can
be handled as expectations of indicator functions, but
that quantiles (e.g., the median) and measures such as
“most likely to be the best” (e.g., mode) are excluded
by this form of performance measure. Most of the
commercial software packages also allow the prac-
tically useful extension of the setting in (1) to that
of including explicit inequality constraints on out-
put performance measures (as opposed to the indirect
way of incorporating them into the objective function
by way of a penalty function or Lagrange multipliers).
The categories of inputs are generally divided into

two types: qualitative and quantitative. The former
are characterized by not having a natural ordering
(either partial or full). The latter are then further
divided into two distinct domains of discrete and
continuous variables, analogous to deterministic opti-
mization, where the approaches to these types of
problems can also be quite different.

Real-World Example: Call Center Design
and Operations
Customer Relationship Management (CRM) is cur-
rently one of the hottest topics (and buzzwords)
in business management (ranked #1 in technology
trends for 2001 by M. Vizard, the Editor in Chief of
Info World, p. 59 of January 8, 2001 issue, “Top 10
technology trends for 2001 all ask one thing: Are you
experienced?”).

This isn’t just about providing adequate support
when a customer needs help, but rather about offer-
ing the customer an overall relationship with the com-
pany that’s valuable, compelling and unavailable any-
where else � � � (The Industry Standard, “You and Your
Customer,” Nov. 6, 2000, pp. 154–155.)

For example, IBM has an “eCare” program, with the
objective of delighting the customer, which translates
into personalizing information and support on the
Web. One of Oracle’s major advertising campaigns
in 2001 promises “global CRM in 90 days.” Ama-
zon.com has a Vice-President of CRM, though the
acronym has a little different twist on it: Customer-
Relationship Magic. The technology underlying CRM
involves data warehousing and data mining, but for
many businesses, the key CRM storefront is the call
center that handles customer orders (for products or
services), inquiries, requests, and complaints. “Cus-
tomer support, in fact, is one of the most common
ways businesses can put their CRM strategy to work”
(ibid.). Far from being just a staid telephone switch-
board, the state of the art integrates traditional call
operations with both automated response systems
(computer account access) and Internet (Web-based)
services and is often spread over multiple geographi-
cally separate sites. For this reason, the term “call cen-
ter” is rapidly being supplanted by the more dynamic
and all-encompassing appellation “contact center” to
reflect more accurately the evolving nature of the
diverse activities being handled.
Most of these centers now handle multiple sources

of jobs (“multichannel contact”), e.g., voice, e-mail,
fax, interactive Web, which require different levels of
operator (call agent) training, as well as different pri-
orities, as voice almost always preempts any of the
other contact types (except possibly interactive Web).
There are also different types of jobs according to the
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service required, e.g., an address change versus check-
ing account balance versus a more involved transac-
tion or request; hence, the proliferation of bewilder-
ing menu choices on the phone. Furthermore, because
of individual customer segmentation, there are differ-
ent classes of customers in terms of priority levels.
In particular, many call centers have become quite
sophisticated in their routing of incoming calls by dif-
ferentiating between preferred, ordinary, and “unde-
sirable” (those that actually cost more to serve than
their value added) customers. The easiest way to
implement this is to give special telephone numbers
to select customers. Most airline frequent flier pro-
grams do this, so on Continental Airlines, I am spe-
cial and pampered, but on US Airways I am ordinary.
Other call center systems request an account num-
ber and use this as part of their routing algorithm.
When I punch in my account number to Charles
Schwab’s Signature Service line, I receive an opera-
tor almost immediately. “Based on a customer’s code,
call centers route customers to different queues. Big
spenders are whisked to high-level problem solvers.
Others may never speak to a live person at all � � �”
(Business Week Cover Story, pp. 118–128, October 23,
2000) “Walker Digital, the research lab run by Price-
line founder Jay S. Walker, has patented a ‘value-
based queuing’ of phone calls that allows companies
to prioritize calls according to what each person will
pay. As Walker Digital CEO Vikas Kapoor argues, cus-
tomers can say: ‘I don’t want to wait in line—I’ll pay
to reduce my wait time’ ” (ibid.). What this means is
that call-routing algorithms (implemented as rules in
the automatic call distributor—ACD) are now a key
integral part of providing the right level of customer
service to the right customers at the right time.
Designing and operating such a call center

(the CTI—computer telephony integration—strategy)
entails many stochastic optimization problems that
require selection of optimal settings of certain vari-
ables, which may include quantitative (e.g., number
of operators at each skill level and for each particular
class of customer, number and types of telecommu-
nications devices) and qualitative (e.g., what routing
algorithm and type of queue discipline to use: FCFS,
priority to elite customers, or something else) dimen-
sions. The objective function will consist of metrics

associated with both customers and agents. For exam-
ple, there are cost components associated with service
level performance measures such as waiting times
(most commonly the mean or the probability of wait-
ing more than a certain amount of time, possibly
weighted by class type) and operational costs asso-
ciated with agent wages and network usage (trunk
utilization). Abandonment rates of waiting customers,
percentage of blocked calls (those customers that
receive a busy signal), and agent utilization are other
factors that are considered. Clearly, there is a trade-off
that must be made between customer service levels
and the cost of providing service. As in any optimiza-
tion problem, this could be expressed with a single
objective function, e.g., minimize costs subject to a
number of different constraints, such as pre-specified
customer service levels for each class of customer
(lower bound for preferred customers, perhaps upper
bound for undesirable ones?).

Toy Example: Single-Server Queue
The most studied OR model in the illustrious his-
tory of queueing theory still necessitates simulation
in many cases. Consider a first-come, first-served,
single-class, single-server queue with unlimited wait-
ing room, such that customer service times are drawn
independently from the same probability distribution
(single class of customers) and the controllable vari-
able is the speed of the server. Let � denote the mean
service time of the server (so 1/� corresponds to the
server speed). Then one well-studied optimization
problem uses the following objective function:

J ���= E�W����+ c/�
 (2)

where W is the steady-state time spent in the system
and c is the cost factor for the server speed. In other
words, a higher-skilled worker costs more. Since W is
increasing in �, the objective function clearly quanti-
fies the trade-off between customer service level and
cost of providing service. This could be viewed as the
simplest possible case of the call center design prob-
lem, where there is a single operator whose skill level
must be selected. Simulation of this system requires
specification of the arrival process and the service
time distribution. In addition to its honored place in
queueing theory, this model is often the first system
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used in textbooks to illustrate discrete-event simu-
lation (e.g., Law and Kelton 2000). For the simplest
M/M/1 queue in steady state, this problem is ana-
lytically tractable, and thus has served as an easy
test case for optimization procedures, especially those
based on stochastic approximation.

Another Academic Example: �s
 S� Inventory
Control System
This is another well-known OR model from inven-
tory theory, in which the two parameters to be opti-
mized, s and S, correspond to the re-order level
and order-up-to level, respectively. When the inven-
tory level falls below s, an order is placed for an
amount that would bring the current level back up
to S. Optimization is generally carried out by mini-
mizing a total discounted or average cost function—
consisting of ordering, holding, and backlogging or
lost sales components—or just ordering and hold-
ing costs but subject to a service level constraint.
In research papers on simulation optimization, this
example is nice, because it is the simplest multi-
dimensional problem (as opposed to the previous
scalar one), and being in two dimensions, it has a
nice graphical representation in search procedures
(see Section 4). Thus, it has been used as a test case
for nearly all the procedures in the research literature
discussed in Section 4, i.e., stochastic approximation,
sequential response surface methodology, retrospec-
tive optimization (an early incarnation of sample path
optimization), statistical ranking and selection, and
multiple comparisons.
To attack the generic problem posed by (1), the five

packages listed in the opening paragraph use meta-
heuristics from combinatorial optimization based on
evolution strategies such as genetic algorithms, tabu
search, and scatter search (see Glover et al. 1999),
with some adaptation of other techniques taken from
the deterministic optimization literature, e.g., neu-
ral networks and simulated annealing (even though
the latter is probabilistic in nature, it has been pri-
marily applied to deterministic problems). On the
other hand, the research literature in simulation opti-
mization (refer to Andradóttir 1998 or Fu 1994) is
dominated by continuous-variable stochastic approx-
imation methods and random search methods for

