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Abstract

We present an active-set method for minimizing an objective that is the sum of a
convex quadratic and `1 regularization term. Unlike two-phase methods that combine
a first-order active set identification step and a subspace phase consisting of a cycle of
conjugate gradient iterations, the method presented here has the flexibility of computing
one of three possible steps at each iteration: a relaxation step (that releases variables
from the active set), a subspace minimization step based on the conjugate gradient
iteration, and an active-set refinement step. The choice of step depends on the relative
magnitudes of the components of the minimum norm subgradient. The paper establishes
global rates of convergence, as well as work complexity estimates. Numerical results
illustrating the behavior of the methods on four test sets are presented.

1 Introduction
In this paper, we present an active-set method for the solution of the regularized quadratic
problem

min
x∈Rn

F (x) def= 1
2x

TAx− bTx+ τ‖x‖1, (1.1)

whereA is a symmetric positive semi-definite matrix and τ ≥ 0 is a regularization parameter.
The motivation for this work stems from the numerous applications in signal processing,
machine learning, and statistics that require the solution of problem (1.1); see e.g. [34, 21,
33] and the references therein.

Although non-differentiable, the quadratic-`1 problem (1.1) has a simple structure that
can be exploited effectively in the design of algorithms, and in their analysis. Our focus
in this paper is on methods that incorporate second-order information about the objective
function F (x) as an integral part of the iteration. A salient feature of our methods is the
flexibility of switching between two types of steps: a) first-order steps that improve the
active-set prediction; b) subspace steps that explore the current active set through an inner
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conjugate gradient iteration. A variant of our approach includes a third kind of step, the
so-called relaxation step, which releases some of the variables at zero. The choice between
these steps is controlled by the so-called gradient balance condition that compares the norms
of the free (non-zero) components of the minimum norm subgradient of F with those of the
components corresponding to the zero variables. This condition is motivated by the work of
Dostal and Schoeberl [13] on the solution of bound constrained problems, but in extending
the idea to the quadratic-`1 problem (1.1), we deviate from their approach in a significant
way.

We provide global rates of convergence for the main variant of the algorithm, as well as
work-complexity estimates that bound the total amount of computation needed to achieve
an ε-accurate solution. We also investigate ways of refining the main components of the
algorithm. Specifically, we introduce a line search in the identification phase, a modification
of the subspace phase that allows the conjugate gradient (CG) iteration to cross orthants
as long as a reduction in the objective F is obtained after every CG step, and a relaxation
step that releases active variables that are predicted to be non-zero. Our numerical tests
show that these algorithmic refinements yield substantial improvements in performance and
give rise to effective methods.

The quadratic-`1 problem (1.1) has received considerable attention in the literature,
and a variety of first and second order methods have been proposed for solving it. Most
prominent are variants of the iterative soft-thresholding algorithm, ISTA [9, 12, 36], and its
accelerated version [26, 3, 4], which have extensive theory and are often used in practice. The
TFOCS package [4] provides five first-order methods based on proximal gradient iterations
that enjoy optimal complexity bounds; i.e., they achieve ε accuracy in at most O(1/

√
ε)

iterations. One of these methods (N83) is tested in our numerical experiments. Other first-
order methods for problem (1.1) include LARS [14], coordinate descent [16], a fixed point
continuation method [19], and a gradient projection method [15].

Schmidt [31] proposes several scaled sub-gradient methods, which can be viewed as
extensions, to quadratic `1 problem (1.1), of a projected quasi-Newton method [2], an
active-set method [30], and a two-metric projection method [18] for bound constrained
optimization. He compares these methods with some first-order methods such as GSPR
[15] and SPARSA [36]. We include his best-performing method (PSSgb) in our numerical
tests.

Other second order methods have been proposed as well; they compute a step by mini-
mizing a local quadratic model of F . Some of these algorithms transform problem (1.1) into
a smooth bound constrained quadratic programming problem and apply an interior point
procedure [24] or a second order gradient projection algorithm [32, 15]. Methods that are
closer in spirit to our approach include FPC_AS [35], orthant-based Newton-CG methods
[2, 7, 29], and the semi-smooth Newton method in [25]. Our method differs from all these
approaches in the adaptive step-by-step nature of the algorithm, where a different kind of
step can be invoked at every iteration, depending on information based on the gradient bal-
ance condition. This gives the algorithm the flexibility to adapt itself to the characteristics
of the problem to be solved, as we discuss in our numerical tests.

The paper is organized in six sections. In section 2 we motivate our approach and
describe its most basic implementation. Section 3 provides a convergence analysis and a
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work complexity estimate of the algorithm presented in section 2. Practical algorithmic
variants are presented in section 4. Section 5 describes implementation details and presents
numerical results. The contributions of the paper are summarized in section 6.

2 The Algorithm
Before describing the algorithm, we introduce some notation. Let us define

f(x) def= 1
2x

TAx− bTx,

and denote its gradient by
g(x) def= ∇f(x) = Ax− b.

Therefore,
F (x) = f(x) + τ‖x‖1.

The components of the minimum norm subgradient of F at x, which we denote by v(x),
are given by

vi(x) =


gi(x) + τ sgn(xi) if xi 6= 0
0 if xi = 0 and |gi(x)| ≤ τ
gi(x)− τ sgn(gi(x)) if xi = 0 and |gi(x)| > τ

 , i = 1, . . . , n. (2.1)

We write v(x) as the sum
v(x) = ω(x) + φ(x), (2.2)

where ω(x) contains the components of v(x) corresponding to the zero variables, and φ(x)
the components corresponding to the non-zero variables. More precisely, for each i ∈
{1 · · ·n},

ωi(x) =


0 if xi 6= 0
0 if xi = 0 and |gi(x)| ≤ τ
gi(x)− τ sgn(gi(x)) if xi = 0 and |gi(x)| > τ

 , (2.3)

and

φi(x) =


gi(x) + τ sgn(xi) if xi 6= 0
0 if xi = 0 and |gi(x)| ≤ τ
0 if xi = 0 and |gi(x)| > τ

 . (2.4)

At a point x, a move along the direction −ω(x) releases some of the zero variables,
i.e. relaxes the active set. Following Dostal and Schoeberl [13], we use the magnitudes of
the vectors ω and φ to determine which type of step should be taken. The algorithm thus
monitors the gradient balance condition

‖ω(x)‖2 ≤ ‖φ(x)‖2, (2.5)

which governs the flow of the iteration and distinguishes it from both two-phase methods
[2, 7, 36] and semi-smooth Newton methods [25] for problem (1.1).
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The algorithm starts by computing a first order active-set identification step. This is
done using an iterative soft-thresholding (ISTA) step [12, 9], i.e.,

xk+1 = arg min
y

(y − xk)T g(xk) + 1
2ᾱ‖(y − x

k)‖22 + τ‖y‖1 (2.6)

= max{|xk − ᾱg(xk)| − ᾱτ, 0} sgn(xk − ᾱg(xk)),

where ᾱ is a given stepsize whose choice is discussed below.
Then a subspace minimization procedure is performed. It uses the conjugate gradient

(CG) method to reduce a model of the objective F (x) on the subspace

H = {x|xi = 0, for all i such that xcg
i = 0}, (2.7)

where xcg denotes the point at which the CG procedure was started (this point is provided
by the ISTA step).

