
Algorithm PREQN� Fortran �� Subroutines for

Preconditioning the Conjugate Gradient Method

Jos�e Luis Morales� Jorge Nocedaly

March ��� ����

Abstract

PREQN is a package of Fortran �� subroutines for automatically generating pre�
conditioners for the conjugate gradient method� It is designed for solving a sequence of
linear systems Aix � bi� i � �� � � � � t� where the coe�cient matrices Ai are symmetric
and positive de�nite and vary slowly� Problems of this type arise� for example� in non�
linear optimization� The preconditioners are based on limited memory quasi�Newton
updating and are recommended for problems in which	 i
 the coe�cient matrices are
not explicitly known and only matrix�vector products of the form Aiv can be computed�
or ii
 the coe�cient matrices are not sparse� PREQN is written so that a single call
from a conjugate gradient routine performs the preconditioning operation and stores
information needed for the generation of a new preconditioner�

Categories and Subject Descriptors	 G�� �Numerical Analysis	 G ��� Numerical
Linear Algebra�Linear systems� G ��� Optimization�Unconstrained optimization� G��
�Mathematical Software	�E�ciency� Reliability and robustness�

General Terms	 Algorithms�

Additional KeyWords and Phrases	 Preconditioning� conjugate gradient method� quasi�
Newton method� Hessian�free Newton method� limited memory method�

�Departamento de Matem�aticas� Instituto Tecnol�ogico Aut�onomo de M�exico� R��o Hondo �� Col Tizap�an

San Angel� M�exico D�F� CP ������ M�exico� jmorales�gauss�rhon�itam�mx� This author was supported by

CONACyT grant �	
���A and by Asociaci�on Mexicana de Cultura AC�
yECE Department� Northwestern University� Evanston Il ����� USA� nocedal�ece�nwu�edu�

www�ece�nwu�edu�nocedal� This author was supported by National Science Foundation grants CCR�

���	��� and INT�������� and by Department of Energy grant DE�FG���
ER�	��
�A����

�

� Introduction

In this paper we describe Fortran �� subroutines for preconditioning the conjugate gradient
method� They are designed for solving a sequence of linear systems�

Aix � bi� i � �� �� � � � � t� �����

where the matrices Ai vary slowly and the right hand side vectors are arbitrary� We assume
that each matrix Ai is symmetric and positive de	nite and of size n� A special case of ������
known as the multiple right hand sides problem� occurs when the matrices fAig are all the
same�

The preconditioners are de	ned by means of quasi
Newton updating and do not require
explicit knowledge of the matrices Ai� but only make use of products Aiv� They are par

ticularly well suited for problems in which these matrix
vector products are expensive to
compute� or when low accuracy in the solution of some of the systems ����� is acceptable�
Problems with these characteristics arise� for example� in Newton methods for nonlinear
optimization ���� � �� ��� ���� in the numerical solution of di�erential equations ���� and in
statistics ����

We denote the quasi
Newton preconditioner for the i
th system as Hi� so that ����� is
solved by applying the conjugate gradient �CG� method to

HiAix � Hibi� i � �� �� � � � � t� �����

The preconditioners are constructed by means of a limited memory quasi
Newton updating
procedure described below� see also ���� That paper also presents numerical tests illustrating
the performance of the preconditioner on a wide variety of problems�

PREQN is a package of Fortran �� subroutines that implements these quasi
Newton
preconditioners� A salient feature of our implementation is that a single call to PREQN

applies the preconditioner and transmits the information that is required in the generation
of the next preconditioner� This allows the user to easily invoke PREQN from any conjugate
gradient routine�

� Overview of the Quasi�Newton Preconditioners

We start by reformulating the i
th subproblem Aix � bi in the sequence ������ as the
following optimization problem

minimize q�x� �
�

�
xTAx� bTx� �����

where� for notational convenience� the subscript i has been ignored�
Suppose that we apply the BFGS method �see e�g� ���� to compute the solution of

������ Starting from initial approximations x��� and H���� to the solution x� and to A��

respectively� the BFGS method generates new approximations x�j� and H�j� by means of
the formulae�

�p�j� � �H�j�rq�x�j��� x�j��� � x�j� � ��j �p
�j�� �����

�

where ��j � � is the step length that minimizes q along the direction �p�j�� The quasi
Newton
matrices are updated by means of the BFGS formula�

H�j��� � H�j� � V T
j H�j�Vj � �jyjs

T
j � �����

where

Vj � I � �jyjs
T
j � �j � ��yTj sj � ����

sj � x�j��� � x�j�� yj � rq�x�j�����r�x�j��� �����

The pair of vectors �sj� yj� is called a correction pair and satis	es sTj yj � � because of our
assumption that A is positive de	nite�

Note that we can also write

sj � ��j �p
�j�� yj � ��jA�p�j�� �����

and since the scalars ��j will cancel out in the computation that follows� we prefer to de	ne
the correction pair as

�s�j�� y�j��� ��p�j�� A�p�j��� �����

From ����� it is clear that the matrices H�j� will usually be dense� and therefore� their
storage and the computation of the matrix
vector product ����� are impractical� To over

come this di�culty� we will not form the matrices H�j�� but only store the vectors sj � yj
and the scalars �j that form them� More speci	cally� we can express the update as

H�j� � �V T
j�� � � � V

T
� �H����V� � � � Vj��� ������

����V
T
j�� � � � V

T
� �s�s

T
� �V� � � � Vj���

����V
T
j�� � � � V

T
� �s�s

T
� �V� � � � Vj���

���

��jsj��s
T
j���

A recursive formula described in ��� makes use of the structure of ������ to compute the
product ����� in approximately �jn �oating point operations� The storage requirements for
this computation are �jn spaces to hold the set of correction pairs� and �j spaces to hold
the scalars �j and intermediate results� It is now clear that the computational resources
can be kept to a reasonable level by limiting the number of pairs that participate in �������
This gives rise to a limited memory quasi
Newton method�

In summary� the set of correction pairs

S � f��p�j�� A�p�j�� j j � �� � � �g

along with the BFGS formula implicitly de	ne an approximation to A��� In practice we
wish to store only a small subset of S which de	nes the inverse of A on a small subspace
of Rn� This poses the question of how many and which pairs must be chosen� an issue we
discuss next�

�

��� Preconditioning the CG Method

The role of limited memory quasi
Newton matrices as preconditioners for the CG iteration
becomes clear by noting that� when applied to positive de	nite quadratic functions� the
BFGS and CG methods are equivalent� Therefore� as we solve a linear system by means of
the CG method� we can save the correction pairs ����� that determine an approximation to
A��� and use this approximation to precondition the next system in ������

We start by solving the 	rst system A�x � b� with the unpreconditioned CG method�
so that H� � I� During the course of the CG iteration� we collect m correction pairs

fp�j�� A�p
�j�g� j � l�� l�� � � � � lm� ������

where fp�j�gj�������� is the sequence of search directions produced by the CG method� �The
choice of the indices l�� l�� � � � � lm will be discussed below�� The user determines the num

ber m of pairs to be collected� When the CG method has completed the solution of the
	rst system A�x � b�� the m pairs fp�j�� A�p

�j�g are used to construct a limited memory
quasi
Newton matrix H��m� which is the preconditioner for the second system A�x � b��
While solving this second system with the preconditioned CG method� we collect new pairs
fp�j�� A�p

�j�g to de	ne the next preconditioner� We proceed in this manner until all the
linear systems have been solved�

An important question in the design of the quasi
Newton preconditioners is how to
select the m correction pairs fp�j�� Aip

�j�g during the CG iteration� In the companion
paper ��� we proposed two strategies that have performed well on a wide range of problems�
a �nearly� uniform sample of m pairs collected during the course of the CG iteration� and
the set formed by the last m pairs generated by the CG iteration� These two strategies are
implemented in PREQN�

We use the notation Hi�m� to indicate the amount of information used in the precondi

tioner� Values of m� in the range ��� ���� are recommended for most problems� independently
of the value of n� Of course� the available memory may impose a further restriction on m�
As mentioned earlier� the multiplication of Hi�m� with a vector can be performed by a
sequence of inner products involving the correction pairs� and requires approximately �mn
�oating point operations� The application of the preconditioner may therefore be expensive
compared� say� with incomplete Cholesky preconditioning ���� and we advocate its use for
problems in which the coe�cient matrices Ai are not known� are not sparse� or cannot be
computed cheaply� We should also note that� if a good preconditioner is known� it can be
used to precondition the 	rst problem in ������ and the rest of the problems can use the
quasi
Newton preconditioner�

We have coded the quasi
Newton preconditioners so that they can be incorporated easily
in any CG routine� In Section � we provide an algorithmic description of the main routine
in PREQN� In Section � we describe the parameters of the main routine� and in Section �
we present a sample of numerical results illustrating the performance of the software�

�

� Implementation of the Routines

We begin by stating the CG method �cf� ���� when applied to the i
th system Aix � bi in
the sequence ������

Preconditioned CG Method

input� Ai� bi� m� Hi�m�� x����

output� x�i

compute r��� � Aix
��� � bi

for j � �� �� � � �

�� compute z�j��� � Hi�m�r�j��� �PREQN a�c�

�� if convergence test is satis	ed� set x�i � x�j���

and stop

�� �j�� � r�j���
T

z�j���

�� if j � � then

p��� � �z���

else

�j�� � �j����j��

p�j� � �z�j��� � �j��p
�j���

end if �PREQN b�

�� �j � �j���p
�j�TAip

�j� �PREQN c�

� x�j� � x�j��� � �jp
�j�

�� r�j� � r�j��� � �jAip
�j�

end for

As mentioned earlier� one of our goals is to make only one call to PREQN at each
CG iteration� Let us consider the tasks that are required to construct and apply the
preconditioner�

a� We need to compute the product Hi�m�r�j��� in step � of the preconditioned CG
method� This will be done by means of a call to PREQN�

b� We must decide if the most recently generated pair fp�j�� Aip
�j�g should be saved

and used to de	ne the new preconditioner Hi���m�� This could be done by calling
PREQN near the end of the CG iteration� after the new correction pair has been
computed in steps � and �� To facilitate the use of the software� however� we can
delay this selection process until the next CG iteration� just before the application of
the preconditioner in step �� Thus the call to PREQN requesting the application of the
residual is accompanied by the transmission of a correction pair fp�j�� Aip

�j�g� The

�

decision to incorporate this pair into the new preconditioner Hi���m� is delegated to
the appropriate routine� and depends on the value of the parameter IOP� see next
section�

c� Once a linear system Aix � bi has been solved� we must remove the old preconditioner�
and replace it by the new preconditioner Hi���m� for the next system Ai��x � bi���
This could be done by means of a call to PREQN at the end of step �� when all the
information from the CG run has been collected� Instead� we inform PREQN during
the call in step � that the solution of a new linear system has commenced� The
formation of the new preconditioner thus takes place just before it is applied to the
	rst residual vector�

This is summarized in the procedure below which outlines the main tasks of PREQN�

� i � problem number� j � CG iteration number

Procedure PREQN

input� i� j� m� fp�j���� Ap�j���g� r�j����

output� z�j��� � Hi�m�r�j����

if j � � decide if fp�j���� Ap�j���g is to be saved

if i � � then

z�j��� � r�j��� � No preconditioning

else

if j � � build preconditioner Hi���m�

z�j��� � Hi�m�r�j���

endif

This simultaneous transmission of information greatly facilitates the use of the package�
A code implementing the CG method can be easily modi	ed so that the computation of
the preconditioned residual is done by means of a call to PREQN in step ��

� Choice of certain parameters

The calling sequence is

CALL PREQN � N� M� IOP� IPROB� JCG� S� Y� R� Z� W� LW� IW� LIW� BUILD�

INFO� MSSG �

�

The meaning of the parameters is provided in the code documentation� We now discuss
how to choose three parameters that have an important impact in the performance of the
preconditioner�

The variable M speci	es the maximum number m of pairs used in the de	nition of the
quasi
Newton preconditioner� In our experience� good performance is observed with values
of M in the range ��� ���� smaller values normally do not provide adequate preconditioning�
whereas values greater than �� may result in high computing times�

The variable IOP determines the scheme for the selection of correction pairs� If IOP �

�� the pairs are selected as a uniform sample throughout the CG cycle� If IOP � �� the last
M computed pairs are selected�

When the uniform sampling scheme is chosen �IOP��� an extra pair may be stored and
used in the construction of the preconditioner� as we now explain� The 	rst M pairs are
selected by the uniform sampling scheme� A routine in the package checks if the last pair
produced by the CG iteration was selected� and if not� saves it� In this case the number of
correction pairs becomes M � �� We have observed a slight improvement in performance
if the last pair is always included� and since by incorporating it the storage requirements
and computational e�ort increase only modestly� we have implemented this strategy in the
uniform sampling scheme� The use of IOP � � requires M to be an even integer�

The variable BUILD indicates whether the preconditioner for the problem IPROB � �

should be built� It should be set to �FALSE� before the 	rst call to PREQN� This variable
allows the reuse of a preconditioner for several problems� If BUILD � �TRUE� a precondi

tioner is computed using the information collected during the CG cycle for problem IPROB

� �� If BUILD � �FALSE� the information collected during the previous CG cycle is ignored
and superseeded by the information collected during the current CG cycle�

In some situations� it may be useful to apply the same preconditioner for several problems
in the sequence ������ One example of this is when the CG iteration performed a very small
number of iterations �say� less than �� to meet the stopping test for the current problem�
A preconditioner based on so little information is not e�cient� and it is preferable to revert
to a previous preconditioner� Another case in which it may be appropriate to reuse the
preconditioner is when the coe�cient matrices in ����� are constant and only the right hand
side vector varies� In the next section we report numerical tests with problems of this type�
The option BUILD � �FALSE� must be used with caution� in general we recommend that
the preconditioner be recomputed for each new problem in the sequence�

� Numerical Results

In this section we illustrate the performance of the quasi
Newton preconditioners when
solving a sequence of the form ����� where the coe�cient matrix is constant and the right
hand side vectors vary� We report results for three matrices arising in 	nite element compu

tations� denoted by A�� � A�� � A�� � which are described in ���� The tests reported here di�er
from those in ��� in that we use a di�erent stopping test to terminate the CG iteration�

For each matrix A� we solve the sequence of problems

Ax � bi� i � �� � � � � ��� ������

where the right hand side vectors bi� i � �� � � � � �� are obtained as perturbations of an
initial vector b�� see ���� In order to solve ������ we proceed as follows� i� the quasi
Newton
preconditioner is computed with the information gathered by the CG method while solving
the 	rst system Ax � b�� ii� the remaining �� problems are solved using this preconditioner�
We report in Table � the average number of CG iterations �rounded to the nearest integer�
required to solve the �� preconditioned systems� for various values of m� Both strategies for
forming the preconditioner were used� uniform sampling �IOP � �� and the last correction
pairs �IOP � ��� The stopping test for the CG method was

jjr�j�jj� � ���� jjr���jj�� ������

A�� A�� A��

m IOP�� IOP�� IOP�� IOP�� IOP�� IOP��

m iter iter iter iter iter iter

� �� �� ��� ���
� � � ��� �� �� ��
� �� �� ��� ��� �� ��
�� �� �� ��� ��� �� ��
� �� �� �� ��� �� �
�� � �� ��� ��� �� ��

Table �� Results for � test matrices using multiple right hand side vectors� The
table reports average number of CG iterations for �� runs� using di�erent values
of the memory parameter m and di�erent storage schemes� The initial point for
every CG iteration is x��� � ��

Whereas in these tests the uniform sampling technique performs much better than the
strategy of using the last m pairs� in most of the experiments we have performed� the two
strategies are comparable in performance� Observe that the preconditioner is not always
bene	cial� and that its e�ectiveness tends to increase with the amount of information stored
in it� As is the case in this example� we have observed that the preconditioner is usually
capable of signi	cantly reducing the number of CG iterations� but it is recommended to
experiment with various values of m to 	nd an appropriate setting for the application at
hand�

To give an idea of the types of problems for which the quasi
Newton preconditioner
may be e�ective� we can estimate the amount of work involved� Consider� for example� the
A�� problem with IOP�� and m � �� Since the unpreconditioned algorithm requires ��n
�ops per iteration� in addition to the matrix
vector product� the preconditioned algorithm
will be more e�cient if the matrix
vector multiplication requires more than ��n operations�
Therefore the preconditioner is unlikely to be useful for very sparse problems� Nevertheless
in optimization � the matrix
vector product is roughly as expensive as the cost of evaluating
a gradient� which can be a large multiple of n in many applications�

�

Acknowledgements� We thank two referees for several useful suggestions on how to
improve the description of the preconditioner�

�

References

��� T� F� Chan and M� K� Ng� Galerkin Projection Methods for Solving Multiple Linear

Systems� Technical Report ��
���� Department of Mathematics� University of Calif�
at Los Angeles� Los Angeles CA ������� ����

��� J�E� Dennis� Jr� and R�B� Schnabel� Numerical Methods for Unconstrained Opti�

mization and Nonlinear Equations� Prentice
Hall� Englewood Cli�s� NJ� �����

��� A� Greenbaum� Iterative Methods for Solving Linear Systems� SIAM� Philadelphia�
�����

��� M� T� Jones and P� E� Plassmann� An Improved Incomplete Cholesky Factorization�
Preprint MCS
P��
����� MCS Division� Argonne National Laboratory� Argonne� Ill��
�����

��� J�L� Morales and J� Nocedal� Automatic Preconditioning by Limited Memory

Quasi�Newton Updating� to appear in SIAM Journal on Optimization�

�� S� G� Nash� Newton�type minimization via the Lanczos method� SIAM Journal on
Numerical Analysis� �� ������� pp� ��������

��� J� Nocedal� Updating quasi�Newton matrices with limited storage� Math� Comput��
�� ������� pp� ��������

��� D� P� O�Leary� A discrete Newton algorithm for minimizing a function of many

variables� Mathematical Programming� �� ������� pp� ������

��� J� M� Ortega and W� C� Rheinboldt� Iterative solution of nonlinear equations in

several variables� Academic Press� New York and London� �����

���� T� Steihaug� The conjugate gradient method and trust regions in large scale optimiza�

tion� SIAM J� Numer� Anal�� �� ������� pp� �����

���� P� L� Toint� Towards an e�cient sparsity exploiting Newton method for minimization�
in Sparse Matrices and Their Uses� Academic Press� New York� ����� pp� ������

���� D� Xie and T� T� Schlick� E�cient Implementation of the Truncated Newton Method

for Large�Scale Chemistry Applications� to appear in SIAM Journal on Optimization�

�

