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Abstract

This paper presents an active-set algorithm for large-scale optimization that occu-
pies the middle ground between sequential quadratic programming (SQP) and sequen-
tial linear-quadratic programming (SL-QP) methods. It consists of two phases. The
algorithm first minimizes a piecewise linear approximation of the Lagrangian, subject
to a linearization of the constraints, to determine a working set. Then, an equality
constrained subproblem based on this working set and using second derivative informa-
tion is solved in order to promote fast convergence. A study of the local and global
convergence properties of the algorithm highlights the importance of the placement of
the interpolation points that determine the piecewise linear model of the Lagrangian.

1 Introduction

Much research has been devoted in the last 30 years to the development of active-set methods
for nonlinear programming. Yet, none of the methods proposed so far is entirely satisfactory
for solving very large problems. Sequential quadratic programming (SQP) methods, which
are the methods of choice for small and medium size applications, are limited in the large
scale case by the significant cost of solving an inequality constrained quadratic program at
every iteration. In contrast, interior point methods typically solve only one linear system
per iteration and scale up well with the dimension of the problem.

To try to overcome this drawback of SQP methods, Fletcher and Sainz de la Maza
[14] proposed in 1987 a two-phase algorithm that uses linear programming techniques to
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estimate the optimal active set and employs an equality constrained phase to yield rapid
convergence. This so-called sequential linear-quadratic programming (SL-QP) method has
recently received much attention [2, 3, 8, 10, 15, 21], and numerical experience suggests that
it holds promise for large-scale applications.

There are, however, important limitations in using only first-order information to es-
timate the active set. First, the linear programming subproblem used in the active-set
prediction phase of the SL-QP method must include a trust region constraint to ensure
boundedness, but the choice of the trust region radius ∆ is delicate. If ∆ is not of the right
magnitude, the active-set identification can be significantly delayed because the trust region
constraint is typically active at the solution of the linear program. The delicate role played
by the trust region constraint is particularly noticeable in large or degenerate problems.
A second drawback of the SL-QP approach is that it is difficult to employ warm-starts
when solving the linear programming subproblems (due to the presence of the trust region
constraint), and as a result, the computational cost of the active-set prediction phase is not
as low as one would expect from a first-order method [2, 23].

Motivated by the promise of SL-QP methods and their limitations, we propose a new
method that can be considered to lie in between SQP and SL-QP methods. By using a
piecewise linear (as opposed to linear) model in the active-set prediction phase, the new
method becomes insensitive to the choice of the trust region constraint — in fact, one
can dispense with this constraint altogether. The curvature information contained in the
piecewise linear approximation also improves the active-set identification properties of the
algorithm, compared with the SL-QP approach, and leads to overall savings in iterations.
On the other hand, the new algorithm is computationally less demanding than SQP methods
because, instead of solving a quadratic programming subproblem with inequality constraints
at every iteration, it solves a linear program.

To define a piecewise linear model, we start by constructing a separable quadratic model
of the Lagrangian function. For each variable, we then define a set of interpolation points
and compute a piecewise-linear interpolant of the quadratic model. The active set prediction
of the new method minimizes this separable piecewise-linear model subject to a linearization
of the constraints (this problem can be formulated as a linear program). Like the SL-QP
method of Fletcher and Sainz de la Maza, an equality constrained quadratic programming
(EQP) phase then uses this active-set estimate to compute a step that yields fast local
convergence.

The crucial components of the new algorithm are the definition of the separable quadratic
model and the placement of the interpolation points that define the piecewise linear model.
We present guidelines for the design of these components and show that the new algorithm
enjoys global convergence guarantees and fast asymptotic convergence.

In addition to the recent contributions to the development of SL-QP methods already
mentioned, there have been a number of recent proposals on how to improve SQP methods
by using a simpler quadratic program to predict the active set. Gould and Robinson [17,
18] propose a trust region SQP method that solves two inequality constrained quadratic
programs at every iteration. The first quadratic program is convex and provides a predictor
step that ensures global convergence; the second quadratic program may be nonconvex
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and is capable of incorporating the exact Hessian of the Lagrangian. Friedlander, Gould,
Leyffer and Munson [15] describe a two-phase SQP method in which the quadratic term that
defines the active-set prediction phase is a multiple of the identity matrix, and this multiple
is adjusted to control the size of the step. The two SQP approaches just mentioned are
designed for the large scale case. Morales, Nocedal and Wu [19] and Gould and Robinson
[17, 18] propose an approach we call SQP+ that is aimed at improving the performance
of classical SQP methods that use quasi-Newton approximations. This method accelerates
the SQP iteration by adding an EQP phase that employs exact second-order information,
and is designed for those problems that are amenable for solution by contemporary SQP
methods.

All these new SQP methods have been tested only on prototype implementations and
their relative efficiency with respect to SL-QP methods and established SQP methods such
as [13, 16] is yet to be explored in production-quality software.

The paper is organized in 7 sections. In Section 2 we describe the proposed method
and in Section 3 we consider in detail the construction of the piecewise linear model. The
global and local convergence properties of the new algorithm are studied in Sections 4 and
5. Section 6 discusses the use of a quasi-Newton approximation, and Section 7 gives some
concluding remarks.

Notation. Throughout the paper ‖ · ‖ denotes the 2-norm, unless indicated otherwise.

2 Outline of the Algorithm

The nonlinear programming problem under consideration is stated as

min
x

f(x)

s.t. h(x) = 0,

g(x) ≥ 0,

(2.1)

where f : Rn → R, h : Rn → Rm and g : Rn → Rt are smooth functions. We write the
Lagrangian of this problem as

L(x, λ, µ) = f(x)− λTh(x)− µTg(x), (2.2)

where λ and µ are vectors of multipliers. The KKT conditions for the nonlinear program
(2.1) are given by

∇f(x)−∇h(x)λ−∇g(x)µ = 0 (2.3a)

h(x) = 0 (2.3b)

g(x) ≥ 0 (2.3c)

µ ≥ 0 (2.3d)

µTg(x) = 0, (2.3e)
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where ∇hT,∇gT are the Jacobian matrices of h and g, respectively.
The algorithm proposed in this paper is a two phase method that consists of an active-

set prediction phase and an equality constrained phase. At the current iterate xk, the
prediction phase generates a step dk by solving the problem

min
d

mk(d) , ∇f(xk)
Td+ Γk(d), (2.4a)

s.t. h(xk) +∇h(xk)
Td = 0, (2.4b)

g(xk) +∇g(xk)
Td ≥ 0, (2.4c)

where Γk(d) is a convex piecewise linear function that contains useful curvature information
about the nonlinear program (2.1) and yet is simple enough to make the solution of (2.4)
tractable in the large-scale case. In this paper, we study two choices for Γk, one in which
it is a diagonal approximation of the Hessian of the Lagrangian, and one in which Γk
approximates a quasi-Newton matrix. Due to the piecewise linear nature of Γk, problem
(2.4) can be formulated as a linear program. We refer to (2.4) as the piecewise linear
approximation (PLA) subproblem and denote its solution by dk.

The KKT conditions of (2.4) at xk state that there is a vector vk and Lagrange multipliers
λk+1, µk+1 such that

∇f(xk)−∇h(xk)λk+1 −∇g(xk)µk+1 + vk = 0, (2.5a)

h(xk) +∇h(xk)
Tdk = 0, (2.5b)

g(xk) +∇g(xk)
Tdk ≥ 0, (2.5c)

µk+1 ≥ 0, (2.5d)

µT
k+1(g(xk) +∇g(xk)

Tdk) = 0, (2.5e)

vk ∈ ∂Γk(dk), (2.5f)

where ∂Γk(dk) denotes the subdifferential set of Γk(d) at dk.
Having computed the PLA step dk, we perform the second phase of the algorithm by

first defining the working set at iteration k as

Wk = {i ∈ E} ∪ {i ∈ I | gi(xk) +∇gi(xk)Tdk = 0}, (2.6)

where E denotes the set of indices for the equality constraints, I is the set of indices for
the inequality constraints, and hi(xk) and gi(xk) denote the i-th components of the vectors
h(xk) and g(xk). The equality constrained quadratic program (EQP) is then given by

min
d

(∇f(xk) +Wkdk)
Td+ 1

2d
TWkd (2.7a)

s.t. ∇hi(xk)Td = 0, i ∈ E , (2.7b)

∇gi(xk)Td = 0, i ∈ I ∩Wk, (2.7c)

where
Wk , ∇2

xxL(xk, λk, µk) (2.8)
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is the Hessian of the Lagrangian (2.2) at iteration k. We denote a solution to (2.7) by
dE
k and the corresponding Lagrange multipliers by λE

k+1, µ
E
k+1. (Practical procedures for

computing an approximate solution of (2.7) are discussed, for example, in [2, 14, 18].) The
use of second derivative information in the Hessian Wk endows the algorithm with a fast
asymptotic rate of convergence.