discrete-variable problems, which consist primarily
of search strategies iterating a single point, versus
the group or family of points adopted by the meta-
heuristics above. The continuous-variable algorithms
are predominantly based on local gradient search.
Thus, in terms of software implementation, the

available routines are based on approaches outside of
the simulation research literature. Indeed, other than
in the Winter Simulation Conference Proceedings, one
would be hard-pressed to find published examples
of metaheuristics represented in archival journals on
simulation. “Why is this the case?” you might ask.
There appear to be two major barriers: Either the algo-
rithms that are implemented are not provably conver-
gent, or the use of simulation is secondary. In the lat-
ter case, it seems more appropriate that the algorithm
be published in the Journal of Heuristics—with roots in
the combinatorial optimization community—than in
the ACM Transactions on Modeling and Computer Sim-
ulation, the most highly respected OR journal dedi-
cated to stochastic simulation, whose founding editor
is from a computer science department but whose edi-
torial board is dominated by OR researchers in the
simulation community.
“What will the remainder of this article try to

accomplish?” you might naturally ask at this point.
(Or, “Why should I read any further, since I already
have the main idea?”) It will attempt to do the fol-
lowing:
• Explain why optimization for simulation should
not merely consist of deterministic algorithms applied
to a black box that happens to be a simulation model.
• Provide a representative, but by no means exhaus-
tive, high-level description of the algorithms and the-
oretical convergence results in the simulation opti-
mization literature and of the relevant related results
from the stochastic optimization literature.
• Contrast with the routines that are found in
commercial discrete-event simulation software by
describing the general search strategies of two pack-
ages and delving into the specific user-specified
parameters and provided outputs for one of them.
• Touch upon research directions that are important
or promising, in the author’s humble opinion, and
speculate on the future of optimization for simulation,
both in theory and in practice.
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The remainder of this article is organized as fol-
lows. Section 2 expatiates further on those features
that make optimization for simulation more than sim-
ply a straightforward implementation of determinis-
tic algorithms. It includes a summary of challenges
common to both research and practice, along with
key issues that separate the two. A (very) brief tuto-
rial on simulation output analysis and probabilistic
convergence modes is also provided as background
or review material. Section 3 surveys the research
approaches for simulation optimization and provides
a flavor of the theoretical results in the literature.
Section 4 contrasts research with practice by describ-
ing two commercial software routines that imple-
ment optimization for simulation. Future directions
in research and in practice are then discussed in
Section 5. The article concludes with a brief section
on sources for probing further.

2. What Makes Simulation
Optimization Different?

As alluded to earlier, what makes simulation opti-
mization doubly difficult on top of the ordinary deter-
ministic optimization setting is its stochastic nature.
A nice summary of this key difficulty is provided by
Banks et al. (2000, p. 488):

Even when there is no uncertainty, optimization can
be very difficult if the number of design variables
is large, the problem contains a diverse collection
of design variable types, and little is known about
the structure of the performance function. Optimiza-
tion via simulation adds an additional complication
because the performance of a particular design cannot
be evaluated exactly, but instead must be estimated.
Because we have estimates, it may not be possible
to conclusively determine if one design is better than
another, frustrating optimization algorithms that try
to move in improving directions. In principle, one can
eliminate this complication by making so many repli-
cations, or such long runs, at each design point that
the performance estimate has essentially no variance.
In practice, this could mean that very few alternative
designs will be explored due to the time required to
simulate each one.

In the problem setting of (1), the usual goals of opti-
mization can be stated succinctly as follows:
(a) Finding argmin�∈� J ���

(or at least one element, if the argmin is a set, i.e., the
problem has multiple optima).

(b) Returning min�∈� J ���.
For example, think of the practical problem of find-
ing the quickest route to work each morning. Then
the corresponding questions to be answered are: (a)
Which roads should I take? (b) How long will it take?
In deterministic optimization, all the emphasis is on
(a), because (b) is trivial once (a) is accomplished, i.e.,
if �∗ ∈ argmin J ���, then min�∈� J ��� = J ��∗�. In other
words, one does not generally distinguish between
the two as being separate problems in the deter-
ministic setting. In a stochastic (and real-life) setting,
however, one must change (b) to the following: esti-
mating min�∈� J ���. In fact, sometimes it is only (a)
that is of ultimate (or primary) interest, and J is sim-
ply the means to the end. This is usually the case in
the going-to-work example, since, unless you are cut-
ting it very close to meet a tight scheduled appoint-
ment, you are probably more interested in finding the
quickest route than in precisely estimating the actual
total travel time. Furthermore, I “know” that in gen-
eral taking the beltway is much quicker than taking
all local roads, but I have only a rough estimate of
the time it takes for the portion of time spent on the
highway (10 to 15 minutes), and very little idea as to
how long a totally local route would take (at least an
hour?). Here are some other examples:
• Preventive Maintenance: Finding an optimal (or a
good) policy is most likely the goal, with the cost esti-
mates often only a rough gauge of various operational
aspects.
• Manufacturing Plant Design: Selection of the best
design is the primary goal, rather than the cost (or
profit) estimate.
• Derivatives Pricing: Options with early exercise
opportunities require the determination of an optimal
policy in order to find the price; however, in this case,
the situation is reversed, as it is the estimated price
that is paramount and not the policy itself.
The actual process of optimization can be divided

into two parts:
(I) Generating candidate solutions.
(II) Evaluating solutions.
In optimization for simulation, the perspective of

practice in terms of coming up with algorithms is to
concentrate on the first step, just as in the determin-
istic case, treating the simulation model essentially
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Figure 3 Optimization for Simulation: Practice Perspective

as just another function generator with some statis-
tical analysis, as shown in Figure 3. In optimization
for simulation, however, most of the computation is
expended in estimating J ��� for values of � in the
search, a reversal of the deterministic setting, where
the search is the primary computational burden. Thus,
the commercial software view shown in Figure 1,
where optimization is viewed as simply another sub-
routine add-on, also reflects the computational bal-
ance between the two functions. A major determinant
of the computational cost for a simulation optimiza-
tion algorithm is the number of simulation replica-
tions used to estimate J ��� for each �. For example,
there is no reason a priori to assume that the number
of replications should be the same for all values of �
nor the same for each iteration in the search process.
In sum, a key feature that is not a factor in deter-
ministic settings is the trade-off between the amount
of computational effort needed to estimate the per-
formance at a particular solution versus the effort
in finding improved solution points (or families). A
related (motivating?) point is that the focus should
therefore be on comparing relative performance instead
of estimating absolute performance, i.e., order is the
essential goal during the search process. In contrast,
when there is an absence of randomness, calculating
absolute performance is essentially indistinguishable
from comparing relative performance.
To summarize, the process in a stochastic setting

should be modified as follows (shown in Figure 4):
(I) Iterative but Integrated: Searching and Compar-

ing; finding �∗.

Figure 4 Optimization for Simulation: Future Needs

(II) Final: Estimating the optimal value of objective
function J ��∗�.
As noted earlier, step (II) may or may not be the ulti-
mate objective.
Because, in the deterministic setting, evaluating and

comparing are considered essentially the same step,
currently implemented simulation optimization rou-
tines do not really address (much less exploit) the
notion of ordinal comparisons. To reiterate this crucial
point:

It is generally easier to compare solutions and find
relative ordering among them than it is to estimate
them precisely.