To describe the CG iteration, we define a smooth function q to equal the objective F
on the current orthant defined by xcg, i.e.,

q(x;xcg) def= 1
2x

TAx+ (−b+ τ sgn(xcg))Tx, (2.8)

where we use the convention sgn(0) = 0 and the fact that

‖x‖1 = sgn(x)Tx.

Clearly, F (x) = q(x;xcg) for all x such that sgn(x) = sgn(xcg). The algorithm applies the
projected CG iteration [28, chap 16] to the problem

min
x

q(x;xcg) (2.9)

s.t. xi = 0, for all i such that xcg
i = 0. (2.10)

Let P (·) denote a projection onto the set H given in (2.7). An iteration of the projected
CG method is given by

xk+1 = xk + αcgd
k, with αcg = (rk)Tρk

(dk)TAdk ;

rk+1 = rk + αcgAd
k;

ρk+1 = P (rk+1);

dk+1 = −ρk+1 + (rk+1)Tρk+1

(rk)Tρk dk.

The gradient balance condition (2.5) is tested after every CG iteration, and if it is not
satisfied, the CG loop is terminated. This is a sign that subsantial improvements in the
objective value can be achieved by releasing some of the variables at zero. This loop is also
terminated if a CG iterate crosses orthants, as in this case we cannot guarantee that the
CG method continues to minimize F . Specifically, when sgn(xk+1) 6= sgn(xcg), we cut back
the step and redefine the last iterate of the CG procedure as

xk+1 = xk + αbd
k, αb = arg max

α>0
{α : sgn(xk + αdk) = sgn(xcg)},
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A variant of the algorithm that allows crossing orthants is discussed in section 4.
A precise description of the method for solving problem (1.1) is given in Algorithm 1.

Here and henceforth ‖ · ‖ stands for the `2 norm.

Algorithm 1
Require: A, b, τ , x0, and ᾱ

1: k = 0
2: loop
3: xk+1 = max{|xk − ᾱg(xk)| − ᾱτ, 0} sgn(xk − ᾱg(xk)) ISTA step
4: k = k + 1
5: rk = g(xk) + τ sgn(xk), ρk = P (rk),dk = −ρk xcg = xk

6: loop
7: if ‖ω(xk)‖ > ‖φ(xk)‖ then
8: break
9: end if

10: xk+1 = xk + (rk)T ρk

(dk)TAdk d
k CG step

11: rk+1 = rk + (rk)T ρk

(dk)TAdkAd
k

12: if sgn(xk+1) 6= sgn(xcg) then
13: αb = arg maxα{α : sgn(xk + αdk) = sgn(xcg)}
14: xk+1 = xk + αbd

k Cut-back
15: k = k + 1
16: break
17: end if
18: ρk+1 = P (rk+1)
19: dk+1 = −ρk+1 + (rk+1)T ρk+1

(rk)T ρk dk

20: k = k + 1
21: end loop
22: end loop

Alternative first order steps (that replace line 3) and CG stopping conditions (that
replace lines 12-17) are described in Section 4. A common choice for the stepsize ᾱ is
ᾱ = 1/L (where L is the largest eigenvalue of A) and is motivated by the convergence
analysis in Section 3.

Note that in Algorithm 1 the index k may be incremented multiple times during every
outer iteration loop. While it is possible to express the same algorithmic logic in a more
conventional way, with a single k increment in each outer iteration, our description empha-
sizes that every inner CG step and ISTA step require approximately the same amount of
computational effort, which is dominated by a matrix-vector product.
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3 Convergence Analysis
We establish global convergence for Algorithm 1 by showing that its constitutive steps,
ISTA and CG, provide sufficient decrease in the objective function. We also show a global
2-step Q-linear rate of convergence, and based on the fact that the number of cut CG steps
cannot exceed a half of the total number of steps, we also establish a complexity result.

In this section, we assume that A is nonsingular, and denote its largest and smallest
eigenvalues by L, λ, respectively. Thus, for any x ∈ Rn,

λ‖x‖2 ≤ xTAx ≤ L‖x‖2, (3.1)

where ‖ · ‖ stands for the `2 norm. We denote the minimizer of F by x∗.
We start by demonstrating a Q-linear decrease in the objective F for every ISTA step.

Lemma 3.1. The ISTA step,

xk+1 = arg min
y
f(xk) + (y − xk)T g(xk) + 1

2ᾱ‖(y − x
k)‖2 + τ‖y‖1, (3.2)

with 0 < ᾱ ≤ 1/L, satisfies

F (xk+1)− F (x∗) ≤ (1− λᾱ)(F (xk)− F (x∗)).

Proof. By forming an upper quadratic approximation of f centered at xk and evaluated at
xk+1, we have

F (xk+1) ≤ f(xk) + g(xk)T (xk+1 − xk) + 1
2ᾱ‖x

k+1 − xk‖2 + τ‖xk+1‖1.

By definition of xk+1, the objective function in (3.2) cannot take on a lower value for any
y ∈ Rn. Therefore, defining y = xk + λᾱd, for some d ∈ Rn, we have

F (xk+1) ≤ f(xk) + g(xk)T (λᾱd) + 1
2ᾱ‖λᾱd‖

2 + τ‖xk + λᾱd‖1

= F (xk + λᾱd)− 1
2(λᾱd)TA(λᾱd) + 1

2ᾱ‖λᾱd‖
2

≤ F (xk + λᾱd) + 1
2λ

2ᾱ(1− λᾱ)‖d‖2. (3.3)

Since F is a strongly convex function with parameter λ, it satisfies

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)− 1
2λt(1− t)‖x− y‖2, (3.4)

for any x, y ∈ Rn and t ∈ [0, 1]. Setting x← xk, y ← x∗, and t← (1− λᾱ) (which is valid
because λᾱ ∈ (0, 1]), inequality (3.4) yields

F (xk + λᾱ(x∗ − xk)) ≤ λᾱF (x∗) + (1− λᾱ)F (xk)− 1
2λ

2ᾱ(1− λᾱ)‖x∗ − xk‖2.