The EQP step dE
k may be shortened as βdE

k , where β ∈ [0, 1], to ensure that it satisfies
the linearized inequalities that are not in the working set, i.e. so that

gi(xk) +∇gi(xk)T(dk + βdE
k) ≥ 0, i /∈ Wk. (2.9)

The algorithm promotes global convergence by imposing decrease in the `1 merit function

φπ(x) = f(x) + π‖h(x)‖1 + π‖g(x)−‖1, (2.10)

where g(x)− , max{0, −g(x)} and π > 0 is a penalty parameter. One can consider trust
region or line search implementations of our approach, and in this paper we focus only
on the latter. After the steps dk and dE

k have been computed, the algorithm performs a
backtracking line search along the piecewise linear segment that starts at xk, goes through
xk + dk and ends at xk + dk + βdE

k .
Specifically, the line search first attempts to find a steplength α̂k ∈ (0, 1] that satisfies

the sufficient decrease condition

φπk(xk + dk + α̂kβd
E
k) ≤ φπk(xk)− σqred(dk), σ ∈ (0, 1), (2.11)

where
qred(d) = qπ(0)− qπ(d) (2.12)

is the change in the following convex model of the merit function φπ:

qπ(d) = f(xk) +∇f(xk)
Td+ Γk(d) + π‖h(xk) +∇h(xk)

Td‖1 (2.13)

+ π‖[g(xk) +∇g(xk)
Td]−‖1.

If this line search is successful by making a small number of attempts (say α̂k = 1, 1
2 and

1
4), we define the total step as

pk = dk + α̂kβd
E
k . (2.14)

Otherwise, we choose a constant τ ∈ (0, 1) and let ᾱk ∈ (0, 1] be the first member of the
sequence {1, τ, τ2, . . .} such that

φπk(xk + ᾱkdk) ≤ φπk(xk)− σᾱkqred(dk), (2.15)

where σ is the same constant as in (2.11); we then set

pk = ᾱkdk. (2.16)

Regardless of whether pk is defined by (2.14) or (2.16), the new primal iterate is given by

xk+1 = xk + pk. (2.17)
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The new Lagrange multipliers are defined at the EQP point, as follows. First, we set the
multipliers corresponding to the inactive linearized constraints to zero (i.e. the constraints
with indices i /∈Wk). The rest of the multipliers are set to the EQP multipliers λE

k+1, µE
k+1

— except that if any multipliers in µE
k+1 are negative, they are set to zero.

We outline the new algorithm using the pseudo-code in Algorithm 2.1.

Algorithm 2.1: PLA Algorithm

Initial data: x0

For k = 0, 1, 2, . . . until the KKT conditions for the nonlinear program (2.1) are satis-
fied, perform the following steps.

1. Construct a convex piecewise linear function Γk(d); see Section 3.

2. Solve the PLA subproblem (2.4) to obtain dk.

3. Determine the working set Wk as given in (2.6).

4. Compute the EQP step dE
k and multipliers λE

k+1, µ
E
k+1 by finding a primal-dual

solution of problem (2.7).

5. Compute the largest number β ∈ [0, 1] such that dk + βdE
k satisfies (2.9).

6. Compute the penalty parameter πk; see (2.20), (2.21) below.

7. Compute the steplength α̂k or ᾱk, define pk by (2.14) or (2.16), and set xk+1 =
xk + pk.

8. Set
[µE
k+1]Wk ← max

(
0, [µE

k+1]Wk

)
, and [µE

k+1]W
c
k ← 0,

where [µ]Wk denotes the subvector of µ corresponding to the components in the
working set Wk, i.e., [µ]Wk = [µi]i∈Wk

, and Wc
k denotes the complement of Wk.

9. Compute Wk+1 = ∇2
xxL(xk+1, λ

E
k+1, µ

E
k+1).

In practice, various enhancements and modifications are needed to ensure the applica-
bility of Algorithm 2.1 in a wide range of applications. For example, the working set (2.6)
must be defined so that the gradients of the constraints in Wk are linearly independent;
this may preclude us from including all active constraints in the working set. Also, the
constraints in subproblem (2.4) could be incompatible in which case they would have to be
relaxed [6, 9, 16, 18, 22] to ensure that the PLA step is well defined. Since our main interest
in this paper is the design of the piecewise linear model and the development of the theo-
retical foundations for the method, we will assume that these complications do not arise.
An extension of Algorithm 2.1 that is capable of handling the difficulties just mentioned,
as well as its software implementation, are currently under development [7].
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Let us describe the procedure for updating the penalty parameter πk in Step 6 of Algo-
rithm 2.1. As is now common [5, 20], we require that at every iteration πk be large enough
such that

qred(dk) ≥ ρπk
(
‖h(xk)‖1 + ‖g(xk)

−‖1
)
, (2.18)

for some prescribed constant ρ ∈ (0, 1). For a step that satisfies the linearized constraints
(2.4b)-(2.4c), we have from (2.12) and (2.13) that

qred(dk) = −∇f(xk)
Tdk − Γk(dk) + πk

(
‖h(xk)‖1 + ‖g(xk)

−‖1
)
. (2.19)

Therefore, condition (2.18) is equivalent to the requirement

πk ≥
∇f(xk)

Tdk + Γk(dk)

(1− ρ) (‖(h(xk)‖1 + ‖[g(xk)]−‖1)
, πtrial

k . (2.20)

We can enforce this condition by updating the penalty parameter at every iteration k by
means of the following rule:

πk =

{
πk−1 if πk−1 ≥ πtrial

k ,

πtrial
k + πb otherwise,

(2.21)

where πb > 0 is a given constant.
This update strategy ensures that the PLA step dk is a descent direction for the merit

function φπk . Specifically, the directional derivative of φπk at a point xk along the direction
dk, denoted as Dφπk(xk; dk), satisfies

Dφπk(xk; dk) ≤ ∇f(xk)
Tdk − πk‖h(xk)‖1 − πk‖[g(xk)]

−‖1.

Comparing the right hand side of this expression with (2.19), we obtain

Dφπk(xk; dk) ≤ −qred(dk)− Γk(dk). (2.22)

By noting that qred(dk) > 0 when xk is not a KKT point of the nonlinear program (2.1),
and that Γk(dk) ≥ 0 (by construction), we conclude that dk is a descent direction for φπk(x)
at xk. Therefore, the line search terminates in a finite number of steps and the algorithm
is well defined.

3 The Piecewise Linear Model Γ(d)

Recall that the objective of the PLA subproblem (2.4) is given by

mk(d) = ∇f(xk)
Td+ Γk(d), (3.1)

where Γk is a nonnegative convex and piecewise linear function. The specific form of Γk
plays a crucial role in the algorithm. Suppose, for example, that we define

Γk(d) =

{
0 ‖d‖∞ ≤ ∆k,

∞ otherwise,
(3.2)
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where ∆k is a trust region radius that is updated at each iteration and ‖·‖ is some norm. For
this choice of Γk, the algorithm reduces to an SL-QP method since the active set prediction
problem (2.4) can be formulated as

min
d

∇f(xk)
Td (3.3a)

s.t. h(xk) +∇h(xk)
Td = 0, (3.3b)

g(xk) +∇g(xk)
Td ≥ 0, (3.3c)

‖d‖∞ ≤ ∆k. (3.3d)

This simple form of Γk does not, however, contain curvature information about the problem
and leads to the difficulties in choosing ∆k discussed in Section 1.

Therefore, in this paper we let Γk be a piecewise linear approximation of a quadratic
model:

Γk(d) ≈ 1
2d

TBkd.

Ideally, Bk would be defined as the Hessian of the Lagrangian (2.8), but this Hessian may
not be positive definite, which could cause the PLA subproblem to be nonconvex — a
situation we wish to avoid. Therefore, we choose Bk to be a symmetric positive definite
matrix, and for our approach to be practical, Bk must have a simple structure. In the next
subsection, we consider the case when Bk is a diagonal matrix, and in Section 6 we discuss
the option of defining it through quasi-Newton updating.

3.1 Diagonal Hessian Approximation Bk

Constructing a piecewise linear approximation of a high dimensional quadratic function
dTBkd is not simple. In particular, the accuracy of the approximation degrades with di-
mensionality. Fortunately, in the case where dTBkd is separable, we can write dTBkd as the
sum of n one-dimensional quadratic functions, each of which can easily be approximated
by a univariate piecewise linear function.

One way to achieve separability is to define Bk to be a diagonal matrix, i.e.,

Bk = diag(bik), (3.4)

so that

1
2d

TBkd =
n∑
i=1

1
2b
i
k(d

i)2, (3.5)

where di denotes the i-th component of the vector d. We approximate each one-dimensional
function 1

2b
i
k(d

i)2 by a piecewise linear function Γik(d
i) composed of rik + 1 segments, where

rik is a small integer (say, less than 10). Thus,

Γik(d
i) ≈ 1

2b
i
k(d

i)2.

The linear functions forming Γik(d
i) are denoted by `ik,j(d

i), and we define

Γik(d
i) = max

j∈Ji
k

{`ik,j(di)}, with J ik
4
= {0, · · · , rik}. (3.6)
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The component functions `ik,j are chosen by Hermite interpolation at a set of designated
nodes, which we denote as

tik,j , j ∈ J ik. (3.7)

Specifically, the j-th linear function `ik,j interpolates 1
2b
i
k(d

i)2 and its derivative at the node

tik,j , which implies that `ik,j is given by

`ik,j(d
i) = −1

2b
i
k(t

i
k,j)

2 + (bikt
i
k,j)d

i. (3.8)

To ensure that Γk(d) is nonnegative, we choose one interpolation point at the origin, i.e.,

tik,0 = 0 for all i ∈ {1, 2, ..., n}. (3.9)

This condition, and the fact that we are employing Hermite interpolation, means that each
function Γik is non-negative and has the form given in Figure 1.

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

t

Γ
(
t
)

 

 

Piecewise Linear Approximation

Quadratic Function

Interpolation Nodes

Figure 1: The univariate function Γik

The multivariate function Γk in (2.4a) is then defined as

Γk(d) ,
n∑
i=1

Γik(d
i), (3.10)

and constitutes an outer approximation of the quadratic form, i.e., Γk(d) ≤ 1
2d

TBkd. Note
that, by construction, Γk(d) ≥ 0 for all d.

One more requirement we impose on Γk is that it must guarantee that the objective of
the PLA subproblem (2.4) is bounded. (We will assume henceforth that this subproblem is
feasible.) We can ensure that the PLA steps are bounded by constructing the model mk so
that

lim
α→∞

mk(αd) = +∞ for all d 6= 0. (3.11)

We can achieve this behaviour by an appropriate placement of the interpolation points.
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To see this, note from (3.1) and (3.10) that

mk(d) =
n∑
i=1

mi
k(d

i), where mi
k(d

i) = ∂f(xk)
∂xi

di + Γik(d
i). (3.12)

Now, given a coordinate i and any j ∈ J ik, we have from (3.6) and (3.8) that

mi
k(d

i) ≥ −1
2b
i
k(t

i
k,j)

2 +
[
bikt

i
k,j + ∂f(xk)

∂xi

]
di. (3.13)

In other words, each interpolation point generates a linear function (given by the right hand
side of (3.13)) that bounds mi

k(d
i) from below. If we make sure that one of these lower

bounding functions has a positive slope and another one has a negative slope, then mi
k will

have property (3.11). Since the term inside the square brackets in (3.13) gives the slope
of the lower bounding function, we can achieve these goals by selecting one interpolation
point, say tik,u, so that

bikt
i
k,u + ∂f(xk)

∂xi
> 0, (3.14)

and choosing another interpolation point, say tik,l, so that

bikt
i
k,l + ∂f(xk)

∂xi
< 0. (3.15)

Clearly, since for each coordinate direction i ∈ {1, 2, ..., n} the function mi
k constructed in

this manner satisfies lim|di|→∞m
i
k(d

i) = +∞, it follows from the convexity of (3.12) that mk

satisfies condition (3.11). Thus, by choosing a pair of interpolation points satisfying (3.14)–
(3.15) along each coordinate i, the PLA subproblem (2.4) will have a bounded solution.

We summarize the observations made in this subsection as follows.

Procedure 3.1: Construction of Piecewise Linear Function Γk

Initial data: (i) k, the iteration number; (ii) rik, i = 1, ..., n, the number of interpolation
points for each coordinate direction i.

1. Define a positive definite diagonal matrix Bk = diag(bik).

2. For each i = 1, ..., n, define the interpolation points tik,j , j ∈ J ik = {0, · · · , rik} so
that one of these points is given by (3.9), and so that the PLA problem (2.4) is
bounded.

3. For each i = 1, ..., n, define the component functions `ik,j , j ∈ Jk, by (3.8).

4. Define Γk as in (3.6).
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In Sections 4 and 5, we impose a few more requirements on the placement of the interpolation
points (in addition to (3.14), (3.15)) to ensure that the algorithm has the desired global and
local convergence properties. Practical choices for the diagonal matrix Bk are discussed in
[7].

Given the quadratic form 1
2d

TBkd and the set of nodes (3.7), the Hermite interpolation
process given in Procedure 3.1 uniquely determines the function Γk. There are, however,
various ways of expressing this function algebraically. In (3.6) we defined each Γik to be
the maximum of the component functions `ik,j , and in this case the PLA subproblem can
be formulated as a linear program that includes additional constraints to account for the
max functions; see e.g. [1]. An alternative representation of the piecewise linear model
is obtained by first computing (for each i) the rik breakpoints of Γik, and defining intervals
Sik,j whose endpoints are given by these breakpoints, see e.g. [12]. To evaluate Γik at di,

we identify the interval to which di belongs and evaluate the corresponding linear function,
i.e., di ∈ Sik,j ⇒ Γik(d

i) = `ik,j(d
i). In this representation, there is no need to introduce

additional constraints, but we must increase the number of variables. The computational
advantages of these two alternative representations of Γk are discussed in [7].

4 Global Convergence Analysis

In this section we analyze the global convergence properties of Algorithm 2.1. We make
the following assumptions about the problem and the algorithm. We recall that the PLA
multipliers λk, µk are defined in (2.5).

Assumptions I

a) The sequence {xk} generated by Algorithm 2.1 is contained in a convex set Ω where
the functions f , h and g and their first and second derivatives are bounded.

b) The PLA subproblem (2.4) is feasible for all k.

c) The sequence of PLA multipliers is bounded, i.e., there exists a constant γm such that
‖(λk, µk)‖∞ ≤ γm for all k.

d) There exist constants βl > 0 and βu > 0 such that, for all d ∈ Rn and all k,

βl‖d‖2 ≤ dTBkd ≤ βu‖d‖2. (4.1)

In Procedure 3.1, we outlined a strategy for constructing Γk based on Hermite interpola-
tion of a separable model with diagonal Hessian Bk (and showed how to ensure boundedness
of the PLA subproblem by an appropriate placement of the interpolation points). Other
choices for Bk and other forms of interpolation could, however, be employed and we would
like for our analysis to be applicable to a wide class of piecewise linear models. In particular,
in Section 6 we extend our analysis to the case when Bk is defined through BFGS updat-
ing, and is not a diagonal matrix. Therefore, we present the global convergence analysis
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in a general setting that includes as a special case the procedure discussed in the previous
section.

The first step in our analysis is to identify the essential properties that the model Γk
must possess for Algorithm 2.1 to enjoy global convergence guarantees. In essence, we need
to ensure that mk grows at least linearly for large d and that Γk does not grow faster than
a quadratic function. We state these properties as follows.

Growth Conditions
The following 3 conditions are satisfied for all k.

P1) Γk(d) is convex, non-negative, and satisfies

Γk(0) = 0. (4.2)

P2) There exists a constant βu > 0, such that

Γk(d) ≤ βu‖d‖2, for all d. (4.3)

P3) There exist constants ∆G > 0, ς > 0 such that

mk(d) ≥ ς‖d‖, for all ‖d‖ ≥ ∆G. (4.4)

The algorithm does not have direct control over the properties of Γk, but given that
the matrices Bk are uniformly positive definite and bounded, the algorithm can enforce the
growth conditions by an appropriate placement of the interpolation points. Specifically, for
the Hermite interpolation procedure described in the previous section we can impose the
following requirements, which are a reinforcement of conditions (3.14)-(3.15) introduced in
Section 3.1 to ensure boundedness of the PLA step.

Placement Conditions A
Given a constant κ0 > 0, for each iteration k and for each coordinate direction i, at least
two interpolation points tik,l, t

i
k,u satisfy

tik,l ≤ −
∂f(xk)
∂xi

/bik − κ0, and tik,u ≥ −
∂f(xk)
∂xi

/bik + κ0. (4.5)

Furthermore, the sequences {tik,l} and {tik,u} are uniformly bounded.

It follows from Assumptions I-a,d that (4.5) can be satisfied by a bounded sequence of
interpolation points. Note that Placement Conditions A impose minimal requirements and
allow much freedom in the placement of the interpolation points. The following result shows
that if these conditions are satisfied, the piecewise linear model generated by the Hermite
interpolation procedure of the previous section has the desired behavior.

Theorem 4.1 Suppose that Assumptions I hold, that Γk is defined by Procedure 3.1, and
that the interpolation points satisfy Placement Conditions A. Then, the function Γk(d) and
the model mk(d) satisfy the Growth Conditions.
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Proof. Since Γk(d) is constructed by Hermite interpolation of the convex quadratic function
1
2d

TBkd and one interpolation point is placed at the origin (see Step 2 of Procedure 3.1),
we immediately obtain the Growth Condition P1.

Because Hermite interpolation builds an underestimate of the function 1
2d

TBkd, we have

Γk(d) ≤ 1
2d

TBkd ≤ βu‖d‖2,

where the second inequality follows from (4.1). Hence, condition P2 is satisfied.
To establish P3, note that since the sequences {tik,u}, {tik,l} are bounded, it follows from

(3.6) and (3.8) that

Γik(d
i) + ∂f(xk)

∂xi
di ≥ −1

2b
i
k(t

i
k,u)2 + (bikt

i
k,u + ∂f(xk)

∂xi
)di (4.6)

≥ κ2 + (bikt
i
k,u + ∂f(xk)

∂xi
)di (4.7)

and

Γik(d
i) + ∂f(xk)

∂xi
di ≥ −1

2b
i
k(t

i
k,l)

2 + (bikt
i
k,l + ∂f(xk)

∂xi
)di

≥ κ2 + (bikt
i
k,l + ∂f(xk)

∂xi
)di, (4.8)

where κ2 = −1
2κ

2
1βu and κ1 is a constant such that −κ1 ≤ tik,l ≤ tik,u ≤ κ1, for all k and all

i. Now, if di ≥ 0 , we have from the second inequality in (4.1), (4.5) and (4.7) that

Γik(d
i) + ∂f(xk)

∂xi
di ≥ κ2 + κ0βld

i. (4.9)

Similarly, if di < 0 we have that

Γik(d
i) + ∂f(xk)

∂xi
di ≥ κ2 − κ0βld

i. (4.10)

Together, (4.9) and (4.10) imply

Γik(d
i) + ∂f(xk)

∂xi
di ≥ κ2 + κ0βl|di|,

for any di. Recalling (3.1) and (3.10), and summing over all coordinates i, yields

mk(d) = ∇f(xk)
Td+ Γk(d) ≥ nκ2 + κ0βl‖d‖1 ≥ nκ2 + κ0βl‖d‖, (4.11)

which implies (4.4) with ς = κ0βl/2, and ∆G = −2nκ2/κ0βl. �

Having shown that there is a practical way of ensuring the Growth Conditions, we
assume for the rest of this section that Γk is constructed at every iteration to satisfy these
conditions.

For reference below, we note that since Γk is convex with Γk(0) = 0, and if v denotes
an element of its subdifferential at d, we have Γk(0) ≥ Γk(d) + vT(0− d), and hence

Γk(d) ≤ vTd. (4.12)

We first establish that the PLA steps dk are bounded.
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Lemma 4.2 If Assumptions I and the Growth Conditions hold, the PLA subproblem is well
defined and there exists a constant L0 > 0 such that

‖dk‖ ≤ L0, for all k.

Proof. We first note that since the step dk solves the PLA problem (2.4), it satisfies the
KKT conditions (2.5), and from (2.5a), (2.5b) and (2.5e) we have that

∇f(xk)
Tdk + vT

kdk = −λT
k+1h(xk)− µT

k+1g(xk). (4.13)

Recalling (4.12), we have

∇f(xk)
Tdk + Γk(dk) ≤ −λT

k+1h(xk)− µT
k+1g(xk).

Due to the boundedness of h(xk) and g(xk) in Ω, and the boundedness of the multipliers,
there exists a constant κ4 such that

mk(dk) = Γk(dk) +∇f(xk)
Tdk ≤ κ4. (4.14)

By combining this bound with (4.4), we obtain

‖dk‖ ≤ min{κ4/ς,∆G} , L0. (4.15)

�

We can now show that the penalty parameter is bounded.

Lemma 4.3 If Assumptions I hold, there exists an integer k̄ and a positive scalar π̄ such
that for all k ≥ k̄, the sequence {πk} generated by Algorithm 2.1 satisfies πk = π̄.

Proof. From (2.5c) and (2.5e) we have both

λT
k+1∇h(xk)

Tdk = −λT
k+1h(xk) and µT

k+1∇g(xk)
Tdk = −µT

k+1g(xk). (4.16)

We also have that
−λT

k+1h(xk) ≤ ‖λk+1‖∞‖h(xk)‖1,

and since µk+1 ≥ 0,

−µT
k+1g(xk) ≤ µT

k+1g(xk)
− ≤ ‖µk+1‖∞‖g(xk)

−‖1,

where g(xk)
− = max{0,−g(xk)}. Substituting these relations in (2.5a) we obtain

∇f(xk)
Tdk + vT

kdk ≤ ‖(λk+1, µk+1)‖∞(‖h(xk)‖1 + ‖g(xk)
−‖1),

or equivalently,
∇f(xk)

Tdk + vT
kdk

‖h(xk)‖1 + ‖g(xk)−‖1
≤ ‖(λk+1, µk+1)‖∞ ≤ γm, (4.17)



Piecewise-Linear Models for Optimization 15

where γm is defined in Assumptions I-c. By (2.5f), the vector vk is an element of the
subdifferential set of Γk(dk), and therefore by combining (4.12) and (4.17), and recalling
(2.20), we obtain

πtrial
k =

∇f(xk)
Tdk + Γk(dk)

(1− ρ)(‖h(xk)‖1 + ‖[g(xk)]−‖1)
≤ γm

1− ρ
. (4.18)

Consequently, by (2.21), we have that for all k

πk ≤ max{π0,
γm
1−ρ + πb},

which shows that πk is bounded above. Since the sequence {πk} is nondecreasing and
bounded, and when it increases it does so by at least πb, we conclude that πk must be
constant after a finite number of iterations, and that this constant value satisfies π̄ ≤
max{π0,

γm
1−ρ + πb}. �

The following technical result will allow us to prove that the algorithm satisfies the KKT
conditions of (2.1) in the limit.

Lemma 4.4 If Assumptions I and the Growth Conditions hold, Algorithm 2.1 yields the
limit

lim
k→∞

qred(dk) = 0. (4.19)

Proof. Let us assume that the iteration indices k are large enough such that πk = π̄, where
π̄ is given in Lemma 4.3.

By (2.18), we have qred(dk) ≥ 0 for all k and therefore by (2.11) and (2.15) the se-
quence {φπ̄(xk)} is monotonically decreasing. Since φπ̄(xk) is bounded from below on Ω by
Assumptions I, the sequence{φπ̄(xk)} must converge, i.e.,

lim
k→∞

(φπ̄(xk+1)− φπ̄(xk)) = 0.

Given that (2.11) or (2.15) hold at each iteration, this limit implies

lim
k→∞

αkqred(dk) = 0, (4.20)

where αk = α̂k if the line search enforced condition (2.11), and αk = ᾱk if it enforced
condition (2.15). Thus, if we can show that ᾱk is bounded away from zero for all k, then
(4.20) implies the limit (4.19).

Recalling the definition (2.13), Assumptions I, the condition Γk(d) ≥ 0, and Lemma 4.2
we have, for any α,

φπ̄(xk + αdk)− qπ̄(αdk) ≤ f(xk + αdk)− (f(xk) + α∇f(xk)
Tdk)

+ π̄(‖h(xk + αdk)‖1 − ‖h(xk) + α∇h(xk)dk‖1)

+ π̄(‖[g(xk + αdk)]
−‖1 − ‖[g(xk) + α∇g(xk)dk]

−‖1)

≤ L1α
2‖dk‖22

≤ L2
0L1α

2,

(4.21)
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for some constant L1 > 0. In addition, using the convexity of qπ̄(·) and recalling (2.12), we
have

qπ̄(αdk)− qπ̄(0) ≤ α(qπ̄(dk)− qπ̄(0)) = −αqred(dk). (4.22)

By adding (4.21) and (4.22), and noting that φπ̄(xk) = qπ̄(0), we get

φπ̄(xk + αdk)− φπ̄(xk) ≤ L2
0L1α

2 − αqred(dk). (4.23)

Now, suppose that ᾱk in (2.15) is less than 1. Since the line search algorithm chooses
ᾱk as the first element in the sequence {1, τ, τ2, · · · } that satisfies (2.15), this implies that
(2.15) was violated for the value ᾱk/τ :

φπ̄(xk + (ᾱk/τ)dk)− φπ̄(xk) > −σ(ᾱk/τ)qred(dk).

Combining this inequality with (4.23) (with α = ᾱk/τ) we have

L2
0L1(ᾱk/τ)2 − (ᾱk/τ)qred(dk) > −σ(ᾱk/τ)qred(dk).

This implies

ᾱk >
τ(1− σ)

L2
0L1

qred(dk). (4.24)

Therefore, since in (4.20) either αk = ᾱk or αk satisfies the bound (4.24), we have

0 = lim
k→∞

αkqred(dk) ≥ lim
k→∞

min

{
1,
τ(1− σ)

L2
0L1

qred(dk)

}
qred(dk) ≥ 0

from which we immediately get (4.19). �

Corollary 4.5 The sequence {xk} generated by Algorithm 2.1 is asymptotically feasible,
i.e.,

lim
k→∞

(‖h(xk)‖1 + ‖g(xk)
−‖1) = 0.

Proof. The result follows immediately from (2.18) and the previous lemma. �

Lemma 4.6 The sequence {xk} generated by Algorithm 2.1 satisfies

lim
k→∞

g(xk)
Tµk+1 = 0 (4.25)

and
lim
k→∞

Γk(dk)− vT
kdk = 0. (4.26)
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Proof. By (2.19) and Lemmas 4.3–4.5, we have

lim
k→∞

∇f(xk)
Tdk + Γk(dk) = 0. (4.27)

Equivalently, for any ε > 0 there exists k0 > 0 such that for k > k0, we have

−ε ≤ ∇f(xk)
Tdk + Γk(dk) ≤ ε.

Since vk ∈ ∂Γ(dk), we further have by (4.12) that

−ε ≤ ∇f(xk)
Tdk + vT

kdk.

Combining this bound with (4.13), we obtain

−ε ≤ −h(xk)
Tλk+1 − g(xk)

Tµk+1 ≤ (‖h(xk)‖1 + ‖g(xk)
−‖1)γm,

where γm is given in Assumptions I-c. By Corollary 4.5, there exists k1 such that if k ≥ k1,
we have ‖h(xk)‖1 + ‖g(xk)

−‖1 ≤ ε/γm. Therefore, for k ≥ max{k0, k1}, we have

−ε ≤ −[h(xk)
Tλk+1 + g(xk)

Tµk+1] ≤ ε,

and hence we have established that

lim
k→∞

h(xk)
Tλk+1 + g(xk)

Tµk+1 = 0. (4.28)

According to Corollary 4.5, we have limk→∞ ‖h(xk)‖1 = 0, and by the boundedness of λk+1,
it follows that limk→∞ h(xk)

Tλk+1 = 0. Substituting this into (4.28), we get (4.25). Finally,
by combining (4.13), Corollary 4.5 and (4.25) we obtain

lim
k→∞

∇f(xk)
Tdk + vT

kdk = 0,

and subtracting this limit from (4.27) yields

lim
k→∞

Γk(dk)− vT
kdk = 0.

�
We now show that the subgradients of Γk at dk converge to zero.

Lemma 4.7 The sequence {vk} generated by Algorithm 2.1 satisfies

lim
k→∞

vk = 0. (4.29)

Proof. Lemma 4.6 implies that for any ε > 0, there exists an integer k(ε) such that for all
k > k(ε),

0 ≤ vT
kdk − Γk(dk) ≤ ε. (4.30)
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Assuming without loss of generality that ε < 1, then by definition of vk, the convexity of
Γk, and (4.30), we have

Γk(
√
ε vk
‖vk‖) ≥ Γ(dk) + vT

k (
√
ε vk
‖vk‖ − dk) ≥

√
ε‖vk‖ − ε. (4.31)

The growth condition (4.3) implies that

Γk(
√
ε vk
‖vk‖) ≤ βuε,

which together with (4.31) yields

‖vk‖ ≤ (βu + 1)
√
ε.

