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� Introduction�

This survey focuses on recent developments in large scale unconstrained optimiza�
tion� I will not discuss advances in methods for small and medium scale problems
because fairly comprehensive reviews of this work are given in 	��
 and 	�
� I should
stress� however� that small scale optimization remains an active area of research� and
that advances in this �eld often translate into new algorithms for large problems�

The problem under consideration is

min f�x�� �����

where f is a smooth function of n variables� We assume that n is large� say n � ����
and we denote the gradient of f by g�

An important recent development has been the appearance of e�ective tools
for automatically computing derivatives and for detecting partially separable struc�
tures� These programs are already having a signi�cant impact in the practice of
optimization and in the design of algorithms� and their in�uence is certain to grow
with time� Automatic di�erentiation provides an excellent alternative for �nite dif�
ferences� which can be unreliable� and for hand�coded derivatives� which are error
prone and labor intensive� The automatic detection of partially separable structure
has only recently become available and its full impact is yet to be seen� It has the
potential of making automatic di�erentiation practical for many large problems� and
it may also popularize partially separable quasi�Newton methods�

This paper is organized around the three main classes of algorithms for uncon�
strained optimization� Newton� quasi�Newton and conjugate gradients� To set the
stage for the description and analysis of algorithms� we begin with a discussion of
some problem structures that arise in many important areas of application� We
devote much attention to this topic because understanding the characteristics of the
objective function is crucial in large scale optimization�

� Problem Structure�

A well�known type of structure is that of sparsity in the Hessian matrix r�f � Func�
tions with sparse Hessians occur often in practice� and algorithms that exploit it have
been developed since the ����s 	��
� 	�
� Sparse �nite di�erence techniques 	��
�	��

have played a crucial role in making these methods economical and practical�

But many problems do not possess a sparse Hessian� and it is useful to divide
these into two broad categories� problems that have some kind of structure� such as
partial separability� and problems that do not possess any useful structure� In this
section we will give a close look at partially separable problems because they are not
as well understood as they should� and because signi�cant advances in solving them
have been made in the last ten years� We will see that partial separability leads to
economical problem representation� e�cient automatic di�erentiation and e�ective
quasi�Newton updating� An interesting question is whether there are other types of
structures that are as amenable to optimization as partial separability�

��� Partial Separability

In many large problems the objective function can be written as a sum of much sim�
pler functions� such an objective function is called partially separable� All functions
with sparse Hessians can be shown to have this property� but so do many functions
whose Hessian is not sparse� Some other problems cannot be written as the sum of
simple functions� but still possess a structure similar to partial separability called
group partial separability 	��
� The goal of this section is to explain why this kind
of structure is important in optimization�
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The simplest form of partial separability arises when the objective function can
be written as

f�x� �
neX
i��

fi�x�� �����

where each of the element functions fi depends only on a few variables�
An example is the minimum surface problem which is described in many calculus

textbooks� We wish to �nd the surface of minimum area that interpolates a given
continuous function on the boundary of the unit square� By discretizing this problem
we obtain an objective function of the form ������ where the element functions are
de�ned as

fi�x� �
�

m�

�
� �

m�

�
	�xj � xj�m���

� � �xj�� � xj�m��


��
�

� �����

Thus each fi� which is formally a function of all the variables x�� ���� xn� depends only
on  variables� which are called the element variables� In ����� m is a constant that
determines the �neness of the discretization� the number of element functions ne
and the total number of variables n are both equal to m�� �The precise relationship
between the indices i and j in ����� is not important in the following discussion� it
su�ces to say that j is determined by i and m�� The gradient of fi with respect to
all the variables in the problem is

rfi�x� �
�

�m�
f��i �x�

�
����������������

�
���

xj � xj�m��

xj�� � xj�m
���

�xj�� � xj�m
�xj � xj�m��

���
�

�
����������������

� �����

We note that� of the four non�zero components� two are negatives of each other� The
Hessian of the element function fi has the sparsity pattern�

�����������

� � � �
� � � �

� � � �
� � � �

�
�����������
� ����

A close examination shows that some of the nonzero entries di�er only in sign� and
that only three di�erent magnitudes are represented� Moreover the  �  matrix
formed by the non�zero elements happens to be singular�

The fact that repeated information is contained in the gradient and Hessian
suggests that there is a compact representation that avoids these redundancies� The
key observation is that fi is invariant in the subspace

Ni � fw � Rn � wj � wj�m�� and wj�� � wj�mg� �����

which means that for any x and for any w � Ni we have that fi�x � w� � fi�x��
In other words� any move along a direction in Ni does not change the value of the
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function� and it is not useful to try to gather curvature information about fi along
Ni� Since dimension�Ni� � n� �� we seek a compact representation of fi involving
only two variables�

To accomplish this we de�ne the internal variables uj and uj�� by

uj � xj � xj�m�� uj�� � xj�� � xj�m� �����

and the internal function �i�

�i�uj � uj��� �
�

m�

�
� �

m�

�
�u�j � u�j���

� �
�

� �����

We have achieved our goal of �nding a minimal representation of fi since the gradient
of � has only two components and r�fi has only � distinct elements�

It is useful to introduce the �� n matrix Ui� which has zero elements except for

U��j � �� U��j�m�� � ��� U��j�� � �� U��j�m � ���

We can now write the objective function as

f�x� �

neX
i��

�i�Uix�� �����

The gradient and Hessian of f are given by

g�x� �

neX
i��

UT
i r�i�Uix� and r�f�x� �

neX
i��

UT
i r

��i�Uix�Ui� �����

which clearly exhibits the structure of the objective function� In x�� we describe
a quasi�Newton method that updates approximations to each of the Hessians r��i�
Since these are ��� matrices a good approximation can often be obtained after only
a few iterations� We will also see that this representation of the gradient suggests
e�cient automatic di�erentiation techniques�

We now generalize the minimum surface problem and give the following de�ni�
tion�

A function f is said to be partially separable if it is the sum of element
functions� f�x� �

Pne

i�� fi�x�� each of which has a nontrivial invariant
subspace� This means that f can also be written in the form ������ where
the matrices Ui have dimension ni � n� with ni � n�

In many practical problems the ni are very small �say � or �� and are independent
of the number of variables n which can be in the thousands or more� To take
advantage of partial separability we de�ne the internal variables �and thus Ui� so
that a change in any one of these variables causes a change in the element function
fi� It would be wasteful to de�ne an internal variable that lies in the subspace Ni�
since we know in advance that the derivatives of fi with respect to this variable will
be zero� moreover this would be harmful to the quasi�Newton method that exploits
partial separability described in x��� Thus the number of internal variables equals
the dimension of N�

i � or

n� dimension�Ni��

Sometimes the invariant subspace Ni is easy to �nd� as in the minimum surface
example� but this is not always the case� Software tools for automatically detecting
partially separable structures are currently under development 	��
�





����� Sparsity vs Partial Separability

The concept of partial separability is more general than the notion of sparsity� It is
shown in 	�
 that every twice continuously di�erentiable function f � Rn � R with
a sparse Hessian is partially separable� But the converse is not true�

Consider the element function 	��


fi�x� � �x� � ���� xn�
�� ������

whose gradient and Hessian are dense� Since the invariant subspace of ������ is the
set

Ni � fw � Rn j eTw � �g� ������

where e � ��� �� � � � � ��T � and since the dimension of Ni is n� �� we see that fi can
be considered as a function of only one variable� Thus we can write it in the form
������ where

U � 	�� ���� �
� and ��u� � u��

This is an example of a function with a dense Hessian� but a very large invariant
subspace and very simple structure�

A similar� but more realistic example� is a protein folding problem that has
received much attention from the optimization community 	��
� 	��
� The objective
is to minimize the energy of a con�guration of atoms� If the positions of the atoms
are expressed in Cartesian coordinates� then the element functions depend only on
the di�erences of the coordinates of pairs of atoms� pi � pj � and every row of Ui
contains only two nonzeros� Typical values for ni are �� � or �� This protein folding
problem is thus partially separable but one can show that its Hessian is completely
dense� The components of the Hessian that correspond to atoms that end up being
widely separated will be very small �and could be set to zero�� but the locations of
these small entries is not known beforehand�

����� Group Partial Separability

Partial separability is an important concept� but it is not quite as general as we
would like� Consider a nonlinear least squares problem of the form

f�x� �
lX

k��

�fk�x� � fk���x� � c��� ������

where the functions fj are partially separable and where c is a constant� The def�
inition of partial separability given above forces us to regard the whole k�th term
in the summation as the k�th element function� However there is clearly a lot of
structure inside that term � it contains two element functions� grouped together
and squared� We can extend the de�nition of partial separability slightly to make
better use of this type of structure�

We say that a function f � Rn � R is group partially separable if it can be written
in the form

f�x� �
lX

k��

�k�hk�x�� ������

where �k is twice continuously di�erentiable function on the range of hk���� and
where each hk is a partially separable function from Rn to R�

We can use the form of f to �nd compact representations of the derivatives� By
using the chain rule we have

r	�k�hk�x��
 � ��k�hk�x��rhk�x�� �����

r�	�k�hk�x��
 � ���k �hk�x��rhk�x�rhk�x�
T � ��k�hk�x��r

�hk�x�� ������
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We already know how to represent the derivatives of the partially separable func�
tion hk �that is� rhk and r�hk� in compact form� To get a compact representation
of the derivatives of �k�hk�x��� we simply have to include the two scalar quantities
��k and ���k � both evaluated at hk�x��

Group partial separability is a very general concept since it applies directly to
nonlinear least squares problems and to penalty and merit functions arising in con�
strained optimization� The LANCELOT package 	��
 is designed to fully exploit its
structure�

����� Automatic Di�erentiation of Partially Separable Functions

Automatic di�erentiation is based on the observation that any function f that can be
evaluated by a computer program is executed as a sequence of elementary operations
�such as additions� multiplications and trigonometric functions�� By systematically
applying the chain rule to the composition of these elementary functions� the gradient
rf can be computed to machine accuracy 	��
� There are two basic strategies for
applying the chain rule� the forward and reverse modes of di�erentiation�

In the forward mode one proceeds in the direction determined by the evaluation
of the function� as we evaluate f � we compute the derivatives of all the intermediate
quantities with respect to the variables x of the problem� In the reverse mode one
�rst evaluates the function� when this is completed we move backwards� computing
the derivates of f with respect to the intermediate quantities arising in the evaluation
of f � until we obtain the derivatives of f with respect to the problem variables x�

Various automatic di�erentiation codes have been developed �see 	�
 for refer�
ences�� and have proved to be e�ective in practice� I will now discuss two recent
proposals on how to take advantage of partial separability to make automatic dif�
ferentiation more e�cient�

The approach described in 	�
 concerns the computation of the gradient g� It
begins with the simple representation ������ and associates with it the vector function

F �x� �

	
B


f��x�
���

fne�x�

�
CA �

Since the Jacobian F ��x� is given by F ��x�T � �rf��x�� ����rfne�x�� we have from
����� that

g�x� � F ��x�T e� ������

where e � ��� �� ���� ��� Therefore the gradient of a partially separable function could
be computed via ������ if we had the associated Jacobian F ��x�� It would seem that
the latter is expensive to compute� but since each fi depends only on a few variables�
F ��x� is sparse� By analyzing the sparsity structure of F ��x� it is possible to �nd
a set of structurally orthogonal columns 	��
� 	��
� i�e� columns that do not have
a nonzero entry in the same row� This information is provided to the automatic
di�erentiation code� which is then able to compute F ��x� in a compressed form that
economizes storage and computation 	�
� The gradient g�x� is then computed by
means of �������

Another recent proposal 	��
 we wish to discuss concerns the computation of the
Hessian matrix� It is based on the fact that Hessian�vector products can easily be
computed by automatic di�erentiation� without the need to calculate Hessians 	��
�
To compute r�f�xk�d automatically is conceptually straightforward� We can sim�
ply apply backward automatic di�erentiation to compute the gradient of dTrf�x��
considering d constant�

The complete Hessian r�f�x� can therefore be obtained column by column by
applying automatic di�erentiation to compute the n products r�f�x�ei� But it
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is preferable to consider the representation ����� and compute the small internal
Hessians r��i explicitly� This is done� for each element function �i� by means of
a few products r��iej � The total Hessian is obtained via ������ which is a sum of
outer products 	��
�

An automatic procedure for detecting the partially separable decomposition �����
is also given in 	��
� It consists of analyzing the composition of elementary functions
forming f � and �nding the transformations Ui and the internal functions �i� This
procedure �nds one particular partially separable representation of f �the ��nest���
and it is too early to tell if it will be of wide applicability� If successful� it could
popularize partially separable optimization methods�

We conclude this section on partial separability by noting that sparsity plays a
major role in many existing codes for large scale optimization� Partial separability
is now being proposed as a structure of wider applicability that could supersede
sparsity� but as we have seen� the approach ������ based on the compressed Jacobian
matrices makes use of partial separability and sparsity� It is di�cult to predict what
the relative importance of these concepts will be ten years from now�

� Newton�s Method

This is the most powerful algorithm for solving large nonlinear optimization prob�
lems� It normally requires the fewest number of function evaluations� is very good at
handling ill�conditioning� and is capable of giving the most accurate answers� It may
not always require the least computing time � this depends on the characteristics of
the problem and the implementation of the Newton iteration � but it represents the
most reliable method for solving large problems�

As is well known� to be able to apply Newton�s method� the gradient g and
Hessian r�f must be available� The gradient could be computed analytically or
by automatic di�erentiation� and there are several options for providing the Hessian
matrix� it could be supplied in analytic form� could be approximated by sparse �nite
di�erences 	��
� 	��
� or could be computed by automatic di�erentiation techniques�
Future problem�solving environments will allow the user to choose from these alter�
natives�

The newest implementations of Newton�s method are simple and elegant� and
deal well with the case when the Hessian matrix is inde�nite� They construct a
quadratic model of the objective function and de�ne a trust region over which the
model is considered to be reliable� The model is approximately minimized over
the trust region by means of an ingenious adaptation of the conjugate gradient
�CG� algorithm� Careful attention is given to the issue of preconditioning which is
crucial for solving ill�conditioned problems� The routine SBMIN of the LANCELOT
package� and the code TRCG that will be part of the Minpack�� package follow this
approach� which we now describe in some detail�

Let us denote the Hessian matrix by B� i�e� r�f�xk� � Bk� At the iterate xk we
formulate the trust region subproblem

min ��p� � gTk p�
�

�
pTBkp �����

subject to kpk� � �k� �����

where the trust region radius �k is updated at every iteration� Obtaining the exact
solution of this subproblem is expensive when n is large � even when Bk is positive
de�nite� It is more e�cient to compute an approximate solution p that is relatively
inexpensive �at least in the early stages of the algorithm� and gives a fast rate of
convergence� This is done by �rst ignoring the trust region constraint and attempting
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to minimize the model ����� by means of the CG method� Thus we apply CG to the
symmetric linear system

Bkp � �gk� �����

starting with the initial guess p� � �� The key points are how to take into account
the trust region constraint and how to avoid failure of the CG iteration when Bk is
not positive de�nite� For this purpose three di�erent stopping steps are used� which
we discuss later on� Once the approximate solution p has been obtained� we test
whether f�xk � pk� is su�ciently less than f�xk�� If so� we de�ne the new iterate as
xk�pk� and update the trust region �k according to how well the model � estimates
the nonlinear objective function f � On the other hand� if su�cient reduction in f
is not obtained� we reduce the trust region radius �k and �nd a new approximate
solution to ������������

We now focus on the case when the Hessian matrix Bk is not positive de�nite�
The �rst stopping test stipulates that the CG iteration will be terminated as soon as
negative curvature is detected� When this occurs� the direction of negative curvature
is followed to the boundary of the trust region� and the resulting step is returned as
the approximate solution� The second test monitors the length of the approximate
solutions fpjg generated by the CG iteration and terminates when one of them
exceeds the trust region radius� A third test is included to end the CG iteration if
the linear system ����� has been solved to the required precision�

This strategy for computing the search direction of the trust region Newton
method is summarized in Algorithm I� The iterates generated by the CG method
are denoted by fpjg� whereas the conjugate directions computed by the CG iteration
are fdjg� The di�erences between this algorithm and standard conjugate gradient
are the two extra stopping conditions formulated as the �rst two IF statements
within the LOOP� When negative curvature is encountered or when pj�� violates
the trust region constraint� a �nal estimate p is found by intersecting the current
search direction with the the trust region boundary�

Algorithm I Approximate computation of the Newton step by CG�
Constant � � � is given
Start with p� � �� r� � gk� and d� � �r�
LOOP� starting with j � �

IF dTj Bkdj � �
THEN �nd � so that p � pj � �dj minimizes ��p�

and satis�es kpk� � �� and RETURN p
	j � rTj rj 
 d

T
j Bkdj

pj�� � pj � 	jdj
IF kpj��k� � �

THEN �nd � � � so that kpj � �djk� � ��
and RETURN p � pj � �dj

rj�� � rj � 	jBkdj
IF krj��k� 
 kr�k� � � THEN RETURN p � pj��

�j�� � rTj��rj�� 
 r
T
j rj

dj�� � rj�� � �j��dj
CONTINUE� after incrementing j

The third IF statement ensures that the CG iteration is terminated when the
residual is su�ciently small compared to the initial residual � which equals the
current gradient gk of the objective function� Therefore as the Newton algorithm
approaches the solution and gk converges to zero� the termination test becomes ever
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more stringent� ensuring that the rate of convergence is fast 	��
� Indeed� as the
iterates approach the solution� the Hessian Bk will become positive de�nite� and one
can show 	��
 that the standard strategies for updating the trust region radius 	��

ensure that the trust region constraint becomes inactive� Thus� asymptotically� this
method reduces to a pure truncated Newton method with unit steplengths�

Note that �rst estimate p� generated by the inner CG iteration is given by

p� � 	�d� � �	�gk�

where 	� is the steplength that minimizes the quadratic model � along the steepest
descent direction �gk at the current iterate xk� This is also called the Cauchy
step� and guarantees that the trust region algorithm is globally convergent 	��
�
Subsequent inner CG iterations reduce � and improve the quality of the search
direction� But no attempt is made to try ensure that the iterates converge only to
solution points where the Hessian is positive de�nite�

It is important that the �rst estimate in the inner CG iteration be p� � �� for in
this case one can show 	��
 that each estimate is longer than the previous one� To
be more precise� we have

� � kp�k� � � � � � kpjk� � kpj��k� � � � � � kpk� � ��

This property shows that it is acceptable to stop iterating as soon as the trust region
boundary is reached because all subsequent estimates will lie outside the trust region�

When the Hessian matrix B is positive de�nite� this approach is similar to the
dogleg method 	��
 because the estimates generated by the inner CG iteration sweep
out points that move on some interpolating path from the Cauchy step p� to the
Newton step pN � �B��k gk�

��� Preconditioning

An important question is how to precondition the CG iteration� i�e� how to �nd a
nonsingular matrix D such that the eigenvalues of D�TBkD

�� are clustered� The
LANCELOT package 	��
 has the excellent feature of providing a suite of built�
in preconditioners with which the user can experiment� The default is an ���band
modi�ed Cholesky factorization� but many other choices can easily be activated� The
choice of preconditioner has a marked e�ect on performance� but it is di�cult to
know in advance what the best choice is for a particular problem� This is a complex
issue� for example there is a trade�o� between the quality of the preconditioner and
the computational work involved�

In LANCELOT the preconditioned conjugate gradient method is applied to ������
the length of the estimates kpjk is monitored� and the CG iteration is terminated
if kpjk � �k� However� this is not totally consistent with the ideas embodied in
Algorithm I because when preconditioning is used the quantity that grows monoton�
ically is kDpjk and not kpjk� Therefore it is possible for LANCELOT to terminate
the inner CG iteration even though a subsequent iterate would fall inside the trust
region and give a lower value of the model ��

The routine TRCG from Minpack�� takes a di�erent approach� in that precon�
ditioning is seen as a scaling of the trust region� Let D be any nonsingular matrix
and consider the subproblem

min
p�Rn

��p� � gTk p�
�

�
pTBkp ����

subject to kDpk� � �k� �����

By making the change of variables  p � Dp and de�ning

 gk � D�T gk�  Bk � D�TBkD
��

�



we obtain a problem of the form ����������� to which Algorithm I can be applied
directly� the answer is then transformed back into the original variables p� The
length of k pk � kDpk is monitored� and this is the quantity that grows monotoni�
cally� Therefore� unlike the implementation in LANCELOT� once the CG iteration
generates an estimate that leaves the trust region� it will never return� It is not clear
how this di�erence in the handling of the trust region a�ects performance� and this
question deserves some investigation�

Minpack�� uses an incomplete �and possibly modi�ed� Cholesky factorization
as a preconditioner because computational experience in linear algebra has shown
that this type of preconditioner can be e�ective for a large class of matrices� The
incomplete Cholesky factorization of a positive de�nite matrix Bk �nds a lower
triangular factor L such that Bk � LLT � R� where L re�ects the sparsity of Bk�
The scaling factor used in ����� is set to D � L� Since in Newton�s method Bk

may not be positive de�nite� it may be necessary to modify it so that the Cholesky
factorization can be performed� A typical strategy for doing this is described below�
It begins by scaling the matrix B� since numerical experience indicates that this can
be bene�cial�

Incomplete and Modi�ed Cholesky Factorization�
The symmetric matrix B is given�

�� �Scale B�� Let T � diag�kBeik�� where ei is the i�th unit vector� De�ne

!B � T�
�
�BT�

�
� � and � � k !Bk�

�� �Compute a shift to attempt to ensure positive de�niteness�� If min�Bi�i� � ��
set 	� � �� otherwise set 	� � �
��

�� Loop starting with k � ��

	 Attempt to compute the incomplete Cholesky factorization 	�
 of !B �
	kI � If the factorization is completed successfully exit and return L�
otherwise set 	k�� � max��	k�

�
���� and continue loop�

We should note that scaling alters the incomplete Cholesky factorization� and that
several other choices for the scaling matrix T can be used�

Following are some results obtained by Bouaricha and Mor"e 	�
 on two problems
from the Minpack�� collection 	
� GL� is a problem arising in the modeling of
superconducting materials� and MSA is a minimum surface problem�

Table �� Performance of a Preconditioned Newton Method

Problem n iter feval time
GL� ���� � �� ����
GL� ������ � �� ���
GL� ����� � �� �����
MSA ���� � � ���
MSA ������ � � ���
MSA ����� �� � ����

These are very good results in that the number of iterations stays nearly constant as
the dimension of the problem increases� and computing time grows only a little faster
than linearly� The results also compare very favorably with those obtained with
the limited memory BFGS code described in x��� which has considerable di�culty
solving the problems as the dimension increases� I do not know� however� if this kind
of performance is typical of the Minpack�� code� and more computational experience
is necessary�
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��� Current Research and Open Questions

The Newton method in LANCELOT takes advantage of partial separability by com�
puting the Hessians of the internal functions �i de�ned in ������ This can give signif�
icant savings in storage in some problems� but the computational overhead required
by this structured representation of the function can sometimes be onerous� Simi�
larly� in the Minpack�� code the preconditioned CG iteration can sometimes be quite
expensive� Therefore� even though these Newton codes are highly successful� it is
interesting to ask if the information generated in the course of the step computation
can be used more thoroughly�

In the Iterated Subspace Minimization Method 	��
 a search direction is �rst com�
puted using Algorithm I� However� instead of accepting this step� one selects a few
of the estimates fpjg generated during the inner CG iteration� in order to de�ne
a subspace Sk over which the nonlinear objective function f is minimized further�
Since the subspace Sk is chosen to be of small dimension� this is a low�dimensional
nonlinear optimization problem that is solved by means of the BFGS method �using
second derivatives would require projections onto the subspace Sk which can be un�
necessarily costly�� The Iterated Subspace Minimization method therefore requires
several evaluations of the objective function to produce a new iterate� and one can
expect it to be most e�ective when the function is not too costly to evaluate� This
approach is based on the assumption that CG determines important directions over
which it is worth exploring the nonlinear objective function� and that the bene�t of
this exploration outweights the cost of additional function evaluations�

Numerical tests with the Iterated Subspace Minimization method show some
promise� but a clear improvement in performance over the standard Newton method
has not been observed� There is room� however� for further research� For exam�
ple� there are many possible choices for the subspace Sk� and this selection could
be crucial to the e�ciency of the method� One could also try to develop an auto�
matic mechanism that determines when the exploration of the subspace Sk is to be
performed�

There are several open questions concerning the implementation of Algorithm I�
The �rst is the use of the residual in the stopping test

krj��k � �kr�k� �����

that determines that the linear system ����� has been approximately solved� On ill�
conditioned problems� the residual can oscillate greatly during the course of the CG
iteration� and only drop sharply at the end� Some researchers �see e�g� 	�
� propose
stopping tests based on the reduction of the model �� and others use an angle test
	�
� but no systematic comparison of these alternatives has been undertaken in the
setting of nonlinear optimization�

Assuming that a residual�based stopping test is used� ����� may not be its best
implementation� It is known 	��
 that the test ����� may be too stringent when � is a
small and when the approximate solution p of ����� is large compared with r�� It may
be preferable to use krkk � ��kBkkkpk� kr�k�� The e�ects of rounding errors can
also be important� Since rk is not computed directly� but recurred� krkk can di�er
from its true value by several orders of magnitude� A point in favor of a residual�
based stopping test is that it allows us to easily control the rate of convergence of
the optimization algorithm 	��
�

Another open question concerning the implementation of Algorithm I is the use
of the conjugate gradient method� Since Bk can be inde�nite� the CG iteration can
become unstable 	��
� and it is not clear that the direction given by Algorithm I
is always of good quality� An alternative 	�
 is to use the Lanczos iteration and
continue past the point where negative curvature is �rst detected� It is also possible
to alter the CG iteration� after encountering negative curvature� so that it can
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continue exploring other subspaces 	�
� I do not know if signi�cant improvements
in performance can be realized with these proposals� but this question is important
and deserves careful investigation�

Perhaps more important than any of these issues is the choice of preconditioner�
The Hessian matrix Bk can change drastically during the course of the optimiza�
tion iteration� and to use the same preconditioning strategy throughout the run is
questionable� The idea of having a dynamic preconditioner is appealing but� to the
best of my knowledge� has not been studied in the context of large scale nonlinear
optimization�

��� Hessian Free Newton Method

This is a modi�cation of Newton�s method that allows us to solve problems where
the Hessian Bk 
 r�f�xk� is not available� It is based on the observation that
the conjugate gradient iteration in Algorithm I only needs the product of r�f�xk�
with certain displacement vectors dj � and does not require the Hessian matrix itself�
These products can be approximated by �nite di�erences�

r�f�xk�d �
g�xk � �d�� g�xk�

�
� �����

where � is a small di�erencing parameter� Since each iteration of the conjugate
gradient method performs one product r�f�xk�dj � this approach requires a new
evaluation of the gradient g of the objective function at every CG inner iteration�
A method that uses ����� is called a discrete Newton method and has received
considerable attention 	�
�	�
�	�
�	��
�

The �nite�di�erence ����� is unreliable and may deteriorate the performance of
the Hessian free Newton method� An attractive alternative is to compute the product
r�f�xk�d by automatic di�erentiation 	��
� as discussed in x������ This has the
important advantage of being accurate �in general� as accurate as the computation
of the function��

In general� however� computing the Hessian�vector product by automatic di�er�
entiation will be as expensive �or more� as �nite di�erences in terms of computing
time� Therefore the Hessian�free Newton method can be made more reliable by
automatic di�erentiation� but its overall cost remains high� Its e�ciency will be
highly dependent on the termination test used in the inner CG iteration� If only
one CG iteration is performed� the step computation is inexpensive but the method
reduces to steepest descent� whereas high accuracy in the CG iteration results in an
approximation to Newton�s method but a high computational cost 	�
� Thus the
proper termination of the inner CG iteration is even more delicate in this context
than in the case when the Hessian is available�

An important open question is how to develop general purpose preconditioners
for Hessian free Newton methods� In some applications it is useful to compute part
of the Hessian �or a modi�cation of it� and use it as a preconditioner� But in other
applications this is not practical or e�ective� and the design of simple preconditioners
that require no user intervention would greatly enhance the value of Hessian free
Newton methods�

� Quasi�Newton Methods

There have been various attempts to extend quasi�Newton updating to the large�
scale case� and two of them have proved to be very successful in di�erent contexts�
The �rst idea consists of exploiting the structure of partially separable functions
by updating approximations to the Hessians of the internal functions ������ This
gives rise to a powerful algorithm of wide applicability� and whose only drawback is
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the need to fully specify a partially separable representation of the function� The
second approach is that of limited memory updating in which only a few vectors are
kept to represent the quasi�Newton approximation to the Hessian� Limited memory
methods require minimal input from the user and are best suited for problems that
do not possess a structure that can be exploited economically� They are not as
robust and as rapidly convergent as partially separable quasi�Newton methods� but
are probably much more widely used�

An approach that has not yet proved to be successful is that of designing sparse
quasi�Newton updating formulae� But some new ideas that deserve attention have
recently been proposed�

��� Partially Separable Quasi�Newton Methods

Suppose that we know how to break a function f down into partially separable form
������ i�e� that we have identi�ed ne� the transformations Ui and �i� Rather than
computing the Hessians of the internal functions �i� we can store and update quasi�
Newton approximations Bi to each individual r��i� We then estimate the entire
Hessian r�f�x� �see ������ by

B �

neX
i��

UT
i BiUi� ����

The n�nmatrix B can then be used in Algorithm I� resulting in a partially separable
quasi�Newton method using trust regions�

As for any quasi�Newton method� the approximations Bi are updated by requir�
ing them to satisfy the following secant equation for each element�

Bis�i� � y�i�� ����

Here

s�i� � u��i� � u�i� ����

is the change in the internal variables corresponding to the i�th element function�
and

y�i� � r�i�u
�
�i���r��u�i�� ���

is the corresponding change in gradients� where u� indicates the most recent iterate
and u the previous one�

The success of this element�by�element updating technique can be understood
by returning to the minimum surface problem ������ In this case� the functions �i
depend only on two internal variables� so that each Hessian approximation is �� ��
After just a few iterations� we will have sampled enough directions s�i� to make Bi

an accurate approximation to r��i� Hence ���� will be a very good approximation
to r�f�x��

It is interesting to contrast this with a quasi�Newton method that ignores the
partially separable structure of the objective function� This method will attempt
to estimate the total average curvature �i�e� the sum of the individual curvatures�
by constructing an n � n matrix� When the number of variables is large� after k
iterations with k �� n� this quasi�Newton matrix will not resemble the true Hessian
well� and will not make very rapid progress towards the solution�

The partially separable quasi�Newton updating cannot always be performed by
means of the BFGS formula because there is no guarantee that the curvature con�
dition sT�i�y�i� � � will be satis�ed� this condition is needed to ensure that the BFGS

approximation is well de�ned 	��
� Even if a line search is used to guarantee that
the total step sk � xk���xk satis�es the curvature condition� this would not imply
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that the changes of the individual components u�i� would satisfy the it� In fact one
of the element Hessians r��i could be concave in a region around xk�

One way to overcome this obstacle is to use SR� 	��
 to update each of the
element Hessians� with simple precautions to ensure that it is always well�de�ned�
Or one could start with the BFGS update formula and� if at some stage the curvature
condition for a particular element is not satis�ed� then switch to the SR� formula
and use it until termination 	��
� This last strategy is used in LANCELOT� which
is designed to take full advantage of partial separability� Computational experience
on the CUTE 	�
 test problem collection suggests that the partially separable quasi�
Newton method implemented in LANCELOT is nearly as e�ective as Newton�s
method�

��� Limited Memory Methods

Various limited memory methods have been proposed� some combine conjugate gra�
dient and quasi�Newton steps� and others are very closely related to quasi�Newton
methods� The simplest implementation� and perhaps the most e�cient� is the lim�
ited memory BFGS method �L�BFGS� 	��
�	
�	��
� It is a line search method in
which the search direction has the form

dk � �Hkgk� ����

The inverse Hessian approximation Hk� which is not formed explicitly� is de�ned by
a small number of BFGS updates� In the standard BFGS method� Hk is updated
at every iteration by means of the formula

Hk�� � V T
k HkVk � �ksks

T
k � ����

where
�k � �
yTk sk� Vk � I � �kyks

T
k � ����

and
sk � xk�� � xk� yk � gk�� � gk�

The n�nmatricesHk are generally dense� so that storing and manipulating them
is impractical when the number of variables is large� To circumvent this problem�
the limited memory BFGS method does not form these matrices but only stores
a certain number� say m� of pairs fsk� ykg that de�ne them implicitly through the
BFGS update formula ���������� Two important features of the method� which we
now describe� are a rescaling �or resizing� strategy� and the continuous refreshing of
the curvature information�

Suppose that the current iterate is xk and that we have stored the m pairs

fsi� yig� i � k �m� ���� k � �� We �rst de�ne the basic matrix H
��	
k � �k��I where

�k�� �
sTk��yk��

yTk��yk��
� ����

We then �formally� updateH
��	
k m times using the BFGS formula ��������� and the

m pairs fsi� yig� i � k�m� ���� k� �� The product Hkgk is obtained by performing a
sequence of inner products involving gk and these m pairs fsk� ykg� After computing
the new iterate� we save the most recent correction pair fsk� ykg � unless the storage
is full� in which case we �rst delete the oldest pair fsk�m� yk�mg to make room for
the newest one� fsk� ykg�

This approach is suitable for large problems because it has been observed in
practice that small values of m� say m � 	�� ��
 often give satisfactory results 	
�
	��
� The numerical performance of the limited memory method L�BFGS is illus�
trated in Table �� where we compare it 	��
 with the Newton method provided by
the LANCELOT package on a set of test problems from the CUTE 	�
 collection�
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Table �� Unconstrained Problems

Problem n L�BFGS LANC#Newt
nfg time nfg time

CRAGGLVY ���� �� �� �� ��
FMINSURF ��� ��� �� ��� ���
DIXMAANI ���� ���� ��� � �
EIGENCLS �� ���� ��� �� ����

The total number of function and gradient evaluations is denoted by nfg� and time
denotes the total execution time on a Sparcstation��� The memory parameter for
L�BFGS was set to m � �� and LANCELOT was run with all its default settings�
The four problems typify situations we have observed in practice� In CRAGGLVY
Newton�s method required much fewer function evaluations� but the execution times
of the two methods were similar� this is a common occurrence� FMINSURF is
highly atypical in that L�BFGS required fewer function and gradient evaluations�
In the ill�conditioned problem DIXMAANI the advantage of the Newton method is
striking in both measures� and illustrates a case in which L�BFGS performs quite
poorly� Finally EIGENCLS represents a situation that is not uncommon� even
though LANCELOT requires much fewer function evaluations it takes longer to
solve the problem�

We can draw three conclusions from our computational experience with New�
ton and limited memory methods� First� it is clear that the quality of the limited
memory matrix is rather poor compared with the true Hessian� as is shown by the
wide gap in the number of iterations and function evaluations required for conver�
gence� The second observation is that the relative cost of the L�BFGS iteration is
so low that one cannot discount the possibility that it will require less computing
time than the Newton method� Finally� L�BFGS is not as reliable as a Newton or
partially separable quasi�Newton method� On problems with an unfavorable eigen�
value distribution L�BFGS may require a huge number of iterations 	�
� or may not
achieve good accuracy in the answer� These di�culties are sometimes overcome by
increasing m� say to �� or ��� but this is not always the case�

An attractive feature of L�BFGS is that it can easily be generalized to solve
bound constrained problems� But in order to obtain an e�cient implementation in
that case it is necessary to �nd new representations of limited memory matrices�
which we now discuss�

���� Compact Representations of Limited Memory Matrices

The limited memory techniques described so far only store the di�erence vectors si
and yi� and avoid storing any matrices� We now show that limited memory updating
can also be described using outer products of matrices� We begin by describing a
result on BFGS updating that is interesting in its own right�

Let us de�ne the n� k matrices Sk and Yk by

Sk � 	s�� � � � � sk��
 � Yk � 	y�� � � � � yk��
 � ����

It can be shown 	��
 that if H� is symmetric and positive de�nite� and if Hk is
obtained by updating H� k times using the BFGS formula ���� and the pairs
fsi� yig

k��
i�� � then

Hk � H� �
�
Sk H�Yk


�
� R�Tk �Dk � Y T

k H�Yk�R
��
k �R�Tk

�R��k �

�
�
�
� STk

Y T
k H�

�
� �
�����
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where Rk and Dk are k � k matrices given by

�Rk�i�j �

�
sTi��yj�� if i � j
� otherwise

� �����

and
Dk � diag

�
sT� y�� � � � � s

T
k��yk��


� �����

It is easy to describe a limited memory implementation based on this representa�
tion� We keep the m most recent di�erence pairs fsi� yig in the matrices Sk and Yk�

and H� stands for the basic matrix H
��	
k de�ned through ����� The di�erence pairs

are refreshed at every iteration by removing the oldest pair and adding a new one
to Sk and Yk� After this is done� the matrices Rk and Dk are updated to account
for these changes�

Note that the inner matrix in ����� is of size �m� �m� i�e� it is very small� so
that the total storage of this representation is essentially the same as storing only
the di�erence pairs fsi� yig� One can show that updating the limited memory matrix
and computing the search direction Hkgk using the compact representation �����
costs roughly the same as in the approach described earlier� so that there is no clear
bene�t from using the compact form in the unconstrained case�

There are� however� many advantages to this approach if we wish to use updating
formulae other than BFGS� or if we need to solve problems with bounds on the
variables� For example products of the form HkA� where A is a sparse matrix�
occur often in constrained optimization and can be performed e�ciently using ������
In particular� when using the range�space or dual approach 	��
 to solve linearly
constrained subproblems� we need to compute ATHkA� whose symmetry can be
exploited to give further savings in computation�

In constrained optimization� however� it is more common to work with an approx�
imation Bk to the Hessian matrix� rather than with an inverse approximation Hk�
One can derive compact representations for the limited memory Hessian approxima�
tion Bk that are similar to ������ These give rise to considerable savings compared
with the simple�minded approach of storing only the correction vectors arising in
BFGS updating� There are� in addition� compact representations for the symmetric
rank�one �SR�� updating formula� which is particularly appealing in the constrained
setting because it is not restricted by the positive de�niteness requirement�

The recently developed code L�BFGS�B 	��
� 	��
 uses a gradient projection ap�
proach together with compact limited memory BFGS matrices to solve the bound
constrained optimization problem

min f�x�

subject to l � x � u�

Table � illustrates the performance of L�BFGS�B on bound constrained problems
from the CUTE collection� Once more we use the Newton code of LANCELOT as
a benchmark 	��
�

Table �� Bound Constrained Problems

L�BFGS�B LANC#Newt
Problem n nbds nfg time nfg time

JNLBRNGA ������ ����� ��� �� �� ����
LINVERSE ��� ��� ��� �� �� ���
OBSTCLAE ����� ���� ��� ��� � ���
TORSION� ���� ������ ��� ��� � ���
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Here nbds denotes the number of active bounds at the solution� We �nd again
that the Newton code of LANCELOT requires much fewer function evaluations� but
in terms of computing time L�BFGS�B performs quite well� This may be due to the
fact that the compact representations allow us to implement the projected gradient
method with minimal computational cost� We should note� however� that L�BFGS�
B fails to solve a few of the bound constrained problems in the CUTE collection to
reasonable accuracy� and that the Newton method is more reliable in this respect�

���� Current Research and Open Questions

We have devoted much attention so far to the L�BFGS method� but this may not be
the most economical limited memory method� New algorithms designed to reduce
the amount of storage without compromising performance are proposed in 	��
� 	��
�
	��
� 	�
� see also 	�
� It is easy to see that if the BFGS method is started with
an initial matrix that is a multiple of the identity� then sk � spanfg�� ���� gkg� This
suggests that there is some redundancy in storing both si and yi in a limited memory
method� and in most of the recent proposals storage is in fact cut in half�

A variety of new limited memory methods have been proposed to realize these
savings� some of them are based on ingenious formulas for updating the informa�
tion containing the quasi�Newton update information� Even though the algorithm
proposed in 	��
 appears to give good performance compared with L�BFGS more
analysis and testing is necessary�

Another recently proposed idea 	��
 is to combine the properties of Newton and
limited memory in the Discrete Newton Method with Memory� This method attempts
to reduce the computational cost of the Hessian free Newton method by saving
information from the inner CG iteration and keeping it in the form of a limited
memory matrix� Once this information has been gathered� a sequence of limited
memory steps is performed until it is judged that a new Hessian free Newton step
is needed�

Thus the algorithm interleaves limited memory and Hessian free Newton steps�
but it does not simply alternate them� The key is to view the inner CG iteration in
Algorithm I from the perspective of quasi�Newton methods� and to realize that it
may probe the function f along directions of small curvature that would normally be
ignored by a limited memory method� this information could improve the quality of
the limited memory matrix� The Hessian free Newton step therefore serves the dual
purpose of giving good progress towards the solution and of gathering important
information for the subsequent limited memory steps�

Good results have been obtained with the Discrete Newton Method with Mem�
ory� when solving problems in a controlled setting 	��
� In these experiments the
eigenvalue distribution of the Hessian was known� and the inner CG iteration was
designed to take advantage of it� Extensive numerical tests have not yet been per�
formed� and it remains to be seen if these ideas � or variations of them � will prove
to be valuable in practice�

��� Sparse Quasi�Newton Updates

An interesting idea that had been explored 	��
 and abandoned in the late �����s has
recently been resurrected 	��
� 	��
� It consists of developing quasi�Newton updates
that mimic the sparsity pattern of the Hessian matrix r�f �

In the approach described in 	��
� the goal is to construct a symmetric matrix
Bk�� with the same sparsity pattern as r�f � and which attempts to satisfy the
secant conditions Bk��sj � yj � j � k � m � �� ���� k� as well as possible along m
past directions� The sparse quasi�Newton matrix is constructed using the following
variational approach� Let Sk and Yk denote the matrices containing the m most

��



recent di�erence pairs� as in ����� and let $ specify the sparsity pattern of the
Hessian matrix� The matrix Bk�� will be de�ned as the solution to

min
B

kBSk � Ykk
�
F

subject to B � BT � and Bi�j � � for all i� j � $�

where k � kF denotes the Frobenius norm� Thus the secant equation Bk��sj � yj �
may not be satis�ed even along the latest search direction sk�

This convex optimization problem always has a solution� but to compute one
is not easy� It is shown in 	��
 that the solution is unique if Sk satis�es a certain
linear independence assumption� In this case Bk�� can be computed by solving a
positive de�nite system � but Bk�� itself is not guaranteed to be positive de�nite�
The analysis� which is quite novel� also reveals the minimum number m of di�erence
pairs required to estimate a Hessian with a given sparsity pattern� Finding out this
minimum number� can be di�cult because it requires consideration of all possible
orderings of certain sparse matrices� Nevertheless some interesting cases are simple
to analyze� For example� it is shown that � di�erence pairs are su�cient to estimate
an arrowhead matrix�

A trust region method implementing these ideas is given in 	��
� Since the num�
ber of elements of the Hessian approximation Bk�� that can be estimated is lim�
ited by the number m of di�erence pairs in Sk and Yk� the algorithm begins by
approximating only the diagonal� after the second iteration the diagonal plus one
o��diagonal element per column is estimated� and so on� Once su�cient di�erence
pairs have been saved to approximate all the nonzero elements in Bk��� the oldest
pair is replaced by a new one� as in limited memory updating�

One of the drawbacks of this approach is that the system that needs to be
solved to obtain the new sparse quasi�Newton matrix Bk�� can be very large� its
dimension equals the number of nonzeros in the lower triangular part of the Hessian�
Preliminary numerical tests appear to indicate that this sparse quasi�Newton method
requires fewer iterations than the L�BFGS method� but the di�erence seems to be
too small to overcome the much larger expense of the iteration� It is not known if
this approach can be made into a competitive algorithm� If this were to be the case�
its main use could be in constrained optimization� where the sparse quasi�Newton
matrix would be part of a KKT system�

� Nonlinear Conjugate Gradient Methods

Conjugate gradient methods remain very popular due to their simplicity and low
storage requirements� They fall in the same category as limited memory and Hes�
sian free Newton methods� in that they require only gradient information �and no
information about the structure of the objective function�� and use no matrix stor�
age� Even though limited memory and Hessian free methods tend to be more pre�
dictable� robust and e�cient� nonliner CG methods require only a fraction of the
storage� Most of the recent work in nonlinear CG methods has focused on global
convergence properties and on the design of new line search strategies�

The search direction in all nonlinear conjugate gradient methods is given by

dk � �gk � �kdk��� �����

There are two well�known choices 	��
 for �k� the Fletcher�Reeves formula

�FRk �
kgkk�

kgk��k�
�
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and the more successful Polak�Ribi%ere formula

�PRk �
gTk �gk � gk���

kgk��k�
� �����

The new iterate is given by xk�� � xk � 	kdk� where the steplength 	k �usually�
satis�es the strong Wolfe conditions 	�


f�xk � 	kdk� � f�xk� � �	kg
T
k dk �����

jg�xk � 	kdk�
T dkj � ��g

T
k dk� ����

where � � � � � �
�
� �

A major drawback of nonlinear CG methods is that the search directions tend to
be poorly scaled� and the line search typically several function evaluations to obtain
an acceptable steplength 	k� This is in sharp contrast with quasi�Newton and limited
memory methods which accept the unit steplength most of the time� Nonlinear CG
methods would therefore be greatly improved if we could �nd a means of properly
scaling dk� Many studies have suggested search directions of the form

dk � �Hkgk � �kdk�� �����

whereHk is a simple symmetric and positive de�nite matrix� often satisfying a secant
equation 	�
� However� if Hk requires several vectors of storage� the economy of
the nonlinear CG iteration disappears� and its performance compared with limited
memory methods is unlikely to be as good� This is because the second term in �����
may prevent dk from being a descent direction unless the line search is relatively
accurate� In addition� the last term in ����� can introduce bad scaling in the search
direction� So far all attempts to derive an e�cient method of the form ����� have
been unsuccessful�

An interesting framework for studying nonlinear CG� as well as quasi�Newton and
Newton methods� is that of Successive A�ne Reduction 	��
� The idea is to make
curvature estimates of the Hessian matrix in a low dimensional subspace formed
by some of the most recent gradients and search directions� Quadratic termination
properties of these methods have been studied in some detail� but practical imple�
mentations have not yet been fully developed� and their e�ectiveness in the context
of large scale optimization remains to be demonstrated�

In an e�ort to improve nonlinear CG methods� some researchers have turned
to global convergence studies to gain new insights into their behavior� This work
is based on two important results concerning the Polak�Ribi%ere 	��
 and Fletcher�
Reeves methods 	�
� In both cases it is assumed that the starting point x� is such that
the level set L �� fx � f�x� � f�x��g is bounded� and that in some neighborhood
N of L the objective function f is continuously di�erentiable� and its gradient is
Lipschitz continuous� The nonlinear CG method is also assumed to include no
regular restarts�

It is shown in 	��
 that the Polak�Ribi%ere method may fail to approach a solu�
tion point� in the sense that the sequence fkgkkg is bounded away from zero� In
this analysis the line search always �nds the �rst stationary point of the univariate
function &�	� � f�xk�	kdk�� Recently� however� it has been shown 	��
 that these
di�culties can be overcome by using a new line search strategy� More speci�cally�
the Polak�Ribi%ere iteration using this line search satis�es

lim inf
k��

kgkk � �� �����

However numerical results appear to indicate that only a marginal improvement over
the standard implementation of the Polak�Ribi%ere method is obtained�
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A di�erent approach is motivated by the observation 	��
 that some undesirable
behavior of the Polak�Ribi%ere method occurs if the parameter �PRk becomes negative
at regular intervals� It is shown in 	��
 that if �k is de�ned as

�k � maxf�PRk � �g� �����

and if the line search satis�es a slight modi�cation of the strong Wolfe conditions
����������� then the global convergence result ����� can be established� This analysis
has been generalized in 	��
 by allowing a more �exible line search� Numerical
experiments again fail to show a signi�cant improvement in performance over the
standard Polak�Ribi%ere method�

The analysis for the Fletcher�Reeves method is simpler� It is shown in 	�
 that if
the line search satis�es the strong Wolfe conditions then the Fletcher�Reeves method
is globally convergent in the sense that ����� is satis�ed� The same result is proved
in 	�
 for all methods of the form ����� with a line search satisfying the strong Wolfe
conditions� and with any �k such that � � �k � �FRk � The analysis is taken one step
further in 	��
� where it is shown that global convergence is obtained for any method
with j�kj � �FRk � Moreover this result is tight in the following sense� there exists a
smooth function f � a starting point� and values of �k satisfying

j�kj � c�FRk �

for some c � �� such that the sequence of gradient norms fkgkkg is bounded away
from zero�

Even though most of these theoretical results are interesting� and some of the
proof techniques are innovative� these studies have not lead to signi�cant practical
advances in nonlinear CG methods� Their main contribution has been a better
understanding of the crucial role played by line searches�
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