By setting d = x∗ − xk, and substituting this inequality in (3.3), we conclude that

F (xk+1)− F (x∗) ≤ (1− λᾱ)(F (xk)− F (x∗)).
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The next result shows that a conjugate gradient step also guarantees sufficient decrease
in the objective function, provided it is not cut-back, i.e., that the vector xk+1 computed
in step 10 of Algorithm 1 satisfies sgn(xk+1) = sgn(xcg), where xcg is the starting point of
the CG cycle.

Lemma 3.2. If Algorithm 1 takes a full conjugate gradient step from xk to xk+1, then

F (xk+1) ≤ F (xk)− 1
8L‖v(xk)‖2. (3.5)

Proof. Since a projected CG step is taken from an iterate xk only if sgn(xk) = sgn(xcg),
and since we assume xk+1 is given by a full CG step, it follows that xk+1 is the result of a
sequence of projected CG steps on problem (2.9), starting at xcg. It is well known that a
CG iterate xk+1 is a global minimizer of q(· ;xcg) in the subspace S = span{dk, dk−1, . . .},
i.e.,

q(xk+1) = min{q(xk + y) : y ∈ S}.
It is also known that P (∇q(xk;xcg)) ∈ S, see [28, Theorem 5.3], and it follows from (2.4)
that P (∇q(xk;xcg)) = φ(xk). Thus,

F (xk+1) = q(xk+1) ≤ q(xk − αφ(xk)),
for any α. Let us choose

α = φ(xk)Tφ(xk)
φ(xk)TAφ(xk) .

Then, recalling (2.8) and defining z = sgn(xcg), we have

F (xk+1) ≤ 1
2(xk − αφ(xk))TA(xk − αφ(xk)) + (−b+ τz)T (xk − αφ(xk))

= F (xk) + 1
2(αφ(xk))TA(αφ(xk))− (αφ(xk))TAxk + (−b+ τz)T (−αφ(xk))

= F (xk) + α

2 ‖φ(xk‖2 − α(φ(xk))T (Axk − b+ τz).

By (2.4), for i such that xki = 0 we have φi(xk) = 0, and for xki 6= 0 we have that φi(xk) =
(Axk − b+ τz)i. Therefore,

F (xk+1) = F (xk)− α

2 ‖φ(xk)‖2

≤ F (xk)− 1
2L‖φ(xk)‖2.

Since the step is only taken when condition (2.5) is true, we have that

‖v(xk)‖ ≤ 2‖φ(xk)‖.

Therefore, we have that the following bound holds after one CG iteration,

F (xk+1) ≤ F (xk)− 1
8L‖v(xk)‖2
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We can now establish a 2-step Q-linear convergence result by combining the properties
of the two steps in Algorithm 1.

Theorem 3.3. Suppose that the stepsize ᾱ in the ISTA step (2.6) satisfies 1
16L ≤ ᾱ ≤ 1

L .
Then, for the entire sequence {xk} generated by Algorithm 1 we have

F (xk+2)− F (x∗) ≤
(
1− λ

16L

)
(F (xk)− F (x∗)) (3.6)

and thus {xk} → x∗.

Proof. By Lemma 3.1 and the lower bound on ᾱ, we have that the ISTA step satisfies

F (xk+1)− F (x∗) ≤ (1− λ
16L)(F (xk)− F (x∗)).

By Lemma 3.2, we have that full CG steps provide the decrease

F (xk+1) ≤ F (xk)− 1
8L‖v(xk)‖2. (3.7)

By convexity of F we have that

F (xk)− F (x∗) ≤ −v(xk)T (x∗ − xk) ≤ ‖v(xk)‖‖x∗ − xk‖,

which combined with (3.7) gives

F (xk)− F (xk+1) ≥ 1
8L

(F (xk)− F (x∗))2

‖x∗ − xk‖2
.

Furthermore, since F is strongly convex, it satisfies

F (xk)− F (x∗) ≥ λ
2‖x

k − x∗‖2,

see [27, pp. 63-64]. Using this bound we conclude that

F (xk+1)− F (x∗) ≤ (1− λ
16L)(F (xk)− F (x∗)). (3.8)

Let us assume now that all CG steps are cut-back; i.e., that the worst case happens. After
every such shortened CG step, the algorithm falls back to an ISTA step. Therefore, the
Q-linear decrease (3.8) is guaranteed for every 2 matrix-vector products, yielding (3.6).

Since Algorithm 1 is a descent method, this implies the entire sequence satisfies F (xk)→
F (x∗) monotonically. Moreover, since F is strictly convex it follows that xk → x∗.

The most costly computations in Algorithm 1 are matrix-vector products; the rest of
the computations consist of vector operations. Therefore, when establishing bounds on the
total amount of computation required to obtain an ε-accurate solution, it is appropriate
to measure work in terms of matrix-vector products. Since there is a single matrix-vector
product in each of the two constitutive steps of Algorithm 1, a work complexity result can
be derived from Theorem 3.3.
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Corollary 3.4. The number of matrix-vector products required by Algorithm 1 to compute
an iterate x̂ such that

F (x̂)− F (x∗) ≤ ε (3.9)
is at most

log
[

ε

F (x0)− F (x∗)

]/
log

√
1− λ

16L . (3.10)

Proof. By (3.6), the condition (3.9), with x̂ = xk+2, will be satisfied by an integer k such
that (

1− λ
16L

) k
2 (F (x0)− F (x∗)) ≤ ε.

We obtain (3.10) by solving for k.

This result represents worst-case analysis, and is not indicative of the typical perfor-
mance of the algorithm in practice. In particular, the analysis of the conjugate gradient
step relies on the fact that it is no worse than a standard gradient step – a statement that
hides the power of the subspace procedure, which is evident in the result that follows. We
establish, under strict complementarity, that the algorithm identifies the optimal active
manifold and the optimal orthant in a finite number of iterations.

Since v(x∗) = 0, it follows from (2.1) that for all i such that x∗i = 0 we must have
|gi(x∗)| ≤ τ . We say that the solution x∗ satisfies strict complementarity if x∗i = 0 implies
that |gi(x∗)| < τ .

Theorem 3.5. If the solution x∗ of problem (1.1) satisfies strict complementarity, then for
all sufficiently large k, the iterates xk will lie in the same orthant and active manifold as
x∗. This implies that the algorithm identifies the optimal solution x∗ in a finite number of
iterations.

Proof. We start by defining the sets

Z∗ = {i : x∗i = 0}, N∗ = {i : x∗i < 0}, P ∗ = {i : x∗i > 0},

and the constants
δ1 = min

i∈N∗∪P ∗
|x∗i |
2 , δ2 = min

i∈Z∗

[
τ − |gi(x∗)|

2

]
.

Clearly δ1 > 0, and by the strict complementarity assumption we have that δ2 > 0.
Since, from Theorem 3.3 we have that {xk} → x∗, there exists an integer k0 such that

for any k ≥ k0 we have

xki < −δ1 ∀i ∈ N∗, xki > δ1 ∀i ∈ P ∗”

|xki | <
ᾱδ2
2 ∀i ∈ Z∗ (3.11)

|gi(xk)| < τ − δ2 ∀i ∈ Z∗. (3.12)

Thus, all variables that are positive at the solution will be positive for k > k0; and similarly
for all negative variables. For the rest of the variables, we consider the ISTA step,

xk+1 = max{|xk − ᾱg(xk)| − ᾱτ, 0} sgn(xk − ᾱg(xk)).
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Using (3.11) and (3.12), we have that for any k ≥ k0 and i ∈ Z∗,

|xki − ᾱgi(xk)| − ᾱτ ≤ |xki |+ |ᾱgi(xk)| − ᾱτ

≤ ᾱδ2
2 + ᾱ(τ − δ2)− ᾱτ

= − ᾱδ2
2 < 0.

Therefore, for all i ∈ Z∗ and all k ≥ k0, the ISTA step sets xk+1 = 0.
An ISTA step must be taken within n iterations of k0, because of the finite termination

property of the conjugate gradient algorithm. Therefore there exists a k1 such that for any
k ≥ k1, sgn(xk) = sgn(x∗), and by (3.12), ω(xk) = 0. These two facts imply that for k ≥ k1,
once the algorithm enters the CG iteration it will not leave, since the two break conditions
cannot be satisfied. Finite termination of CG implies the optimal solution x∗ will be found
in a finite number of iterations.

4 Algorithmic Variants
We now describe variants of the two phases that form Algorithm 1, namely a modified
first-order step, and a more tolerant CG phase that allows changes in orthants. We also
present an extension of Algorithm 1, that in addition to the modifications just mentioned,
includes an extra step (the so-called relaxation step). These algorithmic variants provide
significant gains in performance compared with Algorithm 1, as shown in section 5. We
now discuss each of these techniques in detail.

4.1 Relaxed CG Strategy and a Modified ISTA Step

It can be beneficial to allow the CG iteration to leave the current orthant, as long as the
objective F is reduced sufficiently after every CG step. Inspired by (3.5), we require that

F (xk+1) ≤ F (xk)− c‖v(xk)‖2, (4.1)

for some c ≥ 0.
The relaxed CG strategy is as follows. If xk+1 is the first CG iterate that leaves the

orthant, then we either accept it, if it produces the sufficient decrease (4.1) in F , or we
perform the cut-back (as before) to the boundary of the current orthant. On the other
hand, if both xk+1 and xk lie outside the current orthant and if sufficient decrease is not
obtained at xk+1, then the algorithm reverts to xk. This new termination test for the CG
iteration, which replaces lines 12-17 in Algorithm 1, is thus given as follows:

Relaxed CG Stop Test
1: if F (xk+1) > F (xk)− c‖v(xk)‖2 then
2: if sgn(xk) = sgn(xcg) then
3: αb = arg maxα{α : sgn(xk + αdk) = sgn(xcg)}
4: xk+1 = xk + αbd

k Cut-back
5: else
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6: xk+1 = xk

7: end if
8: k = k + 1
9: break

10: end if

The condition sgn(xk+1) 6= sgn(xcg) present in step 12 of Algorithm 1 is now redundant,
since by Lemma 3.2, condition (4.1) would not be triggered when sgn(xk+1) = sgn(xcg).
One of the main benefits of allowing the CG iteration to move more freely across an orthant
boundary is to prevent the generation of unnecessarily short subspace steps. In addition,
if the quadratic model (2.8) does not change much as orthants change (for example, when
τ is small), CG steps can be beneficial even if they are based on information from another
orthant. The convergence analysis of Theorem 3.3 still holds for this strategy, since the CG
phase still satisfies decrease of the form of Lemma 3.2.

Additional improvements in performance can be obtained by implementing a more so-
phisticated ISTA step. As suggested by Wright et al. [36], the Barzilai-Borwein stepsize
with a non-monotone linesearch is usually preferable to the constant stepsize scheme in
Algorithm 1. Line 3 in Algorithm 1 is replaced by the following procedure.

ISTA-BB-LS Step
At the beginning of the overall algorithm, we initialize M = 5, ξ = 0.005, and F i =
F (x0) for i ∈ {1 . . .M}. Let xk be current iterate and let xk−1 denote the previous iter-
ate.

1: αB = (xk−xk−1)T (xk−xk−1)
(xk−xk−1)TA(xk−xk−1)

2: repeat
3: xF = max{|xk − αBg(xk)| − αBτ, 0} sgn(xk − ᾱg(xk))
4: αB = αB

2
5: until F (xF ) ≤ maxi∈{1...M} F i − αBξ‖x− xF ‖2
6: F i+1 = F i for all i ∈ {1 . . .M − 1}
7: F 1 = F (xF )
8: xk+1 = xF

The constants are identical to the ones used in [36], and we do not attempt to fine-tune
them. Since A(xk − xk−1) = g(xk)− g(xk−1), and these two gradient values can be stored
prior to the computation of the ISTA step, no matrix-vector products are needed in step 1.

The two variants just described, when implemented together, perform well in our tests.
We call the resulting method Algorithm 2.

4.2 Refinement-Relaxation (RR) framework

Dostal and Schoeberl [13] proposed a method for the minimization of a convex quadratic
function subject to bounds on the variables that is composed of three types of steps: a
projection step, a relaxation step and a subspace step. An extension of this framework to
the regularized quadratic problem (1.1) suggests the method described below.

In contrast to the implementations of the ISTA step described above, which operate
in the full space of variables, the algorithm computes the ISTA step in a reduced space.
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Specifically, we set

xk+1 = arg min
y
f(xk) + (y − xk)T gs(xk) + 1

2ᾱs ‖(y − x
k)‖2 + τ‖y‖1, (4.2)

where gs(x) is defined by

gsi (x) def=
{
Ai(x)− bi if xi 6= 0
0 if xi = 0

}
, i = 1, . . . , n.

The stepsize, ᾱs is computed by the Barzilai-Borwein procedure described in the previous
section. The goal of this reduced subspace ISTA step is to refine the estimate of the active
set, without releasing any variables. That task is assigned to the relaxation step, which is
given by

xk+1 = xk − αrω(xk), αr = ω(xk)Tω(xk)
ω(xk)TAω(xk) . (4.3)

A move along the direction −ω(xk) cannot result in a change of orthants, and hence it is
safe to define the stepsize αr as the minimizer of the objective function F (x) along the
direction −ω(xk). The third type of step is a subspace CG step, which is performed as in
Algorithm 1 and Algorithm 2.

Due to the form of the reduced ISTA step, it is necessary to modify the gradient balance
condition (2.5), as follows,

‖ω(xk)‖2 ≤ −φ(xk)T φ̃(xk; α̂), (4.4)

where φ̃(x;α) is a truncated version of φ(xk). φ̃(x;α) depends on an ISTA step. Precisely,

φ̃(x;α) def=
arg miny(y − x)T g(x) + 1

2α‖(y − x)‖2 + τ‖y‖1 − x
α

= max{|x− αg(x)| − ατ, 0} sgn(x− αg(x))− x
α

The reason for this modification is similar to that given in [13, p.28]: if the condition is
satisfied, the reduced ISTA step makes sufficient progress in the algorithm. Small α̂ makes
the condition identical to (2.5). A common choice for α̂ is 1

L , but the algorithm is rather
insensitive to the choice of α̂ as indicated in Appendix B. There is much freedom in choosing
this parameter as its used only in testing the gradient balance condition (in Steps 3, 14 and
21 of Algorithm 3), and not in the computation of the steps of the algorithm.

The algorithm proceeds as follows. If the modified gradient balance condition (4.4) is
satisfied, the reduced ISTA step (4.2) is taken. Then, the gradient balance condition (4.4)
is checked again, and if it is violated, it is an indication that releasing some of the active
variables may be beneficial, and the relaxation step (4.3) is computed. Finally, the CG loop
is commenced. A detailed description of this algorithm is given as Algorithm 3.
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Algorithm 3
Require: A, b,τ , x0, α̂,c

1: k = 0, M = 5, ξ = 0.005 F i = F (x0) for all i ∈ {1 . . .M}
2: loop
3: if ‖ω(xk)‖2 ≤ −φ(xk)T φ̃(xk; α̂) then
4: αB = (xk−xk−1)T (xk−xk−1)

(xk−xk−1)TA(xk−xk−1)
5: repeat
6: xF = max{|xk −αBgs(xk)| −αBτ, 0} sgn(xk − ᾱgs(xk)) Reduced ISTA step
7: αB = αB

2
8: until F (xF ) ≤ maxi∈{1,...,M} F i − αBξ‖x− xF ‖2
9: F i+1 = F i for all i ∈ {1, . . . ,M − 1}

10: F 1 = F (xF )
11: xk+1 = xF
12: k = k + 1
13: end if
14: if ‖ω(xk)‖2 > −φ(xk)T φ̃(xk; α̂) then
15: αr = ω(xk)Tω(xk)

ω(xk)TAω(xk)
16: xk+1 = xk − αrω(xk) Relaxation step
17: k = k + 1
18: end if
19: rk = g(xk) + τ sgn(xk), ρk = φ(xk), dk = −ρk, xcg = xk

20: loop
21: if ‖ω(xk)‖2 > −φ(xk)T φ̃(xk; α̂) then
22: break
23: end if
24: xk+1 = xk + (rk)T ρk

(dk)TAdk d
k CG step

25: rk+1 = rk + (rk)T ρk

(dk)TAdkAd
k

26: if F (xk+1) > F (xk)− c‖v(xk)‖2 then
27: if sgn(xk) = sgn(xcg) then
28: αb = arg maxα{α : sgn(xk + αdk) = sgn(xcg)}
29: xk+1 = xk + αbd

k Cut-back
30: else
31: xk+1 = xk

32: end if
33: k = k + 1
34: break
35: end if
36: ρk+1 = P (rk+1)
37: dk+1 = −ρk+1 + (rk+1)T ρk+1

(rk)T ρk dk

38: k = k + 1
39: end loop
40: end loop
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5 Numerical Results
We developed a MATLAB implementation of Algorithms 1, 2, and 3, and in the first part
of this section we compare their performance relative to two proximal gradient methods.
This allows us to study the algorithmic components of our methods in a controlled setting,
and to identify the most promising approach, which is then tested against three state-of-
the-art codes. Our numerical experiments are performed on four groups of test problems
with varying characteristics

5.1 Evaluating the Three Versions of the Algorithm

We implemented the following methods.

Alg1 This is Algorithm 1, which is the most basic implementation of the approach
proposed in this paper. The stepsize for the ISTA iteration (Step 3) is set to ᾱ = 1/L.

Alg2 This is the modification of Algorithm 1 that incorporates the ISTA-BB-LS Step
and the Relaxed CG Stop Test described in section 4.1 (with c = 0 in (4.1)).

Alg3 This is Algorithm 3, which was described in detail in the previous section. We
set α̂ = 1/L and c = 0.

FISTA The Fast Iterative Shrinkage-Thresholding Algorithm [3], using a constant
stepsize given by 1/L.

ISTA-BB-LS This method is composed purely of the ISTA-BB-LS steps described
in section 4.1, which are repeated until convergence.

These five methods allow us to perform a per-iteration comparison of the progress
achieved by each method. FISTA and the ISTA-BB-LS method are known to be effi-
cient in practice and serve as a useful benchmark.