Hence we obtain the limit (4.29). �

We can now establish the main result of this section, namely that the primal-dual
iterates defined by xk and the PLA multipliers (λk+1, µk+1) satisfy the KKT conditions of
the nonlinear program, in the limit.

Theorem 4.8 Suppose that Assumptions I hold and that Γk and mk satisfy the Growth
Conditions on page 12. Then, any limit point of the sequence (xk, λk+1, µk+1) generated by
Algorithm 2.1 satisfies the KKT conditions (2.3).

Proof. We have shown in Lemma 4.5 that (2.3b) and (2.3c) hold in the limit, while
the nonnegativity of µk+1 is guaranteed by (2.5d). Lemma 4.6 shows that the sequence
{(xk, λk+1, µk+1)} satisfies (2.3e) in the limit. As to (2.3a), it holds in the limit because of
(2.5a) and (4.29). �

This global convergence result applies to the case when Γ is constructed by the Hermite
interpolation process described in Procedure 3.1 and when the interpolation points satisfy
Placement Conditions A. This is because Lemma 4.1 shows that the Growth Conditions
are satisfied in this case. Thus, we have identified a concrete implementation of the PLA
algorithm for which global convergence can be guaranteed. Clearly, many other strategies
are permitted by our analysis.

5 Local Convergence Analysis

In this section, we give conditions under which Algorithm 2.1 identifies the optimal active
set as the iterates approach a solution x∗ that satisfies standard regularity conditions.

We recall that the working set Wk at iteration k is given by (2.6), and we denote the
active set at x∗ as

W∗ = {i ∈ E} ∪ {i ∈ I | gi(x∗) = 0}. (5.1)

Given a working set W, we employ a superscript W to denote a subvector with elements in
W. For instance,

gW (xk) = [gi(xk)]i∈W . (5.2)
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For convenience, we also define

cW (xk)
4
=

[
h(xk)
gW (xk)

]
and AW (xk)

4
=

[
∇h(xk)

T

∇gW (xk)
T

]
, (5.3)

and let [ν]W denote the multiplier set corresponding to a given working set W; specifically

[ν]W
4
=

[
λ

[µ]W

]
and ν∗

4
=

[
λ∗

[µ∗]
W∗

]
. (5.4)

The local convergence analysis of this section is self-contained and independent of the
analysis in Section 4. This is so that we can identify essential properties of the model Γ that
yield the desired active-set identification results. In Section 7 we outline an implementation
of the algorithm that enjoys both the global and local convergence properties.

We make the following assumptions throughout this section.

Assumptions II

a) x∗ is a KKT point of the nonlinear program (2.1), and the functions f, h and g are
continuously differentiable in a neighborhood of x∗.

b) The PLA subproblem (2.4) is feasible for all k.

c) The linear independence constraint qualification and strict complementarity hold at
x∗. Thus, AW∗(x∗) has full rank and there is a vector ν∗ such that

∇f(x∗)−AW∗(x∗)
Tν∗ = 0, [µ∗]

W∗ > 0, and gi(x∗) > 0 for i /∈ W∗. (5.5)

d) There exist constants βl > 0 and βu > 0 such that for all k,

βl‖d‖2 ≤ dTBkd ≤ βu‖d‖2 for all d ∈ Rn. (5.6)

These assumptions are fairly standard in active-set identification studies; see e.g. [11].

In order to show that the PLA step dk identifies the optimal active setW∗ for xk close to
x∗, the piecewise linear function Γk(d) must have an appropriate shape. In general terms,
it should be sufficiently flat near the origin (so that the gradient of the model mk(d) at
d = 0 is close to ∇f(xk)), and it should grow at least linearly for large d (so that the step
is restricted). The desired properties of Γk are stated precisely as conditions i) and ii) in
the following lemma. Later on, in Lemma 5.3, we show that, by appropriately placing the
interpolation points, we can guarantee that Γk satisfies these properties.

Lemma 5.1 Suppose that Assumptions II hold at x∗. There exist constants γs > 0, γ1 > 0
such that, if Γk satisfies the following two properties for all xk close to x∗:

i) For all ‖d‖ ≥ γ1

Γk(d) ≥ γs‖xk − x∗‖‖d‖; (5.7)
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ii) For all d,
Γk(d) ≤ βu‖d‖2, (5.8)

then the PLA step dk satisfies

‖dk‖ < γ1 and Wk ⊆ W∗. (5.9)

Proof. Let us consider the second condition in (5.9). To show that for xk close to x∗ there
cannot exist an index i ∈ Wk such that i /∈ W∗, we need to consider only the inequality
constraints since, by definition (2.6), all equality constraints are contained in each working
set Wk as well as in W∗.

For any index i /∈ W∗, we have that gi(x∗) > 0, and thus there is a positive constant εg
such that

gi(x) ≥ εg > 0, (5.10)

for all xk close to x∗. Consider now any vector d that satisfies

gi(x) +∇gi(x)Td ≤ 0 for i /∈ W∗. (5.11)

Then
‖∇gi(x)‖‖d‖ ≥ −∇gi(x)Td ≥ gi(x) ≥ εg, (5.12)

which gives the lower bound

‖d‖ ≥ εg/‖∇gi(x)‖ ≥ εg/γg , γ1, (5.13)

where γg > 0 is a constant such that ‖∇g(x)‖ ≤ γg for all x ∈ Ω.
Since AW∗(x∗) has full rank by Assumptions II-(a), we have that for xk close to x∗, the

matrix AW∗(xk) has full rank and thus the system

cW∗(xk) +AW∗(xk)d = 0 (5.14)

has a solution (that is not necessarily unique). Let d̂k denote the minimum norm solution
of this system. Thus

cW∗(xk) +AW∗(xk)d̂k = 0, (5.15)

and since by definition cW∗(x∗) = 0 we have, for xk near x∗,

d̂k = O(‖xk − x∗‖). (5.16)

Therefore, if xk is sufficiently close to x∗ the vector d̂k cannot satisfy the lower bound (5.13).
But since we have shown that all steps d satisfying (5.11) also satisfy (5.13), we deduce that
d̂k cannot satisfy (5.11), and thus

gi(xk) +∇gi(xk)Td̂k > 0, for i /∈ W∗. (5.17)

This condition and (5.15) show that d̂k is a feasible step of the PLA problem (2.4). This
allows us to obtain an upper bound for the PLA objective (2.4a) by noting from (5.16) and
(5.8) that there is a constant γ2 such that

∇f(xk)
Td̂k + Γk(d̂k) ≤ γ2‖xk − x∗‖, (5.18)
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for all xk in some neighborhood of x∗.
Consider now the solution dk of the PLA subproblem (2.4). Clearly,

∇f(xk)
Tdk = [∇f(xk)−AW∗(xk)

Tν∗]
Tdk + νT

∗A
W∗(xk)dk, (5.19)

and by the first condition in (5.5), there is a constant γ3 such that for all xk near x∗

‖[∇f(xk)−AW∗(xk)
Tν∗]

Tdk‖ ≤ γ3‖xk − x∗‖‖dk‖. (5.20)

As to the last term in (5.19), since dk is feasible for the PLA problem (2.4), it satisfies

∇h(xk)
Tdk + h(xk) = 0, and ∇gW∗(xk)

Tdk + gW∗(xk) ≥ 0, (5.21)

and since h(x∗) = gW∗(x∗) = 0 and [µ∗]
W∗ ≥ 0, by continuity of h and g we have that

λT
∗∇h(xk)

Tdk ≥ −γ4‖xk − x∗‖

and
([µ∗]

W∗)T∇gW∗(xk)
Tdk ≥ −([µ∗]

W∗)TgW∗(xk) ≥ −γ5‖xk − x∗‖,

for some constants γ4, γ5 > 0. Combining these two inequalities and recalling (5.3)-(5.4),
we have

νT
∗A
W∗(xk)dk ≥ −(γ4 + γ5)‖xk − x∗‖. (5.22)

Substituting this bound and (5.20) in (5.19), we have that

∇f(xk)
Tdk ≥ −γ3‖xk − x∗‖‖dk‖ − γ6‖xk − x∗‖, where γ6 = γ4 + γ5. (5.23)

Let us define
γs ,

γ2+γ6
γ1

+ γ3 + 1, (5.24)

and assume that (5.7) holds in a neighborhood of x∗, where γ1 is defined in (5.13). To
prove (5.9), suppose by way of contradiction that the PLA step satisfies ‖dk‖ ≥ γ1. Then,
combining (5.7) and (5.23), we obtain

∇f(xk)
Tdk + Γk(dk) ≥ (γs − γ3)‖xk − x∗‖‖dk‖ − γ6‖xk − x∗‖. (5.25)

We have seen that the minimum norm step d̂k satisfies (5.18), and since the PLA step dk
cannot yield a greater PLA objective value than d̂k, we have from (5.18), (5.24) and (5.25)
that

γ2‖xk − x∗‖ ≥ (γ2+γ6
γ1

+ 1)γ1‖xk − x∗‖ − γ6‖xk − x∗‖ (5.26)

or, equivalently,
γ1 ≤ 0.