This is the main basis of the so-called ordinal opti-
mization approach, where the goal is approximate
order, rather than precise values. As an aside, this
is also the philosophy behind the analytic hierarchy
process (AHP), where relative weights are considered
key.
Banks et al. (2000, pp. 488–489) break down the

approaches toward optimization via simulation into
four categories:
• guarantee asymptotic convergence to the optimum
(generally for continuous-valued parameters);
• guarantee optimality under deterministic counter-
part (i.e., if there were no statistical error or sam-
pling variability; generally based on mathematical
programming formulations);
• guarantee a prespecified probability of correct
selection (generally from a prespecified set of alterna-
tives);
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• robust heuristics (generally based on combinatorial
search algorithms that use an evolutionary approach,
e.g., genetic algorithms).
Going down the list, there is a transition from com-
plete confidence in optimality, albeit in an unrealiz-
able context, to workable solutions that apply in prac-
tical settings. This mirrors the tug of war between
research and practice that involves a dueling between
approaches that provide quick rough-and-ready solu-
tions with no performance guarantees (based on
heuristics, with no statistical analysis whatsoever)
versus the more rigorous mathematical approaches
dominating the academic literature that either guar-
antee convergence or probability of correct selection.
Here is an illustration of each of these using the toy

example, where the objective is to select the skill level
(speed) of the call center operator.
• The operator skill level is variable over a range
of values, which can be either continuous (e.g., for
stochastic approximation algorithms) or discrete (e.g.,
using random search). The algorithm will find an
optimum (single value) for sure (100% confidence) if
the algorithm is run “long enough.”
• Again, the operator skill level is variable over a
continuous range of values. The algorithm returns an
optimum (single value) under the case where each sim-
ulation (versus the algorithm itself, in the previous
case) is run “long enough.”
• Reduce the problem to a fixed (relatively small)
finite number of operator skill levels from which to
choose. The algorithm will select a skill level with
objective function value within � of the best at a
�1−�)100% confidence level, where the confidence
level is generally a lower bound.
• The operator skill level is variable over a range of
values, which could be discrete or continuous. The
routine will return the best found values from a fam-
ily and provide an estimate of improvement from the
beginning of the search.
Parallel results could be described for the inventory
example, corresponding to modeling demand and
inventory quantities as continuous valued (e.g., gal-
lons of oil), or discrete valued (e.g., number of books).

2.1. Research and Practice: Key Issues
It can be argued that both research and practice have
adapted approaches from deterministic optimization,

Table 2 Approaches from Deterministic Optimization

Approach Key Features

Gradient search Move locally in most promising direction,
according to gradient

Random search Move randomly to new point,
no information used in search

Simulated annealing Sometimes move in locally worse directions,
to avoid being trapped in local extrema

Genetic algorithms Population based, generates new members using
and scatter search (local) operations on attributes of

current members
Tabu search Use memory (search history) to avoid tabu moves
Neural networks (Nonlinear) function approximation
Math programming Powerful arsenal of rigorously tested software

as the summary in Table 2 can be used to demon-
strate. Gradient search, random search, and math pro-
gramming adaptations dominate the research litera-
ture, whereas software implementations incorporate
one or more of the other approaches. Key issues sep-
arating (or facing both) research and practice include
the following:
• stochastic comparisons;
• family of solutions versus a single point, and use
of memory;
• continuous versus discrete;
• convergence and statistical validity.
The first issue has already been discussed, so the rest
of the discussion in this section will touch on the
remaining issues.
As stated earlier, the optimization procedures

implemented in simulation software are all based on
metaheuristics and predominantly evolutionary algo-
rithms, which iterate on a family of solutions instead
of on a single point, and most incorporate some form
of memory. The stochastic algorithms, on the other
hand, have generally mimicked their deterministic
counterparts from nonlinear programming. Since they
are also search algorithms, there is also the issue of
using the current point versus using past solutions.
The use of memory is more obvious in the determin-
istic case: At a minimum, the best solution(s) obtained
up to that point should be recorded somewhere (albeit
not necessarily included in the current set of candi-
date solutions). In the stochastic case, it may not nec-
essarily be beneficial to keep track of such solutions,
especially if the performance estimate is very noisy.
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The use of long runs or many replications clearly
reduces the noise and brings the stochastic setting
closer to the deterministic domain. Random search
algorithms often count the number of visits to promis-
ing configurations.
In addition to the use of a family of points, the algo-

rithms implemented in software are primarily based
on discrete search strategies, and, as such, define
their own neighborhood structure, not assuming (or
exploiting), though possibly inheriting, order inherent
in the variable space, e.g., on the real line. Exploit-
ing such order is clearly used in continuous opti-
mization algorithms. The generality gained by the
metaheuristic approaches may come at the cost of
efficiency for problem settings with structure. For
example, discrete-event system models clearly exhibit
certain characteristics that may be amenable to more
efficient search such as algorithms based on gradient
information.
A useful notion defined in statistical ranking and

selection procedures is the concept of correct selection
and the computation, or bounding, of its probabil-
ity. Correct selection refers to choosing a configura-
tion of the input variables that optimizes the objective
function. Many iterative search algorithms have an
asymptotic probability of correct selection of 1. Rank-
ing and selection procedures introduce the concept of
an indifference zone, say �, which provides a measure
of closeness that the decision maker tolerates away
from absolute optimality. This is analogous to the good
enough sets defined in ordinal optimization. In this
case, correct selection corresponds to either choosing a
configuration with the optimum value of the objective
function or a configuration whose objective function
value is within � of the optimal value. The usual state-
ment of performance guarantees for these procedures
is to specify a lower bound on the probability of cor-
rect selection, in the form of a �1−��100% confidence
level.
We revisit the issue of convergence and statistical

validity in more detail now, in preparation for the
description of these procedures in the next section. In
words, the algorithms in the research literature pro-
vide the following:
• Stochastic Optimization Procedures (e.g., stochas-
tic approximation, random search, sample path

optimization): convergence to a true optimum (but
possibly only local) under some probabilistic metric.
• Ranking and Selection Procedures: selection of a
best solution (or set of best solutions) at some pre-
specified statistical level.
Typical examples of research results take the follow-
ing form:
• Stochastic Optimization Procedures:

�n −→ �∗ w.p. 1


which is also known as almost sure (a.s.) convergence.
Other common forms of convergence include con-
vergence in probability (measure) and convergence
in distribution (also known as weak convergence, a
term that confusingly enough does not correspond to
the weak law of large numbers, which instead is a
convergence-in-probability result). Defining these rig-
orously is beyond the scope of this article (refer to
Wolff 1989, Sec.1–16, for example). In the next section,
we review some of the modes via some well-known
examples.
• Ranking and Selection Procedures: Probability that
the selected � is within � of the best is at least �1−��.
In contrast, very little in the way of theoretical con-
vergence results exists for the metaheuristics (refer to
Table 2) in the deterministic framework; none that the
author is aware of in the stochastic environment.

2.2. A Brief Tutorial
This section reviews rudimentary material on prob-
abilistic convergence modes and simulation output
analysis at the minimum level required for reading
this article.

2.2.1. A Very Basic Primer on Simulation Output
Analysis. Simulationists can (and should) skip this
subsection, which diverges to speak to those with lit-
tle simulation background or those on the determin-
istic side who did not listen very carefully to their
simulation professor. The reader is referred to Law
and Kelton (2000) or Banks et al. (2000) for further
in-depth coverage.
The message is this basic tenet of statistical output

analysis:

Simulation estimates should be accompanied with
some indication of precision!
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The usual textbook instruction is to provide confi-
dence intervals, e.g., a 95% confidence interval for
mean response time is 97 seconds ± 5 seconds. A
less strict, implicit means of providing a rough indica-
tion of precision is the reporting of significant digits.
Under this convention, if the single number 97 sec-
onds is presented (e.g., to upper-level management,
who would just as soon not see the ± 5 seconds),
the presumption should be that the precision is some-
where on the order of 1 to 10 seconds. In other words,
do not report the number 97.395 seconds alone (97.395
seconds ± 5.321 seconds is acceptable, but not as pre-
ferred as either 97 ± 5 or 97 ± 5.3) unless the pre-
cision extends to the third decimal place, because it
is extremely misleading! Unfortunately, the software
makes reporting large number of decimal places too
easy for the user.
For estimating a single performance measure, a

good rough measure of precision is provided by the
standard error

s/
√
n


where s is the sample standard deviation and n is
the number of simulation replications. An approxi-
mate 95% confidence interval is constructed by tak-
ing two standard errors on both sides of the sam-
ple mean. Such an interval is not appropriate when
the estimated performance is heavily skewed (e.g., for
rare-event measures).
For comparing performances of various designs,

one uses pairwise comparisons. Individual measures
of precision on each pair can be found and combined
with the Bonferroni inequality to get an overall con-
fidence level lower bound, or a simultaneous confi-
dence level can be obtained that coordinates all of
the pairs.
Consider just two systems. The most easily applied

method to compare them is to use the paired-t con-
fidence interval to check the direction of the sign
(technically, checking the hypothesis of whether or
not the difference in the means is zero). If the confi-
dence interval contains zero, then, statistically speak-
ing, there is no difference. In fact, it is almost always
the case in practice that the analyst believes that there
is a difference, and it is the direction that is to be
inferred. In order to make this inference, the ana-
lyst desires a confidence interval that doesn’t contain

zero. To achieve this clearly depends on the following
factors:
• actual difference in the means;
• variance of each of the estimators;
• covariance between the estimators.
If an efficient direct estimator for the difference could
be found, that would be ideal. In practice, the analyst
takes the individual estimators and forms an estima-
tor for the difference by taking the difference between
the two in the obvious manner. Inducing positive cor-
relation will reduce the size of the confidence interval,
since

Var�X−Y � = VarX+VarY −2Cov�X
Y �

< VarX+VarY if Cov�X
Y � > 0�

This is the main idea behind the method of common
random numbers, but it is also the basis for other
schemes to effectively couple the individual underly-
ing stochastic processes.

2.2.2. Review of Convergence Modes. By way
of three well-known examples in classical statistics
and one less widely known result, we compare vari-
ous forms of convergence that are found in research
results on stochastic optimization. Let 	Xn denote the
sample mean over n i.i.d. samples �Xi� with com-
mon mean � and variance �2, with N��
�2� denot-
ing the normal distribution with mean � and variance
�2.
• Strong Law of Large Numbers (SLLN)

	Xn −→ � w.p. 1.

• Weak Law of Large Numbers (WLLN)

	Xn −→ � in probability�

• Central Limit Theorem (CLT)

	Xn −→ N��
�2/n� in distribution�

• Large Deviations Type of Result

P�	Xn 
∈ ��− �
�+ ���−→ e−nf ���


e.g., if Xi ∼ N��
�2�, then f �x�= �x/��2/2.
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All of these results make statements about the con-
vergence of the sample mean to the true mean for a
large enough number of samples. Although the CLT
has a weaker type of convergence than the two laws
of large numbers, it is a stronger result, because it
provides the actual asymptotic distribution, while still
guaranteeing convergence to the mean, since the vari-
ance �2/n goes to 0 as n goes to infinity. This variance
term in fact provides an estimate of the precision or
distance of the sample mean from the true mean for a
large number of samples. In other words, it provides
the well-known O�1/

√
n� convergence rate for Monte

Carlo simulation.
The last result makes a probability statement on the

deviation of the sample mean from the true mean. As
the number of samples gets larger, the probability of
a large deviation from the true mean vanishes expo-
nentially fast. Note that although this also provides a
convergence rate, it differs from the CLT result in that
the rate is with respect to a probability rather than for
estimation per se. In a very crude sense, one can view
this as refining the WLLN result with a convergence
rate, whereas the CLT result provides a convergence
rate for the SLLN version.
Picking the arg min can be associated with the last

result, whereas actually estimating the optimal value
has a convergence rate governed by the CLT result.
Hence, finding the optimum may result in exponen-
tial convergence, whereas estimating the correspond-
ing value is constrained by the standard canonical
inverse square root rate of Monte Carlo simulation
referred to above. Clearly, this distinction is absent in
deterministic optimization, but the currently imple-
mented optimization routines completely ignore this
concept!

3. Simulation Optimization
Research

The most relevant topics in the research literature
include the following:
• ranking and selection, multiple comparison proce-
dures, and ordinal optimization;
• stochastic approximation (gradient-based
approaches);
• (sequential) response surface methodology;

• random search;
• sample path optimization (also known as stochastic
counterpart).
This section includes a summary of the main ideas

and a brief survey of some of the research results.

3.1. Ranking and Selection
and Ordinal Optimization

We begin with relevant work that focuses on the
comparison theme rather than the search algorithms,
because this is a central issue in optimization for
simulation that practice has not fully addressed (or
exploited). Although usually listed separately from
simulation optimization in simulation textbooks or
handbook chapters (e.g., Law and Kelton 2000, Banks
et al. 2000, Banks 1998), ideas from the ranking and
selection (R&S) literature (taken here to include mul-
tiple comparison procedures), which uses statistical
analysis to determine ordering, have important impli-
cations for optimization. The primary feature differ-
entiating R&S procedures (see, for example, Golds-
man and Nelson 1998) from optimization procedures
is that the R&S procedures evaluate exhaustively all
members from a given (fixed and finite) set of alter-
natives, whereas optimization procedures attempt
to search efficiently through the given set (possibly
implicitly defined by constraints) to find improving
solutions, because exhaustive search is impractical or
impossible (e.g., if the set is unbounded or uncount-
able). As a result, R&S procedures focus on the com-
parison aspect, which is a statistical problem unique
to the stochastic setting. Clearly, statistics (and prob-
ability theory) must also come into play if any con-
vergence results are to be rigorously established for
the search algorithms. Thus, these procedures should
play a major role in optimization for simulation.
Two important concepts in the methodology have to

do with user specification of the following levels:
• an indifference zone (level of precision);
• a confidence level (probability of correct selection).
At a certain level, these are analogous to confidence
intervals in estimation, except that both have to be
specified here, whereas in estimation the analyst spec-
ifies either a precision or a confidence level, and
the other follows. To illustrate for the single-server
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queue example, an estimation goal might be to esti-
mate mean response time within a precision of plus
or minus 10 seconds, or with a 95% confidence level,
whereas the selection criterion might be to select an
operator that results in an average daily operating
cost within $10 of optimality at a 95% confidence
level.
The key idea behind the so-called ordinal optimiza-

tion approach (Ho et al. 1992, 2000) is that it is much
easier to estimate approximate relative order than pre-
cise (absolute) value. In addition, there is goal soften-
ing; instead of looking for the best, one settles for a
solution that is good enough, which would have to be
statistically defined. The former has a common goal
with multiple comparison procedures, while the lat-
ter is clearly similar in spirit to the indifference zone
approach of R&S procedures.

3.1.1. Exponential Convergence of Ordinal Com-
parisons. The term output analysis in stochastic sim-
ulation refers to the statistical analysis of simulation
output over a set of simulation replications (sam-
ples) or one long simulation, with the most basic
result being the O�1/

√
n� convergence rate of Monte

Carlo estimation. However, comparisons often exhibit
asymptotic convergence rates that are exponential.

Example: Two Configurations. Consider the sim-
ple “optimization” problem of determining which of
two configurations has the smallest mean of the out-
put performance measure, where only samples are
available to estimate the mean. For simplicity, the
performance measures are taken to be normally dis-
tributed (unbeknownst to the optimizer analyst):

� = ��a
 �b�
 L��a�∼ N�0
1/4�

L��b�∼ N�d
1/4�
 d > 0�

In this case, the optimal configuration is �a, since
J ��a� = E�L��a�� = 0 < d = E�L��b�� = J ��b�. With just
two configurations, the optimization problem can be
reduced to simply determining whether the differ-
ence of the means is positive or negative. To this end,
define the difference random variable:

X = L��b�−L��a��

Assuming that n independent pairs of samples are
taken from each configuration, let Xi denote the ith
such sample, following distribution N�d
1/2�. Let �
denote the indifference amount. Then one approach
would be to estimate each of the two configurations
independently until two standard errors for each esti-
mate is less than �. After that, the two means are
compared to decide which is smaller.
For illustrative purposes, consider a numerical

example where � = 0�1. Then it would take approxi-
mately 100 samples to achieve the desired precision
for each configuration, regardless of the value of d.
What about the probability of correct selection? We
have said that the complement of this probability
decreases to zero exponentially. However, the rate of
this decay depends on the value of d. For this sim-
ple example, these probabilities are easily calculated
using the standard normal cumulative distribution
values. Figure 5 illustrates the convergence rate of this
probability of correct selection for difference values
of d (0.01, 0.1, 0.2, 0.3, 1.0), with the 1/

√
n convergence

rate also included for comparison. Thus, to achieve
roughly comparable 95% probability of correct selec-
tion would require approximately 34 simulations for
d = 0�2, 15 simulations for d = 0�3, and only 2 simula-
tions for d= 1�0, significantly less than the 100 simula-
tions required in the naïve approach. Note that when
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Figure 5 Convergence Rates: Probability of Correct Selection Versus
Estimation
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comparing the estimation accuracy and the proba-
bilities using the graph, consider only the rates, not
actual values, as the values in the graph were chosen
so that they could be placed on the same graph with
the same scale. The graph shows that when d > �,
the advantage of the exponential convergence rate is
clear, but decreases when d≈ �. When d �, the expo-
nential decay parameter can be quite close to zero,
so that the convergence rate looks more linear than
exponential (e−kx ≈ 1− kx); however, in this domain
there is less concern if the wrong decision is made.
Intuitively, comparison is generally easier than esti-

mation. Think of deciding between two bags of gold
sitting before you. You are allowed to lift each of them
separately or together. Clearly, it is far easier to deter-
mine which is heavier than to determine an actual
weight. If the two bags are very close in weight, then
it doesn’t matter so much if you pick the wrong one
(unless you are extremely greedy!).

3.1.2. Variance Reduction Techniques Can Make
a Difference! In the simulation community, it is well
known that variance reduction techniques such as
common random numbers can substantially reduce
computational effort. This should be exploited in opti-
mization as well. Here is a dramatic illustration, using
the two configurations example again, but this time
with the underlying distributions exponentially dis-
tributed:

L��a�∼ exp��a�
 L��b�∼ exp��b�
 �a < �b


where exp��� denotes an exponential distribution
with mean �, so again the optimal (minimum-mean)
configuration is �a. This time, instead of indepen-
dently generated samples as before, assume that the
samples are generated in pairs using common ran-
dom numbers in the natural way:

L��a
�i�=−�a lnUi

L��b
�i�=−�b lnUi
 Ui ∼ U�0
1�


where U�0
1� denotes a random number uniformly
distributed on the interval [0, 1]. Then it is clear that
due to the monotonicity properties of the transforma-
tion, the probability of correct selection is 1, i.e.,

P�L��a
�i� < L��b
�i��= 1


so that coupling through common random numbers
has basically reduced the variance to zero as far as
the comparison goes!

3.2. Stochastic Approximation
The method of stochastic approximation (SA) dates
back over half a century. The algorithm attempts to
mimic the gradient search method in deterministic
optimization, but in a rigorous statistical manner tak-
ing into consideration the stochastic setting. The gen-
eral form of the algorithm takes the following itera-
tive form (sign would be changed for a maximization
problem):

�n+1 =+���n−an,̂J ��n��
 (3)

where +� denotes some projection back into the con-
straint set when the iteration leads to a point out-
side the set (e.g., the simplest projection would be to
return to the previous point), an is a step size mul-
tiplier, and ,̂ J is an estimate for the gradient of the
objective function with respect to the decision vari-
ables. In the case of the toy single-server queue exam-
ple, the iteration would proceed as follows:

�n+1 =+�

(
�n−an

[
Ŵ ′��n�− c/�2

])

 (4)

with the need to find an appropriate Ŵ ′.
For the �s
 S� inventory example, Figures 6 and

8 illustrate the typical progression of iterates for a
stochastic approximation and sequential response sur-
face methodology procedure (to be discussed in the

Figure 6 Illustration of a Stochastic Approximation Algorithm
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next section), respectively, where � = �s
 q� and q =
S− s is the second parameter optimized in place of S,
so that the constraint region is simply the first quad-
rant (to enforce the constraint S ≥ s). Note that the
two figures imply a continuous optimization prob-
lem, but in fact this problem is often posed in a dis-
crete setting (e.g., s and S are integral amounts), as
it appeared in the research literature in its original
stochastic dynamic programming formulation.
Because of its analogy to steepest descent gradi-

ent search, SA is geared towards continuous vari-
able problems, although there has been work recently
applying it to discrete variable problems (e.g., Gerenc-
sér 1999). Under appropriate conditions, one can
guarantee convergence to the actual minimum with
probability one, as the number of iterations goes to
infinity. Because of the estimation noise associated
with stochastic optimization, the step size must even-
tually decrease to zero in order to obtain convergence
w.p. 1 (i.e., an −→ 0), but it must not do so to rapidly
so as to converge prematurely to an incorrect point
(e.g.,

∑
n an =� is a typical condition imposed, satis-

fied by the harmonic series an = 1/n). In practice, the
performance of the SA algorithm is quite sensitive to
this sequence. Figure 7 illustrates this sensitivity for
the �s
 S� example, in the case with an = a/n, where
the convergence is highly dependent on the choice of
a. Taking the step size constant results at best in weak
convergence theoretically (i.e., convergence in distri-
bution, which means that the iterate oscillates or hov-
ers around the optimum), but in practice, a constant
step size often results in much quicker convergence
in the early stages of the algorithm over decreas-
ing the step size at each step. Robust SA uses the
same iterative scheme but returns the average of some
number of iterates (e.g., moving window or expo-
nentially weighted moving average) as the estimate
of the optimum configuration. The averaging serves
to reduce the noise in the estimation, leading to a
more robust procedure. Again, because it is a gradient
search method, SA generally finds local extrema, so
that enhancements are required for finding the global
optimum.
The effectiveness of stochastic approximation algo-

rithms is dramatically enhanced with the availability
of direct gradients, one motivating force behind the

Figure 7 Effect of Choice of Initial Step Size a (Parameter Updates
Every 50 Periods)

flurry of research in gradient estimation techniques in
the 1990s (see the books by Fu and Hu 1997, Glasser-
man 1991, Ho and Cao 1991, Rubinstein and Shapiro
1993, Pflug 1996). The best-known gradient estima-
tion techniques are perturbation analysis (PA) and the
likelihood ratio/score function (LR/SF) method. An
example of applying PA and SA to an option pric-
ing problem is given in Fu and Hu (1995). Infinitesi-
mal perturbation analysis (IPA) has been successfully
applied to a number of real-world supply chain man-
agement problems, using models and computational
methods reported in Kapuscinski and Tayur (1999).
If no direct gradient is available, naïve one-sided

finite difference (FD) estimation would require p+ 1
simulations of the performance measure (where p is
the dimension of the vector �) in order to obtain a
single gradient estimate, i.e., the ith component of the
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Table 3 Gradient Estimation Approaches for Stochastic Approximation

Number of
Approach Simulations Key Features Disadvantages

IPA 1 Highly efficient, easy to implement Limited applicability
Other PA Usually >1 Model-specific implementations Difficult to apply
LR/SF 1 Requires only model input distributions Possibly high variance
SD 2p Widely applicable, model-free Generally noisier
FD p+1 Widely applicable, model-free Generally noisier
SP 2 Widely applicable, model-free Generally noisier

gradient estimate based on estimates Ĵ of the objective
function would be given by

�,̂ J ����i =
Ĵ ��+ ciei�− Ĵ ���

ci



and two-sided symmetric difference (SD) estimation
would require 2p simulations:

�,̂ J ����i =
Ĵ ��+ ciei�− Ĵ ��− ciei�

2ci



where ei denotes the unit vector in the ith direction.
Choice of the difference parameters �ci� must bal-
ance between too much noise (small values) and too
much bias (large values). In either case, however, the
estimate requires O�p� simulation replications. The
method of simultaneous perturbations (SP) stochastic
approximation (SPSA) avoids this by perturbing in all
directions simultaneously, as follows:

�,̂ J ����i =
Ĵ ��+/�− Ĵ ��−/�

2/i



where / = �/1 � � �/p� represents a vector of i.i.d.
random perturbations satisfying certain conditions.
The simplest and most commonly used perturba-
tion distribution in practice is the symmetric (scaled)
Bernoulli distribution, e.g., ±ci w.p. 0.5. Spall (1992)
shows in fact that the asymptotic convergence rate
using this gradient estimate in a SA algorithm is the
same as the naïve method above. The difference in
simulations between the FD/SD estimators and the
SP estimators is that the numerator, which involves
the expensive simulation replications, varies in the
FD/SD estimates, whereas the numerator is constant
in the SP estimates, and it is the denominator involv-
ing the random perturbations that varies. Table 3 pro-
vides a brief summary of the main approaches in

estimating the gradient for stochastic approximation
algorithms, where IPA stands for infinitesimal pertur-
bation analysis. Other methods not listed in the table
include frequency domain experimentation and weak
derivatives (Pflug 1996).