Our first three test problems have the following form, which is sometimes called the
elastic net regularization problem [37],

min
x

1
2‖y −Bx‖

2 + γ‖x‖2 + τ‖x‖1. (5.1)

The data y and B was obtained from three different data sets that we call spectra, sigrec,
and myrand. The sources of these data sets are as follows.
Spectra. The gasoline spectra problem is a regularized linear regression problem [22]; it
is available in MATLAB by typing load spectra. This problem has a slightly different
form than (5.1) in the sense that `1 regularization is imposed on all but one of the variables
(which represents the constant term in linear regression).
Sigrec. This signal recovery problem is described by Wright et al. [36]. The authors gen-
erate random sparse signals, introduce noise, and encode the signals in a lower dimensional
vector by applying a random matrix multiplication. We generated an instance using the
code by the authors of [36].
Myrand. We generated a random 200 variable problem using the following MATLAB
commands
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B = randn(100,200); y = 200*randn(100,1),

and employed this matrix and vector in (5.1).

Proxnewt. The 4th problem in our test set is of the form

min
x

1
2x

TBx− yTx+ γ‖x‖2 + τ‖x‖1. (5.2)

It was generated by applying the proximal Newton method described in [6] to an `1 reg-
ularized convex optimization problem of the form ψ(x) + τ‖x‖1, where ψ(x) is a logistic
regression function and the data is given by the gisette test set in the LIBSVM repository
[8]. Each iteration of the proximal Newton method computes a step by solving a subproblem
of the form (1.1). We extracted one of these subproblems, and added the `2 regularization
term γ‖x‖2 to yield a problem of the form (5.2).

We created twelve versions of each of the four problems listed above, by choosing different
values of γ and τ . This allowed us to create problems with various degrees of ill conditioning
and different percentages on non-zeros in the solution. In our datasets, B in (5.1) and (5.2)
was always rank deficient; therefore, when γ = 0 the resulting matrix A in (1.1) is singular.

The following naming conventions are used. The last digit, as in problems
spectras1, · · · , spectras4,

indicates one of the four values of τ that were chosen for each problem so as to generate
different percentages of non-zeros in the optimal solution. The degree of ill conditioning,
which is controlled by γ, is indicated in the second-to-last character, as in

spectras1, spectrai1, spectram1,
which correspond to the singular, ill conditioned and moderately conditioned versions of
the problem. The characteristics of the test problems are given in Appendix A.

Accuracy in the solution is measured by the ratio

F (xk)− F ∗
|F ∗|

= tol, (5.3)

where F ∗ is the best known objective value for each problem. Given the nature of the five
algorithms listed above, it is easy to compute and report the ratio (5.3) after each matrix-
vector product computation. We initialized x0 to the zero vector, and imposed a limit of
10,000 matrix vector products on all the runs.

In our first set of experiments, we ran the three versions of the algorithm presented in
the paper (namely Algorithms 1, 2, 3) on all test problems. The results are summarized
in Figure 1 using the Dolan-Moré [11] performance profiles, based on the total number of
matrix vector (MV) multiplications required to reach tol = 10−4. We observe from this
figure that the refinements given in Section 4 pay off in that Algorithm 2 and Algorithm 3
outperform Algorithm 1.
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Figure 1: Logarithmic Dolan-Moré performance profiles for Algorithms 1, 2 and 3, on all
problems, based on the total number of matrix-vector (MV) multiplications needed to reach
tol = 10−4.

Since Algorithms 2 and 3 are uniformly more efficient than Algorithm 1 (which we
consider a base algorithm), we will not report results for the latter in the rest of the paper.

Next, we report in Tables 1 and 2 the results for Algorithm 2, Algorithm 3, FISTA
and ISTA-BB-LS on all the test problems. Table 1 presents results when the iteration was
terminated as soon as the ratio in (5.3) is less than tol = 10−4, and in Table 2 for tol
= 10−10. Dashes signify failures to find a solution after 10,000 matrix-vector products,
and bold numbers mark the best-performing algorithm. We observe from these tables that
problems with an intermediate value of τ (typically) require the largest effort. This suggests
that the values of τ chosen in our tests gave rise to an interesting collection of problems
that range from nearly quadratic to highly regularized piecewise quadratic, with the most
challenging problems in the middle range. An analysis of the data given in Tables 1 and 2
indicates that Algorithm 3 is the most efficient in these tests, but not uniformly so. Overall,
we regard Algorithms 2 and 3 as promising methods for solving the regularized quadratic
problem (1.1).

16



Alg2 Alg3 FISTA ISTA-BB-LS
myrands1 76 78 139 510
myrands2 89 112 69 185
myrands3 25 26 30 107
myrands4 6 4 14 91
myrandi1 12 12 27 105
myrandi2 221 155 106 324
myrandi3 25 26 30 107
myrandi4 6 4 14 91

myrandm1 12 12 27 105
myrandm2 13 13 37 106
myrandm3 187 170 101 297
myrandm4 25 26 31 107
spectras1 4 5 265 108
spectras2 4 5 264 110
spectras3 4 5 263 117
spectras4 4 5 270 115
spectrai1 4 5 258 114
spectrai2 4 5 257 117
spectrai3 4 5 256 115
spectrai4 60 48 1036 6798

spectram1 2 2 2 93
spectram2 2 2 2 93
spectram3 5 5 51 98
spectram4 100 90 126 352

sigrecs1 2222 1149 446 3786
sigrecs2 1044 525 291 1571
sigrecs3 106 106 75 147
sigrecs4 11 13 25 85
sigreci1 8 8 14 89
sigreci2 2257 1134 442 3628
sigreci3 1149 530 291 1519
sigreci4 11 13 25 85

sigrecm1 8 8 14 88
sigrecm2 65 64 61 169
sigrecm3 199 173 103 284
sigrecm4 11 13 25 85

proxnewts1 - 3240 - -
proxnewts2 - 5072 6423 -
proxnewts3 7180 2108 2026 5280
proxnewts4 287 120 1582 348
proxnewti1 279 293 2795 -
proxnewti2 2511 909 2212 -
proxnewti3 4963 1949 1702 3521
proxnewti4 265 149 1499 290

proxnewtm1 32 31 881 302
proxnewtm2 40 44 784 532
proxnewtm3 221 160 592 802
proxnewtm4 58 31 472 154

Table 1: Number of matrix-vector products
to reach accuracy tol = 10−4.