This contradicts the definition of γ1 in (5.13). Therefore, we must have that ‖dk‖ < γ1,
and consequently (5.11) does not hold for any i /∈ W∗. We have thus shown that, for any
i /∈ W∗, we must have that i /∈ Wk, and this concludes the proof. �

We can now establish the active set identification result for the new algorithm.
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Theorem 5.2 Suppose that Assumptions II hold at x∗. There exist constants γs > 0, γ1 > 0
such that if condition (5.7) and (5.8) in Lemma 5.1 are satisfied, then

Wk =W∗ (5.27)

for all large xk close to x∗.

Proof. By Lemma 5.1, we know that Wk ⊆ W∗ for xk close to x∗. Suppose by way of
contradiction that for some sequence {xk} → x∗, we have that Wk + W∗, i.e., there exists
an index i ∈ W∗ ∩ I such that i /∈ Wk .

Let us define the index set W−∗ :=W∗\{i}, so that AW
−
∗ (x) denotes the matrix obtained

by removing row ∇gi(x)T from AW∗(x). Since we assume that i /∈ Wk, we have that for xk
near x∗ the PLA step dk satisfies

∇f(xk)−AW
−
∗ (xk)

TνW
−
∗ + vk = 0 (5.28a)

cW
−
∗ (xk) +AW

−
∗ (xk)dk = 0 (5.28b)

νW
−
∗ ≥ 0, (5.28c)

where vk ∈ ∂Γk(dk) and νW
−
∗ is the vector obtained by removing µi from νW∗ . Equivalently,

dk solves the following relaxation of the PLA subproblem at xk.

min
d
∇f(xk)

Td+ Γk(d) (5.29a)

s.t. gW
−
∗ (xk) +∇gW−

∗ (xk)
Td ≥ 0 (5.29b)

h(xk) +∇h(xk)
Td = 0. (5.29c)

Now, since AW∗(x∗) has full rank and [µ∗]
W∗ > 0, the equations in (5.5) can no longer be

satisfied if we replace AW∗(x∗) with AW
−
∗ (x∗). In other words, the dual system

∇f(x∗)−∇gW
−
∗ [µ]W

−
∗ −∇h(x∗)λ = 0, [µ]W

−
∗ ≥ 0

is infeasible, and by Farkas’s lemma we can find a direction dF
∗ and a scalar τ > 0 such that

‖dF
∗‖ = 1, ∇f(x∗)

TdF
∗ < −2τ, ∇gW−

∗ (x∗)
TdF
∗ ≥ 0, ∇h(x∗)

TdF
∗ = 0. (5.30)

Since AW
−
∗ (x∗) has full rank and A(x) is continuous, in a neighborhood of x∗ we can define

the direction

dF(x) = dF
∗ +AW

−
∗ (x)T[AW

−
∗ (x)AW

−
∗ (x)T]−1(AW

−
∗ (x∗)−AW

−
∗ (x))dF

∗ , (5.31)

which satisfies
AW

−
∗ (x)dF(x) = AW

−
∗ (x∗)d

F
∗ . (5.32)

It follows by (5.30)–(5.32) and continuity of ∇f(x), dF(x) and A(x) that, for xk close to x∗,
the vector dF(xk) satisfies

∇f(xk)
TdF(xk) < −τ, ∇gW−

∗ (xk)
TdF(xk) ≥ 0, ∇h(xk)

TdF(xk) = 0 (5.33)
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and
‖dF(xk)‖ = 1 +O(‖xk − x∗‖). (5.34)

By Assumptions II, there exists a direction dC(x) = O(‖xk − x∗‖) such that

gW
−
∗ (xk) +∇gW−

∗ (xk)
TdC(xk) = 0, h(xk) +∇h(xk)

TdC(xk) = 0. (5.35)

We can combine these two directions using scalar α > 0 to define

d̃k(α) = dC(xk) + αdF(xk).

Clearly, ‖d̃k(α)‖ = α+O(‖xk − x∗‖), and

gW
−
∗ (xk) +∇gW−

∗ (xk)
Td̃k(α) ≥ 0, h(xk) +∇h(xk)

Td̃k(α) = 0, (5.36)

showing that d̃k(α) is feasible for problem (5.29), for any α.

From (5.33), we have

∇f(xk)
Td̃k(α) < −ατ +O(‖xk − x∗‖). (5.37)

In particular, if we choose α = ‖xk − x∗‖δ for δ ∈ (0, 1), we have

∇f(xk)
Td̃k(α) < −1

2τ‖xk − x∗‖
δ. (5.38)

Since ‖d̃k(α)‖ = α+O(‖xk − x∗‖) = O(‖xk − x∗‖δ), we also have from (5.8)

Γk(d̃k(α)) ≤ βu‖d̃k(α)‖2 = O(‖xk − x∗‖2δ). (5.39)

Now, since dk is the optimal solution of the PLA subproblem (2.4), it must yield an objective
value that is not larger than that given by d̃k(α), i.e.,

∇f(xk)
Tdk + Γk(dk) ≤ ∇f(xk)

Td̃k(α) + Γk(d̃k(α)) ≤ −1
4τ‖xk − x∗‖

δ, (5.40)

which together with the condition Γk(dk) ≥ 0, implies

∇f(xk)
Tdk ≤ −1

4τ‖xk − x∗‖
δ. (5.41)

We now show that this leads to a contradiction. By (5.5) and continuity of ∇f and A,
we have that for xk near x∗

∇f(xk)−∇gW∗(xk)[µ∗]
W∗ −∇h(xk)λ∗ = O(‖xk − x∗‖), (5.42)

and therefore, there exists a constant γ9 > 0 such that

dT
k∇f(xk)−dT

k∇gW∗(xk)[µ∗]
W∗−dT

k∇h(xk)λ∗ ≥ −γ9‖xk−x∗‖‖dk‖ ≥ −γ1γ9‖xk−x∗‖, (5.43)

where the last inequality follows from (5.9). Since the PLA step satisfies ∇gW∗(xk)dk +
gW∗(xk)

T ≥ 0, and [µ∗]
W∗ ≥ 0, gW∗(x∗) = 0, by continuity of g(x), we have that

dT
k∇gW∗(xk)[µ∗]

W∗ ≥ −gW∗(xk)
T[µ]W∗ ≥ −γ10‖xk − x∗‖ (5.44)
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for some constant γ10 > 0. Similarly, since ∇h(xk)
Tdk + h(xk) = 0 and h(x∗) = 0, we have

dT
k∇h(xk)λ∗ = λT

∗h(xk) ≥ −γ11‖xk − x∗‖ (5.45)

for some constant γ11 > 0 . Combining (5.43)–(5.45) yields

∇f(xk)
Tdk ≥ −(γ1γ9 + γ10 + γ11)‖xk − x∗‖, (5.46)

which contradicts (5.41) for xk sufficiently small to x∗. Therefore, there cannot exist an
index i such that i ∈ W∗ and i /∈ Wk. �

Theorem 5.2 gives conditions on the shape of the piecewise linear function Γ that ensure
correct active set identification. However, in computation Γ is determined by placement
of the interpolation points, as described in Section 3. The following result specifies two
intervals that must contain interpolation points for each coordinate direction, in order for
Γk to have the desired properties.

Theorem 5.3 Suppose that Assumptions II hold at x∗ and that the PLA model Γk is con-
structed as in Section 3. Then, there exist constants γs > 0, γ1 > 0 such that, if both
intervals

[2
√
nγs
βl
‖xk − x∗‖, γ1√

n
] and [− γ1√

n
, −2

√
nγs
βl
‖xk − x∗‖] (5.47)

contain interpolation points for all coordinate directions i and for all xk close to x∗, condi-
tion (5.7) holds and

Wk =W∗. (5.48)

Proof. Since the conditions of Lemma 5.1 are satisfied, let γs and γ1 be the values guar-
anteed by that lemma. Suppose the intervals (5.47) contain interpolation points ti+ > ti−
respectively, and suppose ‖d‖ ≥ γ1. Then ‖d‖∞ ≥ γ1√

n
, and equivalently, for some i,

‖d‖∞ = |di| ≥ γ1√
n

. Suppose first that di ≥ γ1√
n

. Then di ≥ ti+, and by (3.6) and (3.8)

Γik(d
i) ≥ −1

2b
i
k(t

i
+)2 + bikt

i
+d

i

≥ 1
2βlt

i
+d

i

≥ γs
√
n‖xk − x∗‖‖d‖∞ (5.49)

≥ γs‖xk − x∗‖‖d‖, (5.50)

since ti+ ≥ 2
√
nγs‖xk − x∗‖/βl, and

√
n‖d‖∞ ≥ ‖d‖. A similar argument implies (5.50)

when di ≤ − γ1√
n

. Since Γk(d) ≥ Γik(d
i), we have attained (5.7).

Because Γk(d) is an under estimate of 1
2d

TBkd, by noticing Assumption II-(d) we obtain
(5.8). The conclusion (5.48) follows from Theorem 5.2. �

It is interesting to note that the intervals (5.47) are similar to the interval specified
by Oberlin and Wright [21] for a trust region radius in an SL-QP method. Although the
values γs and γ1 are not generally available, one can ensure the conditions of Theorem
5.48 are satisfied in the limit, for example by specifying that one interpolation point ti =
O(‖xk − x∗‖1/2). Several quantities computed by the algorithm, such as the norm of the
KKT error, are of order O(‖xk − x∗‖1/2).
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6 A Variant Based on BFGS Updating

In the previous sections, we assumed that the Hessian approximation Bk is diagonal. One
way to incorporate more useful curvature information about the problem is to define Bk
through limited memory quasi-Newton updating. Due to the special structure of this matrix,
we can perform a change of variables (at reasonable cost) that allows us to represent the
model in separable form, and then apply the interpolation techniques discussed in Section 3
to construct a piecewise linear model. We refer to the method based on this approach as
the BFGS-PLA algorithm.

At an iterate xk, we update a BFGS approximation Bk to the Hessian of the Lagrangian
∇2
xxL(xk, λk, µk). The matrix Bk is defined in terms of l/2 correction pairs {si, yi}, i =

1, ..., l/2, where each si stores the change in the variables x at a previous iteration and yi
stores the corresponding change in the gradient of the Lagrangian; see e.g., [20, section 18.3].
Here l is a small even number (say l = 10). This limited memory BFGS approximation can
be written in a so-called compact form [4],

Bk = θkI + UkRkU
T
k , (6.1)

where θk > 0 is a scaling parameter, I is the identity matrix, Uk is an n × l dense matrix
whose columns are formed by the vectors si and yi, and Rk is a symmetric l × l matrix.

For the sake of numerical stability, we orthgonalize the columns of Uk to obtain an n× lk
matrix Vk such that

V T
k Vk = I, and span(Vk) = span(Uk), (6.2)

where lk ≤ l is the rank of Uk. If we use the Gram-Schmidt process or Householder
transformations, the cost of computing Vk is of the order O(nl2), which is acceptable when
l is small.

The quadratic model dTBkd defined through (6.1) is not separable (Bk is a dense matrix),
but it has a special structure. In order to represent it in separable form, we first form the
lk × lk matrix

Sk = V T
k BkVk = θkI + V T

k UkRkU
T
k Vk (6.3)

that can be diagonalized at negligible cost. Thus, we compute

Sk = QkΣkQ
T
k , (6.4)

where Qk is an lk × lk orthogonal matrix and Σk is a diagonal matrix.
Let us define the variables q ∈ Rn+lk through the invertible linear transformation[

d
0

]
=

[
VkQk I

0 V T
k

]
q and q =

[
q1

q2

]
, (6.5)



Piecewise-Linear Models for Optimization 26

where q1 ∈ Rlk and q2 ∈ Rn. Then from (6.1)–(6.5), we have

1
2d

TBkd = 1
2 (VkQkq1 + q2)TBk (VkQkq1 + q2)

= 1
2q

T
1Q

T
kSkQkq1 + qT1Q

T
kV

T
k Bkq2 + 1

2q
T
2Bkq2

= 1
2q

T
1 Σkq1 + 1

2θkq
T
2 q2

= 1
2q

T

[
Σk 0
0 θkI

]
q

4
= 1

2q
TCkq.

(6.6)

where the second equality follows from (6.5), since V T
k q2 = 0 implies UT

k q2 = 0, and conse-
quently we have both Bkq2 = θkq2 and V T

k Bkq2 = 0.
Since 1

2q
TCkq is separable function in Rn+lk , we can compute a piecewise linear ap-

proximation Γk(q) to it, as discussed in Section 3. For each i ∈ {1, ..., n + lk} we define a
univariate piecewise linear function Γik such that

Γik(q
i) ≈ 1

2c
i
k(q

i)2, (6.7)

where cik denotes the i-th diagonal entry of Ck. As in Section 3, the univariate function
Γik(q

i) is composed of (rik + 1) linear segments denoted by `ik,j(q
i), for j = 0, · · · , rik. We

choose `ik,j(q
i) to be the Hermite interpolant of 1

2c
i
k(q

i)2 at a designated node tik,j . This
implies that

`ik,j(q
i) = −1

2c
i
k(t

i
k,j)

2 + (cikt
i
k,j)q

i. (6.8)

We require that one interpolation point be given by tik,0 = 0, as in (3.9). We now define

Γik(q
i) = max

j
{`ik,j(qi)}, j ∈ J ik = {0, · · · , rik}. (6.9)

This ensures Γik(q
i) ≥ 0, for all qi, and Γik(0) = 0. The multivariate function Γk(q) that

approximates 1
2q

TCkq is then given as

Γk(q) ,
n+lk∑
i=1

Γik(q
i). (6.10)

If we define the linear transformation Tk : Rn+lk → Rn+lk as follows:[
d
0

]
= Tkq, with Tk =

[
VkQk I

0 V T
k

]
, (6.11)

then the PLA subproblem (2.4) can now be stated as

min
q,d
∇f(xk)

Td+ Γk(q) (6.12a)

s.t. Tkq =

[
d
0

]
(6.12b)

h(xk) +∇h(xk)
Td = 0 (6.12c)

g(xk) +∇g(xk)
Td ≥ 0. (6.12d)
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The first lk columns and the last lk rows of the constraint matrix corresponding to (6.12b)
are not sparse. Thus, the memory length l/2 must be chosen small enough so that the cost
of working with these constraints is acceptable.

The BFGS-PLA algorithm is the variant of Algorithm I that uses the limited memory
BFGS approximation (6.1) and defines the piecewise linear subproblem by (6.12). A prac-
tical implementation of this algorithm is outside the scope of this paper because it must
address a variety of delicate issues, including a reformulation of the linear program (6.12)
that keeps the computation cost to a minimum, a procedure for safeguarding the BFGS up-
date, and the use of a trust region to stabilize the step computation. These issues, as well
as computational experiments with the BFGS-PLA algorithm are reported in a companion
paper [7].

Our interest here is to show that the limited memory BFGS-PLA algorithm enjoys the
global and local convergence guarantees described in Sections 4 and 5.

6.1 Convergence Analysis

Let us begin by studying the global convergence properties of the BFGS-PLA algorithm.
We have seen in Section 4 that Algorithm I is globally convergent if the model mk and
the function Γk satisfy Growth Conditions of page 12. Note that in that analysis we did
not assume that the Hessian approximation Bk is diagonal, but only that it is uniformly
positive definite and bounded; see (4.1). Such generality will be very useful in the analysis
of this section.

We begin by expressing the PLA subproblem (6.12) in the space of the original variables
d. For this purpose, we first note that, by construction, the matrix Tk defined in (6.11) is
invertible for all k. Thus, we can define the function

q̂k(d) = T−1
k

[
d
0

]
, (6.13)

and the model

Γ̂k(d) = Γk(q̂k(d)) =

n+lk∑
i=1

Γik(q̂
i
k(d)). (6.14)

The PLA subproblem (6.12) can then be expressed as

min
d

m̂k(d)
4
= ∇f(xk)

Td+ Γ̂k(d) (6.15a)

s.t. h(xk) +∇h(xk)
Td = 0 (6.15b)

g(xk) +∇g(xk)
Td ≥ 0. (6.15c)

If we can show that, under Assumptions I, the Growth Conditions of page 12 hold for m̂k

and Γ̂k, then we will be able to conclude from Theorem 4.8 that all limit points generated
by the BFGS-PLA algorithm are KKT points of the nonlinear program. By (6.8)-(6.10)
and (6.14), the properties of Γ̂k are influenced by the placement of the interpolation points
tik,j in Rn+lk . We now present conditions on the positioning of these points that will allow
us to prove that the model (6.15a) satisfies the Growth Conditions.
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Placement Conditions B
Define the vector ϕk ∈ Rn+lk by,

ϕk = q̂k
(
−B−1

k ∇f(xk)
)
, (6.16)

where q̂k is given in (6.13). Given a constant χ0 > 0, for each iteration k and for each
coordinate direction i in Rn+lk , at least two interpolation points tik,l, t

i
k,u satisfy

tik,l ≤ ϕik − χ0, and tik,u ≥ ϕik + χ0. (6.17)

Furthermore, the sequences {tik,l} and {tik,u} are uniformly bounded .

Let us now suppose that the limited memory BFGS matrix Bk defined in (6.1) satisfies
Assumption I-d on page 11, i.e., that it is uniformly positive definite and bounded. (In
[7] we discuss how to safeguard the limited memory BFGS update so as to guarantee this
condition in practice.) Since Bk is given by (6.1) and the rank of Uk is assume to be less
than n, Assumption I-d implies θk ∈ [βl, βu]. Similarly, by (6.3) the eigenvalues of Sk lie
in the interval that contains the eigenvalues of Bk. Therefore, we have from (6.4) that
the diagonal elements of Σk also lie in the interval [βl, βu]. Therefore, it follows from the
definition of Ck in (6.6) that for all k and all i ∈ {0, · · · , n+ lk},

βl ≤ cik ≤ βu. (6.18)

We also have from (6.2) and the orthogonality of Qk that, if d and q are related through
(6.5), then

‖d‖2 = ‖VkQkq1 + q2‖2

= qT1Q
T
kV

T
k VkQkq1 + 2qT2VkQkq1 + qT2 q2

= ‖q‖2.

Thus, for any d we have
‖q̂k(d)‖ = ‖d‖. (6.19)

The following result shows that, if the BFGS-PLA algorithm satisfies Assumptions I,
and if the interpolation points {tik,j} comply with Placement Conditions B, then the Growth
Conditions are satisfied.

Theorem 6.1 Suppose that Assumptions I on page 11 hold, and that the Placement Con-
ditions B are satisfied at each iteration. Then, the function Γ̂k(d) and the model m̂k(d)
satisfy the Growth Conditions on page 12.

Proof. We first verify that the Placement Conditions B are satisfiable by showing that
{ϕk} is bounded. From (6.16), (6.19) and Assumption I-d we have

‖ϕk‖ =
∥∥q̂k (−B−1

k ∇f(xk)
)∥∥ ≤ 1

βl
‖∇f(xk)‖ . (6.20)
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Since ‖∇f(xk)‖ is bounded above by Assumption I-a, there exists a constant ϕ̄ > 0 such
that ‖ϕk‖ ≤ ϕ̄, for all k.