3.3. Response Surface Methodology
The goal of response surface methodology (RSM)
is to obtain an approximate functional relationship
between the input variables and the output (response)
objective function. When this is done on the entire
(global) domain of interest, the result is often called a
metamodel (e.g., Barton 1998). This metamodel can be
obtained in various ways, two of the most common
being regression and neural networks. Once a meta-
model is obtained, in principle, appropriate deter-
ministic optimization procedures can be applied to
obtain an estimate of the optimum. However, in gen-
eral, optimization is usually not the primary pur-
pose for constructing a metamodel and, in practice,
when optimization is the focus, some form of sequen-
tial RSM is used (Kleijnen 1998). A more localized
response surface is obtained, which is then used to
determine a search strategy (e.g., move in an esti-
mated gradient direction). Again, regression and neu-
ral networks are the two most common approaches.
Sequential RSM using regression is one of the most
established forms of simulation optimization found in
the research literature, but it is not implemented in
any of the commercial packages. SIMUL8’s OPTIMIZ
proceeds using a form of sequential RSM using neural
networks (http://www.SIMUL8.com/optimiz1.htm):

OPTIMIZ uses SIMUL8’s ‘trials’ facility multiple
times to build an understanding of the simulation’s
‘response surface’. (The effect that the variables, in
combination, have on the outcome). It does this very

INFORMS Journal on Computing/Vol. 14, No. 3, Summer 2002 207



FU
Optimization for Simulation: Theory vs. Practice

Figure 8 Illustration of a Sequential Response Surface Methodology
Procedure

quickly because it does not run every possible com-
bination! It uses Neural Network technology to learn
the shape of the response surface from a limited set
of simulation runs. It then uses more runs to obtain
more accurate information as it approaches potential
optimal solutions.

Figure 8 illustrates the sequential RSM procedure
using regression for the (s
 S) inventory model. The �i
iterate is in the center of a set of simulated points cho-
sen by design of experiments methodology (i.e., facto-
rial design). In Phase I (the first iterates in the figure),
22 points in a square are simulated, and a linear
regression is performed to characterize the response
surface around the current iterate. A line search is car-
ried out in the direction of steepest descent to deter-
mine the next iterate. This process is repeated until
the linear fit is deemed inadequate, at which junc-
ture additional points are simulated, and in the single
Phase II (fifth iterate in the figure), quadratic regres-
sion is carried out to estimate the optimum from the
resulting fit.

3.4. Random Search Methods
The advantage of random search methods is their
generality and the existence of theoretical conver-
gence proofs. They have been primarily applied to
discrete optimization problems recently, although, in
principle, they could be applied to continuous opti-
mization problems, as well. A central part of the

algorithm is defining an appropriate neighborhood
structure, which must be connected in a certain pre-
cise mathematical sense. Random search algorithms
move iteratively from a current single design point to
another design point in the neighborhood of the cur-
rent point. Differences in algorithms manifest them-
selves in two main fashions: (a) how the next point
is chosen and (b) what the estimate is for the opti-
mal design. For (b), the choice is usually between
taking the current design point versus choosing the
one that has been visited the most often. The lat-
ter is the natural discrete analog to the robust SA
approach discussed earlier in the continuous variable
setting, where iterates are averaged. Averaging often
wouldn’t make sense in many discrete settings, where
there is no meaningful ordering on the input vari-
ables. Conversely, counting wouldn’t make sense in
the continuous variable setting, where the probability
of any particular value is usually zero.
Let N��� denote the neighborhood set of � ∈�. One

version of random search that gives the general flavor
is the following:
(0) Initialize:

Select initial configuration �̂∗;
Set n�̂∗ = 1 and n� = 0 ∀� 
= �̂∗.
(1) Iterate:

Select another �i ∈ N��̂∗� according to some pre-
specified probability distribution.
Perform simulations to obtain estimates Ĵ ��̂∗� and
Ĵ ��i�.
Increase counter for point with best estimate and
update current point: (1 denotes the indicator func-
tion)

n�̂∗ = n�̂∗ +1�Ĵ ��̂∗�≤ Ĵ ��i��0
n�i = n�i +1�Ĵ ��̂∗� > Ĵ ��i��0

If Ĵ ��̂∗� > Ĵ ��i�, then �̂∗ ← �i.

(3) Final Answer:
When stopping rule satisfied, return

�∗ = argmax
�∈�

n��

A simple version of this algorithm (Andradóttir 1996)
that is guaranteed to converge globally w.p. 1 requires
the feasible set � to be finite (though possibly large)

208 INFORMS Journal on Computing/Vol. 14, No. 3, Summer 2002



FU
Optimization for Simulation: Theory vs. Practice

and takes the neighborhood of a point � to be the rest
of the feasible set � \ ���, which is uniformly sam-
pled (i.e., each point has an equal probability of being
selected). However, even this simple algorithm may
face implementation difficulties, as it may not be so
easy to sample randomly from the neighborhood with
the appropriate distribution (see Banks et al. 2000,
p. 495).

3.5. Sample Path Optimization
Sample path optimization (SPO) is a method appli-
cable to (1) that attempts to exploit the power-
ful machinery of existing deterministic optimization
methods for continuous variable problems (e.g., see
Gürkan et al. 1999). The framework is as follows:
Think of �= ��1
�2
 � � � 
�n
 � � �� as the set of all pos-
sible sample paths for L��
�i�. Define the sample
mean over the first n sample paths:

	Ln���=
1
n
L��
�i��

If each of the L��
�i� are i.i.d. unbiased estimates of
J ���, then by the strong law of large numbers, we
have that with probability one,

	Ln���−→ J ����

SPO simply optimizes, for a sufficiently large n, the
deterministic function 	Ln, which approximates J ���.
In the simulation context, the method of common ran-
dom numbers is used to provide the same sample
paths for 	Ln��� over different values of �. Again, the
availability of derivatives greatly enhances the effec-
tiveness of the SPO approach, as many nonlinear opti-
mization packages require these. The chief advantage
of SPO is, as Robinson (1996) states, “we can bring
to bear the large and powerful array of determinis-
tic optimization methods that have been developed
in the last half-century. In particular, we can deal
with problems in which the parameters � might be
subject to complicated constraints, and therefore in
which gradient-step methods like stochastic approxi-
mation may have difficulty.” The stochastic counter-
part method (Rubinstein and Shapiro 1993) can be
viewed as a variant of SPO that explicitly invokes the
likelihood ratio method (and importance sampling) to
carry out the optimization.