Alg2 Alg3 FISTA ISTA-BB-LS
myrands1 5880 3553 4214 -
myrands2 182 212 1044 493
myrands3 45 48 291 137
myrands4 9 8 59 96
myrandi1 384 1024 7520 -
myrandi2 396 317 1632 1079
myrandi3 45 48 291 137
myrandi4 9 8 59 96

myrandm1 50 50 252 667
myrandm2 698 324 1447 4146
myrandm3 339 289 1423 845
myrandm4 44 48 290 135
spectras1 - 8695 - -
spectras2 - 9770 - -
spectras3 4965 2349 - -
spectras4 - 9930 - -
spectrai1 42 44 - -
spectrai2 164 147 - -
spectrai3 3317 1644 - -
spectrai4 1899 718 - -

spectram1 10 10 1897 108
spectram2 15 13 2024 195
spectram3 11 11 1445 200
spectram4 107 97 4799 466

sigrecs1 3545 2088 1338 7023
sigrecs2 1250 654 696 1809
sigrecs3 124 121 296 159
sigrecs4 19 21 145 92
sigreci1 - 6753 - -
sigreci2 3652 2131 1350 7060
sigreci3 1358 655 659 1709
sigreci4 19 21 145 92

sigrecm1 52 51 114 511
sigrecm2 652 317 864 1224
sigrecm3 421 354 1301 664
sigrecm4 18 23 144 92

proxnewts1 - 8984 - -
proxnewts2 - 6453 - -
proxnewts3 7722 2378 - -
proxnewts4 309 142 - 465
proxnewti1 3273 1033 - -
proxnewti2 3645 1697 - -
proxnewti3 5351 2182 - 6919
proxnewti4 284 174 - 474

proxnewtm1 124 110 - 2326
proxnewtm2 103 93 - 1590
proxnewtm3 283 192 - 1079
proxnewtm4 70 44 - 189

Table 2: Number of matrix-vector products
to reach accuracy tol = 10−10.
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Using the data from Tables 1 and 2, we illustrate in Figure 2 the relative performance of
Algorithm 2, Algorithm 3, FISTA and ISTA-BB-LS, using the Dolan-Moré profiles (based
on the number of matrix-vector multiplications required for convergence). We report results
for two different values of tol. While Algorithms 2 and 3 are efficient in the case tol = 10−4,
Algorithm 3 demonstrates superior performance in reaching the higher accuracy.
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Figure 2: Comparison of the four Algorithms using the logarithmic Dolan-Moré profiles,
based on the number of matrix-vector products required for convergence. We report results
for low and high accuracy (5.3) in the objective function.

In Figure 3 we illustrate typical behavior of Algorithms 2 and 3 in our tests. We
plot the ratio in (5.3) as a function of the number of matrix-vector multiplications, for
problems proxnewts3 and spectram4. Both plots show that Algorithms 2 and 3 are able
to estimate the solution to high accuracy. These two algorithms sometimes outperform the
other methods from the very start, as in Figure 3a, but in other cases Algorithms 2 and
3 show their strength later on in the runs; see Figure 3b. We note that the ISTA-BB-LS
method is more efficient than FISTA when high accuracy in the solution is required.
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Figure 3: Accuracy (5.3) in the objective function (vertical axis) as a function of the number
of matrix-vector products performed (MV count)

5.2 Behavior of the CG Phase

We now discuss the behavior of the subspace CG phase, which has a great impact on the
overall efficiency of the proposed algorithms. In Figure 4 we report two representative runs
of Algorithm 3, given by test problems myrandm1 and sigreci4. The horizontal axis labels
each of the subspace phases invoked by the algorithm, and the vertical axis gives the number
of CG iterations performed during that subspace phase.
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Figure 4: Number of CG iterations in each subspace phase

Figure 4a, illustrates a behavior that is often observed for moderate and large values of
the penalty parameter τ , namely that the bulk of the CG iterations are performed towards
the end of the run. This is desirable, as the CG phase makes a moderate contribution earlier
on towards identifying the optimal active set, and is then able to compute a highly accurate
solution of the problem in one (or two) CG cycles. Figure 4b, considers the case when the
penalty parameter is very small, i.e., when F is nearly quadratic. We observe now that
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the effort expended by the CG phase is more evenly distributed throughout the run. Since
the number of CG iterations is large in most cycles, most of the matrix-vector products
computed by the algorithm are used to power the CG iteration. It is reassuring that the
number of CG iterations does not tail off for this problem, but that a significant number
of CG steps is performed in the last cycle, yielding an accurate solution to the problem.
These examples illustrate the flexibility of the approach presented in this paper.

5.3 Comparisons with Established Codes

We also performed comparisons with the following three state-of-the-art codes. To facil-
itate our comparisons, and ease of implementation, we only considered codes written in
MATLAB.

• SPARSA This is the well known implementation of the ISTA method described in
[36]. The code can be found at http://www.lx.it.pt/~mtf/SpaRSA/

• PSSgb The motivation for the algorithm implemented in this code stems from the
two-metric projection method [18] for bound constrained optimization. That method
is extended to the regularized `1 problem; curvature information is incorporated in
the form of a BFGS matrix. http://www.di.ens.fr/~mschmidt/Software/thesis.
html

• N83 Is one of the codes provided by the TFOCS package [4]. It implements the
optimal first order Nesterov method described in [26]. http://cvxr.com/tfocs/
download/

We also experimented with SALSA [1], TWIST [5] and FPC_AS [20], l1_ls [23], YALL1
[10], but these codes were not competitive on our test set with the three packages mentioned
above. To limit the amount of information we only test Algorithm 3 (and not Algorithm 2)
in the remainder of this section.

In Figure 5 we compare Algorithm 3 with the three codes listed above on problems
spectra, sigrec and myrand. The figure plots the Dolan-Moré performance profiles based
on CPU time; we report results for two values of the convergence tolerance (5.3). Figure 6
reports results for problem proxnewt; they exclude SPARSA because that code is not
directly applicable to problem (5.2).
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Figure 5: Comparison of Algorithm 3, SPARSA, N83 and PSSgb. The figure plots the
logarithmic Dolan-Moré performance profiles based on CPU time for problems spectra,
sigrec and myrand.
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Figure 6: Comparison of Algorithm 3, N83 and PSSgb on problem proxnewt. The figure
plots the logarithmic Dolan-Moré performance profiles based on CPU time, for two values
of tol. SPARSA is not directly applicable to this problem.

Figure 5 indicates that PSSgb dominates all other codes for accuracy tol=10−4, but
not for tol=10−10. We now examine the behavior of the codes for intermediate values of
accuracy. Figure 7 shows the fraction of problems that a method was able to solve faster
than the other methods (to within 1% accuracy), as a function of the accuracy measure
(5.3), in a log-scale. Figure 8 reports the fraction of problems that a method was able to
solve within the allotted limit of 10,000 matrix-vector (MV) products, also as a function of
the relative error in F given in (5.3).

21



10−9 10−7 10−5 10−3 10−1
0

0.2

0.4

0.6

0.8

1

tol

Fr
ac
ti
on

of
pr
ob

le
m
s
so
lv
ed

Alg3
N83
SPARSA
PSSgb

(a) All four codes on spectra, sigrec and
myrand.

10−9 10−7 10−5 10−3 10−1
0

0.2

0.4

0.6

0.8

1

tol

Fr
ac
ti
on

of
pr
ob

le
m
s
so
lv
ed

Alg3
N83
PSSgb

(b) All codes, except SPARSA on problem
proxnewt.

Figure 7: Efficiency figures. For given accuracy in the function value (horizontal axis), the
plots show the percentage of problems solved to that accuracy within 1 percent of the best
method, in terms of MV count
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Figure 8: Robustness figures. Fraction of problems solved within the allotted limit of
matrix-vector products

Viewed as a whole, Algorithm 3 is competitive with the three state-of-the-art codes in
terms of efficiency and robustness.
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6 Final Remarks
In this paper, we presented a class of second-order methods for solving the `1 regularized
quadratic problem (1.1) that are different other methods proposed in the literature in that
they can invoke one of three possible steps at each iteration: a subspace conjugate gradient
step, a first order (ISTA) step, or a relaxation step. This flexibility is designed to allow the
algorithms to adapt themselves to the problem to be solved — and the results presented
in the paper suggest that it is generally successful at reaching this goal. The decision of
what type of step to invoke is based on the relative components of the minimum norm
subgradient – an idea proposed by Dostal and Schoeberl [13] for the solution of bound
constrained quadratic optimization problems.

To provide a theoretical foundation for the approach presented in this paper, we es-
tablished global rates of convergence and complexity bounds based on the total amount of
work expended by the algorithm (which is measured using the total number of matrix-vector
products). We also gave careful consideration to the main components of the algorithm,
namely the selection of an active set and the procedure for exploring a reduced space using
the conjugate gradient method. One of the features of the algorithm that was particularly
successful is allowing the CG iteration to cross orthants, as long as sufficient decrease in
the objective function is achieved.

We performed controlled comparisons of 3 variants of our algorithm with FISTA and a
popular implementation of ISTA. We also reported comparative tests with three state-of-
the-art codes, SPARSA, N83 and PSSgb, and the results suggest that the method proposed
in this paper is highly competitive with those algorithms.
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Appendix A Dataset Details and Sparsity Patterns
The τ values for each problem were chosen by experimentation so as to span a range of
solution sparsities. This is preferable to setting τ as a multiple of ‖b‖∞ (as is often done in
the literature based on the fact when τ = ‖b‖∞ the optimal solution to problem (1.1) is the
zero vector [17]). We prefer to select the value of τ for each problem, as there sometimes is
a very small range of values that yields interesting problems.

Table 3: myrand n = 200

norm(A) cond(A) γ problem τ num zeros

5.506968e+02 - 0

myrands1 1 101
myrands2 200 108
myrands3 1000 142
myrands4 5000 195

5.506969e+02 5.506969e+06 1.0e-04

myrandi1 1.8e-04 16
myrandi2 90 104
myrandi3 1000 142
myrandi4 5000 195

5.507968e+02 5.507968e+03 1.0e-01

myrandm1 9.5e-03 1
myrandm2 1 44
myrandm3 90 104
myrandm4 1000 142
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Table 4: spectra n = 402

norm(A) cond(A) γ problem τ num zeros

2.056413e+03 - 0

spectras1 1.0e-06 322
spectras2 1.0e-04 348
spectras3 1.0e-03 372
spectras4 1.0e-02 389

2.056414e+03 2.056414e+06 1.0e-03

spectrai1 3.0e-05 2
spectrai2 1.0e-03 91
spectrai3 1.0e-02 313
spectrai4 5.0e-01 398

2.057413e+03 2.057413e+03 1

spectram1 1.0e-03 1
spectram2 2.0e-01 109
spectram3 1 332
spectram4 30 388

Table 5: sigrec n = 4096

norm(A) cond(A) γ problem τ num zeros

1.119904e+00 - 0

sigrecs1 5.0e-05 3549
sigrecs2 2.0e-04 3816
sigrecs3 5.0e-03 3860
sigrecs4 1.0e-01 3973

1.119905e+00 1.119905e+06 1.0e-06

sigreci1 5.0e-08 828
sigreci2 5.0e-05 3535
sigreci3 2.0e-04 3813
sigreci4 1.0e-01 3973

1.120904e+00 1.120904e+03 1.0e-03

sigrecm1 4.5e-07 16
sigrecm2 1.0e-04 1519
sigrecm3 2.0e-03 3310
sigrecm4 1.0e-01 3973

27



Table 6: proxnewt n = 5000

norm(A) cond(A) γ problem τ num zeros

1.103666e+02 - 0

proxnewts1 6.7e-06 1893
proxnewts2 6.7e-05 3192
proxnewts3 6.7e-04 4365
proxnewts4 6.7e-03 4960

1.103667e+02 1.103667e+06 1.0e-04

proxnewti1 6.7e-06 1395
proxnewti2 6.7e-05 3060
proxnewti3 6.7e-04 4344
proxnewti4 6.7e-03 4959

1.103771e+02 1.051211e+04 1.0e-02

proxnewtm1 6.7e-06 193
proxnewtm2 6.7e-05 1283
proxnewtm3 6.7e-04 3602
proxnewtm4 6.7e-03 4926

Appendix B Effect of overestimating ‖A‖ in Algorithm 3
In our experiments, we set α̂ = 1/L in Algorithm 3. Often L is not known and is hard to
compute (for medium and large-scale problems computing L may take longer than running
the Algorithm itself). Figure 9 shows that while α̂ = 1

L is a good choice, Algorithm 3 is
fairly insensitive to the choice of α̂, particularly if the value 1/L is overestimated.
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Figure 9: Average increase in matrix-vector products relative to the optimal choice for α̂
(obtained by experimentation), for various choices of α̂. The results are compiled from all
48 test problems, and the runs were stopped when tol=10−4 .
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