4. Optimization for
Simulation Software

This section provides further descriptions (algorith-
mic details being proprietary) for two of the most
popular optimization routines currently available in
commercial simulation software (refer to Table 1). The
description of AutoStat is based on Bitron (2000). The
description of OptQuest is based on Glover et al.
(1999).
• AutoStat—This is a statistical analysis package
available with AutoMod (and its more specialized
version AutoSched), a simulation software environ-
ment provided by AutoSimulations, Inc., a company
that has perhaps the largest market share in the semi-
conductor manufacturing industry. The optimization
routine, which is just one part of the AutoStat suite
of statistical output analysis tools (other features
include design of experiments, warm-up determina-
tion, confidence intervals, and factor-response analy-
sis), incorporates an evolutionary strategies algorithm
(genetic algorithm variation) and handles multiple
objectives by requiring weights to form a fitness func-
tion. Design of experiments terminology is used in
the dialog boxes (i.e., factors and responses). The user
selects the input variables (factors) to optimize and
the performances measures (responses) of interest.
For each input variable, the user specifies a range
or set of values. For each performance measure, the
user specifies its relative importance (with respect to
other performance measures) and a minimization or
maximization goal. The user also specifies the num-
ber of simulation replications to use for each iteration
in the search algorithm. Further options include spec-
ifying the maximum number of total replications per
configuration, the number of parents in each genera-
tion, and the stopping criteria, which is of two forms:
termination after a maximum number of generations
or when a specified number of generations results
in less than a specified threshold level of percentage
improvement. The total number of children is set at
seven times the number of parents per generation, the
latter of which is also user specified. While the opti-
mization is in progress, the software displays a graph
of the objective function value for four measures as a
function of the generation number: overall best, best
in current generation, parents’ average, and children’s
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average. When complete, the top 30 configurations
are displayed, along with various summary statistics
from the simulation replications.
• OptQuest—This package is a stand-alone opti-
mization routine that can be bundled with a num-
ber of the commercial simulation languages, such as
the widely used discrete-event simulation environ-
ment Arena and the Monte Carlo spreadsheet add-in
Crystal Ball. The algorithm incorporates a combina-
tion of strategies based on scatter search and tabu
search, along with neural networks for screening out
candidates likely to be poor. Being a completely sep-
arate software package, the algorithm treats the sim-
ulation model essentially as a black box, where the
focus of the algorithm is on the search and not on
the statistics and efficiency of comparison (http://
www.opttek.com/optquest/oqpromo.html, Novem-
ber 2000):

The critical ‘missing component’ is to disclose which
decision scenarios are the ones that should be
investigated—and still more completely, to identify
good scenarios automatically by a search process
designed to find the best set of decisions.

Scatter search is very similar to genetic algorithms,
in that both are population-based procedures. How-
ever, Glover et al. (1999) claim that whereas naïve GA
approaches produce offspring through random com-
bination of components of the parents, scatter search
produces offspring more intelligently by incorporat-
ing history (i.e., past evaluations). In other words,
diversity is preserved, but natural selection is used in
reproduction prior to being evaluated. This is clearly
more important in the simulation setting, where esti-
mation costs are so much higher than search costs.
The makers of OptQuest claim that “it is possible
to include any set of conditions that can be repre-
sented by a mixed integer programming formulation”
(Glover et al. 1999, p. 259). The neural network is
basically a metamodel representation, which is used
as a screening device to discard points where the
objective function value is predicted to be poor by
the neural network model, without actually perform-
ing any additional simulation. It differs from factor
screening in that it screens out individual points, not
an entire dimension of the parameter vector. Since
the neural network is clearly a rough approximation,

both in approximating the objective function and in
the uncertainty associated with the simulation out-
puts, OptQuest incorporates a notion of a risk met-
ric, defined in terms of standard deviations. If the
neural network predicts an objective function value
for the candidate solution that is worse than the
best solution up to that point by an amount exceed-
ing the risk level, then the candidate solution is dis-
carded without performing any simulations. This type
of intelligent screening is certainly highly desirable.
However, its effectiveness was not fully tested in
the comparisons with the GA algorithm reported in
Glover et al. (1999), because deterministic problems
were used. Thus, the discarding is a function only of
the goodness of the neural network in approximat-
ing the objective function and not of any stochastic
behavior associated with simulation.
The focus on search is common among all the com-

mercial packages, again reflecting the optimization-
for-simulation practice view of Figure 3, when com-
putation time follows the proportions of Figure 1.

5. Conclusions and Predictions
The current commercial software is a good start, but
fails to exploit the research in simulation optimiza-
tion, from which there are many useful results that
have potential to dramatically improve the efficiency
of the procedures. Mainly, heuristics from combinato-
rial (discrete) optimization have been employed, and
the effectiveness of these implementations is based
primarily on the robustness of the resulting proce-
dures to the noise levels inherent in the stochastic
nature of the systems. Working with families of solu-
tions instead of a single point is a primary means
by which such robustness is achieved and, in that
sense, is closely related to the idea of a good-enough
set from ordinal optimization. However, other ideas
concerning the faster rate of convergence of ordinal
comparisons versus cardinal estimation have yet to be
incorporated, which could lead to much more efficient
use of computational resources. In other words, the
biggest problem with currently implemented meth-
ods is that though they may be intelligent in per-
forming the search procedures, they are somewhat
oblivious to the stochastic nature of the underly-
ing system. Thus, they completely lack any sense of
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how to allocate efficiently a simulation budget. Preci-
sion of the estimated output performance measure(s)
(and especially relative order, as opposed to abso-
lute value) should be used dynamically (as opposed
to the current pre-defined static approach), in con-
junction with the mean estimates themselves to guide
the search and simulation budget allocation simul-
taneously. Variance reduction techniques should be
fruitfully integrated into the simulation-optimization
interface, as part of the needs indicated in Figure 4.
Lastly, it is a little baffling that sequential RSM using
regression—very well established in the literature and
quite general and easy to implement—has not been
incorporated into any of the commercial packages.
On the other hand, much of existing research has

concentrated on relatively narrow areas or toy prob-
lems, the single-server queue being the most obvious
example. While this research does lead to insights,
interesting algorithms, and important theoretical con-
vergence results, the work lacks the jump to the next
step of practice. Of course, one could argue that this
is not the primary goal of research, but this leaves the
gap in the middle for the commercial developer as to
how to make the apparently nontrivial leap from a
single-server queue to a complicated call center. Fur-
thermore, the research results seem to suffer from two
extremes: 1) algorithms that work extremely well are
too specialized to be practical, or 2) algorithms that
apply very generally often converge too slowly in
practice. In addition, although the trend has changed
a bit in the last few years, historically there has been
a much higher concentration of research effort spent
on the continuous variable case, when many of the
problems that arise in the discrete-event simulation
context are dominated by discrete-valued variables.
Here is this author’s view on desirable features in a

good implementation of optimization for commercial
simulation software:
• Generality. The optimization routines must be able
to handle the wide range of problems that a user is
likely to encounter or be interested in applying. This
means, for example, that gradient-based algorithms
(whether SA or SPO) requiring an unbiased direct
gradient estimate have found difficulty in commercial
implementation, because they can be very problem

specific and hence not easily included in general pur-
pose simulation software. On the other hand, this
does not mean such approaches have no place in com-
mercial software either. An analogy in mathematical
programming is that of the transportation algorithm;
the software should be intelligent enough to be able to
check for special structure and exploit it when avail-
able. This of course is a non-trivial problem. In a
queueing system, e.g., a call center, this might be as
simple as being the special case when there is just
a single class of customers under FCFS and just one
skill level of operators available. It simply means that
the user should not need to make this decision, which
is part of the point of the next bullet. Furthermore,
optimization techniques such as SPSA (Spall 1992,
Fu and Hill 1997, Gerencsér 1999), which are not at
all model dependent and easy to implement (though
there is model tuning, analogous to that in neural net-
works), seem ripe for commercial adaptation.
• Transparency to user. With graphical user inter-
faces (GUIs) and pull-down menus, the mathematical
(without even mentioning statistical) sophistication of
users has seen a marked shift downwards. While this
has the clear benefit of allowing the power of simula-
tion to reach a much wider audience of users, it also
means that any complications associated with opti-
mization must be shielded from the interface.
• High dimensionality. It is not clear how well the
currently implemented algorithms would perform in
higher dimensions, in terms of computational effi-
ciency. Their lack of emphasis on the stochastic nature
of the underlying system would be accentuated in this
setting. More efficient algorithms that are geared to
higher dimensions such as SPSA are definitely worth
further investigation.
• Efficiency. Moore’s law and the resulting advances
in computational power being what they have been,
the fact remains that many real-world problems are
still combinatorial, so that providing a truly inte-
grated simulation optimization routine can lead to
more efficient use of computational resources, result-
ing in good solutions for larger problems.
Currently available software does a good job on

the first two items, and it is probably for those rea-
sons that they have enjoyed relative success. The last
two items, although important, do not hit the user as
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directly in the beginning. To better bridge theory and
practice, the author believes the following challenges
need to be addressed (again refer to Figure 4):
• providing some measure of goodness (other than
just improvement over the starting point, which most
packages provide) for the metaheuristics that domi-
nate the commercial field;
• developing practical and effective implementation
of algorithms with proven convergence properties
that dominate the research literature.
As stated already, an obvious linkage can come from
R&S procedures and the related ideas of ordinal opti-
mization, where the aim of the former is to provide
statistical guarantees of optimal selection and the lat-
ter aims to do this efficiently, albeit sometimes heuris-
tically. In other words, by treating the simulation
model in the way that the metaheuristic approaches
are generally applied, there is an immense waste of
simulation replications used to obtain precise esti-
mates at variable settings whose poor relative perfor-
mance becomes apparent with just a few replications.
The commercial package OptQuest attempts to com-
pensate for this by using a neural network metamodel
to screen out such candidates.
In some sense, ordinal optimization is an amal-

gamation of a number of disparate good ideas for
stochastic optimization. The notion of a good-enough
set has parallels with the family of solutions retained
in deterministic-based evolutionary algorithms such
as genetic algorithms. Concentrating on ordinal com-
parisons rather than cardinal estimation is certainly
related to the rigorous statistical procedures devel-
oped in the R&S literature. The optimal budget com-
puting allocation (OBCA) approach (Chen, Chen, and
Yucesan 2000, Chen et al. 2000) is one link between
these two, and would seem to be a candidate for com-
mercial development due to its relative ease of imple-
mentation.
Related to the philosophy of avoiding wasted sim-

ulation computations is the idea of factor screening
(factor analysis), another well-established domain in
design of experiments methodology. The main idea of
factor screening is to identify which input variables
have the largest effect on the output response (objec-
tive function). This can help to reduce dimensionality.
Another useful approach with roots in experimental

design, very relevant to response surface methodol-
ogy, is robust design (see Sanchez 2000).
Parallel computing is another avenue that has yet

to be fully exploited, although many of the meth-
ods, notably ordinal optimization and design of
experiments (with multiple comparisons), clearly lend
themselves to taking advantage of this paradigm.
Although theoretical asymptotic convergence

results are elegant in terms of research, a practical dif-
ficulty that arises in implementing search algorithms,
whether they are based on metaheuristics, stochastic
approximation, or random search, is deciding when
to stop, i.e., choosing a stopping rule. This is less of
an issue in deterministic optimization, e.g., gradient-
based algorithms can stop when the gradient is zero.
In the stochastic setting, zero gradient could be due to
noise, not truly indicative of having reached a (local)
extremum. Intuitively, the stopping-rule problem
would be addressed by defining some appropriate
measure that determines when further iteration seems
futile, but often in software it is handled by sim-
ply specifying the number of iterations or perhaps
the total number of simulation replications; in other
words specifying some sort of computer budget. How
to do this most efficiently is clearly important, and is
not well addressed in existing software, but clearly
it is closely related to work in optimal computing
budget allocation mentioned earlier.
On the research side, there is little in the way of

good algorithms to handle random constraints, i.e.,
those cases where the constraint set and not just the
objective function involves quantities that must be
estimated. As discussed earlier, the �s
 S� inventory
example is often formulated this way. Optimization
problems involving queueing systems (e.g., the call
center or a manufacturing system) are often of the
form of maximizing throughput (number of calls han-
dled, number of parts produced) subject to a con-
straint on the probability that a customer (part) will
have to wait more than a certain amount of time in
queue (or a lead time constraint for finished goods).
Both throughput and waiting time are performance
measures to be estimated from the simulation.
One item of note that came out of the panel dis-

cussion at the 2000 Winter Simulation Conference
(Fu et al. 2000) was the desire (or need?) to have
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a standard set of problems (testbed) on which to
compare various algorithms. As all readers of the
INFORMS Journal on Computing can empathize, this
is not unique to the simulation optimization com-
munity but common to all computational algorith-
mic developments in the interface between OR and
CS. The caution inherent in establishing such a
standardized testbed remains the same: to avoid
developing algorithms tuned to the particular set of
problems.
Space and scope limitations preclude discussion of

some newly developed techniques in combinatorial
optimization that may hold potential for application
to the stochastic simulation setting, but two fairly
recent approaches that have showed promise include
ant colony optimization (see Dorigo and Di Caro 1999;
Bonabeau et al. 1999; Corne et al. 1999) and nested
partitions (Shi and Olafsson 2000).

6. Probing Further
As mentioned earlier, the chapter by Andradóttir
(1998) in the Handbook of Simulation and the survey
article by Fu (1994) in the Annals of OR are good
places to begin to delve further in depth into the
simulation optimization research literature (see also
Swisher et al. 2001 for further updated references
and also the earlier article by Jacobson and Schruben
1989). The Winter Simulation Conference Proceedings
article by Fu et al. (2000) provides position statements
from a panel of simulation researchers’ and practition-
ers’ diverse set of perspectives.
Online resources includes the Winter Simula-

tion Conference (http://www.wintersim.org) and
the INFORMS College on Simulation (http://www.
informs-cs.org), which contains a host of use-
ful links, including all of the Winter Simulation
Conference Proceedings articles from 1997 onward
(http://www.informs-cs.org/wscpapers.html).
The most basic result is the O�1/

√
n� conver-

gence rate of estimation via Monte Carlo sim-
ulation. One way to improve upon this rate is
quasi-Monte Carlo simulation, an approach that
uses quasi-random numbers (see Niederreiter 1992,
Niederreiter and Spanier 2000) to generate the under-
lying randomness rather than pseudo-random num-
bers. For recent developments on this flourishing area

of research that has developed over the past decade
or so (though quasi-random numbers themselves
have been around longer), refer to the bi-annual
Conference on Monte Carlo and quasi-Monte Carlo
methods (http://www.mcqmc.org/). Exponential con-
vergence rate results stem from large deviations the-
ory; see Dembo and Zeitouni (1998), Shwartz and
Weiss (1998), Bucklew (1990), and Varadhan (1984) for
books on the general subject and see Dai (1996) and
Dai and Chen (1997) for specific application to the
simulation context.
Useful books on R&S and multiple comparison

procedures are Bechofer et al. (1995) and Hochberg
and Tamhane (1987). One recent effort to combine
R&S procedures with an efficient search procedure
is Scenario Seeker, developed by Justin Boesel (win-
ner of the 1999 Dantzig Dissertation Award for
his work) and Barry Nelson (Boesel 1999; Boesel,
Nelson, and Ishii 2001; Boesel, Nelson, and Kim
2001; see also Goldsman et al. 1999 and Nelson
et al. 2001). This routine, written for the AweSim!
simulation environment (Symix Advanced Planning
& Scheduling Division, formerly Pritsker Corpora-
tion, http://www.pritsker.com), also uses a heuris-
tic algorithm for the search, with efficient alloca-
tion of simulation replications incorporated into the
search phase. Statistical validity for the offered solu-
tion are provided using R&S procedures; in particu-
lar, initial screening via subset selection to reduce a
possibly large set of configurations to a more man-
ageable size, followed by a standard two-stage R&S
procedure to select the best. The software is not
available commercially and is owned by JGC Cor-
poration, a Japanese construction management and
consulting firm.
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