Let us show that the first Growth Condition on page 12, namely (P1), is satisfied. Since
each one-dimensional function Γik(q

i) is constructed by Hermite interpolation of the convex
function 1

2c
i
k(q

i)2, with one node at the origin, we immediately have that Γik(q
i) is convex,

nonnegative, and Γik(0) = 0. Thus, by (6.10) we have that Γk(d) ≥ 0 and Γk(0) = 0.
From (6.14), the convexity of Γik(q

i), and the fact that q̂k(d) is a linear function of d, we

conclude that Γ̂k(d) is convex, nonnegative and vanishes at zero. Therefore, the first Growth
Condition (P1) is satisfied.

To show that the second Growth Condition holds, we first note from (6.6), (6.11) and
(6.13), that for any vector d ∈ Rn,

1
2 q̂k(d)TCkq̂k(d) = 1

2d
TBkd. (6.21)

Since, for each i, the function Γik(q
i) is an underestimate of 1

2c
i
k(q

i)2, i.e., Γik(q
i) ≤ 1

2c
i
k(q

i)2

for all qi, we have

Γ̂k(d) = Γk(q̂k(d)) ≤ 1
2 q̂k(d)TCkq̂k(d) = 1

2d
TBkd ≤ βu‖d‖2 (6.22)

where we have used (6.10), (6.14) and Assumption I-d. Hence the second Growth Condition
(4.3) is satisfied.

Lastly, to establish the third Growth Condition, we obtain from (6.16) and (6.21) that

ϕT
kCkϕk = ∇f(xk)

TB−1
k ∇f(xk). (6.23)

Therefore,

1
2(q̂k(d) + ϕk)

TCk(q̂k(d) + ϕk) +∇f(xk)
T
(
d−B−1

k ∇f(xk)
)

= 1
2d

TBkd− 1
2∇f(xk)

TB−1
k ∇f(xk) +

∑n+lk
i=1 cikϕ

i
kq̂
i
k(d) +∇f(xk)

Td.
(6.24)

On the other hand, by linearity of q̂k and (6.16), we have (q̂k(d)+ϕk) = q̂k
(
d−B−1

k ∇f(xk)
)
.

Thus we also have,

1
2(q̂k(d) + ϕk)

TCk(q̂k(d) + ϕk) +∇f(xk)
T
(
d−B−1

k ∇f(xk)
)

= 1
2d

TBkd− 1
2∇f(xk)

TB−1
k ∇f(xk).

(6.25)

Comparing (6.24) and (6.25), we obtain that for all d ∈ Rn,

n+lk∑
i=1

cikϕ
i
kq̂
i
k(d) +∇f(xk)

Td = 0. (6.26)

We now repeat the reasoning that led to (4.7)-(4.11). Since the sequences {tik,u}, {tik,l}
are bounded, it follows from (6.8), (6.9) and (6.18) that

Γik(q
i)− cikϕikqi ≥ χ2 + (tik,u − ϕik)cikqi (6.27)
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and

Γik(q
i)− cikϕikqi ≥ χ2 + (tik,l − ϕik)cikqi, (6.28)

where χ2 = −1
2χ

2
1βu and χ1 is a constant such that −χ1 ≤ tik,l ≤ tik,u ≤ χ1 . Now, suppose

that qi ≥ 0. From (6.17) we have that (tik,u − ϕik) ≥ χ0, and hence it follows from (6.27)
that

Γik(q
i)− cikϕikqi ≥ χ2 + χ0c

i
kq
i. (6.29)

Similarly, if qi < 0 and since (tik,l − ϕik) ≤ −χ0, we have from (6.28) that

Γik(q
i)− cikϕikqi ≥ χ2 − χ0c

i
kq
i. (6.30)

Together, (6.29) and (6.30) imply that for any qi,

Γik(q
i)− cikϕikqi ≥ χ2 + χ0c

i
k|qi|.

In particular, for all d ∈ Rn, we have

Γik(q̂
i
k(d))− cikϕikq̂ik(d) ≥ χ2 + χ0c

i
k|q̂ik(d)|. (6.31)

Combining (6.14), (6.15a), (6.26) and (6.31) yields

m̂k(d) = ∇f(xk)
Td+

n+lk∑
i=1

Γik(q̂
i
k(d))

= −
n+lk∑
i=1

cikϕ
i
kq̂
i
k(d) +

n+lk∑
i=1

Γik(q̂
i
k(d))

≥ nχ2 + χ0 ‖Ckq̂k(d)‖1 .

Now, by (6.18) and (6.19)

‖Ckq̂k(d)‖1 ≥ βl‖q̂k(d)‖1 ≥ βl‖q̂k(d)‖ = βl‖d‖,

and thus
m̂k(d) ≥ nχ2 + χ0βl‖d‖.

This implies that condition (4.4) holds with ς = χ0βl/2, and ∆G = 2n|χ2|/χ0βl. �

We can now establish a global convergence result.

Theorem 6.2 Suppose that Assumptions I on page 11 hold, and that the Placement Condi-
tions B are satisfied at each iteration. Then, any limit point of the sequence (xk, λk+1, µk+1)
generated by the BFGS-PLA version of Algorithm 2.1 satisfies the KKT conditions (2.3) of
the nonlinear program.
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Proof. In Theorem 6.1 we have shown that Growth Condition is satisfied. The result
follows from Theorem 4.8. �

Let us now consider the local active-set identification properties of the algorithm. By
placing the interpolation points in a similar manner as in Section 5, albeit in Rn+lk , we can
prove the analogue of Theorem 5.3.

Theorem 6.3 Suppose that Assumptions II on page 19 hold at x∗. There exist constants
γs > 0, γ1 > 0 such that for ‖xk − x∗‖ sufficiently small, if both intervals

[2
√
n+lkγs
βl

‖xk − x∗‖, γ1√
n+lk

] and [− γ1√
n+lk

,−2
√
n+lkγs
βl

‖xk − x∗‖] (6.32)

contain interpolation points for each coordinate direction i in Rn+lk and each iteration k,
then the conditions (5.7) and (5.8) in Lemma 5.1 are satisfied, and thus

Wk =W∗. (6.33)

Proof. Since the assumptions of Lemma 5.1 are satisfied, we let γs and γ1 be the constants
that Lemma 5.1 requires for condition (5.7).

Suppose the intervals (6.32) contain the interpolation points ti+ and ti−, respectively. If
qi ≥ γ1√

n+lk
, then qi ≥ ti+, and we obtain from (6.8) and (6.9)

Γik(q
i) ≥ −1

2c
i
k(t

i
+)2 + cikt

i
+q

i

≥ 1
2c
i
kt
i
+q

i

≥ γs
√
n+lk
βl

‖xk − x∗‖cik|qi|

≥ γs
√
n+ lk‖xk − x∗‖|qi|, (6.34)

where the last step follows from (6.18). If qi ≤ − γ1√
n+lk

, a similar argument also implies

(6.34). Now, by (6.19) we have that for any d,

‖q̂k(d)‖∞ ≥ ‖q̂k(d)‖/
√
n+ lk = ‖d‖/

√
n+ lk.

In particular, if ‖d‖ ≥ γ1, then ‖q̂k(d)‖∞ ≥ γ1√
n+lk

and thus (6.34) holds for some i so that

Γ̂k(d) =

n+lk∑
i=1

Γik(q̂
i
k(d)) ≥ γs

√
n+ lk‖xk − x∗‖‖q̂k(d)‖∞ ≥ γs‖xk − x∗‖‖d‖. (6.35)

Hence, the condition (5.7) holds. Because Γ̂k(d) is an under estimate of 1
2d

TBkd, we obtain
(5.8) by noticing Assumption II-d. The conclusion (5.48) follows from Theorem 5.2. �
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7 Final Remarks

In this paper, we proposed a new algorithm for nonlinear programming that uses piecewise
linear models in the step computation. One of the crucial ingredients for this approach is the
placement of the interpolation points employed in the construction of the piecewise linear
models. We presented two sets of placement conditions. For the case when the Hessian
approximation Bk is diagonal, we have shown in Section 4 that Placement Conditions A
ensure global convergence, while conditions (5.47) guarantee correct active set identification.

It is desirable that a practical algorithm satisfies both conditions. This can be achieved
by many strategies, including the following procedure. Let us define

ωk = min{1, ‖∇f(xk)−∇h(xk)λk+1−∇g(xk)µk+1‖+‖h(xk)‖+‖g(xk)
−‖+‖µT

k+1g(xk)‖}1/2

where (λk+1, µk+1) are the PLA multipliers. At any iteration k, generate interpolation
points tik,j by any procedure, with the stipulation that these points are uniformly bounded
and that for each coordinate i ∈ {1, · · · , n} one of these points is at zero. (In general, the
interpolation points should be placed in a region that is expected to contain the next step.)
Then check whether for each i there exist interpolation points in the two intervals

[c1ωk, c2ωk] and [−c1ωk,−c2ωk],

where 0 < c1 < c2 (say, c1 = 0.1, c2 = 10). If not, add an interpolation point in each of
these intervals, as necessary. Next, verify if conditions (4.5) are satisfied. If not, add an
interpolation point in each of the intervals[

∂f(xk)
∂xi

1
bik
− c3κ0,

∂f(xk)
∂xi

1
bik
− κ0

]
, and

[
∂f(xk)
∂xi

1
bik

+ κ0,
∂f(xk)
∂xi

1
bik

+ c3κ0

]
as needed, where c3 > 1 is some constant.

A similar strategy can be used when Bk is defined by the limited memory BFGS update
of Section 6.

In conclusion, it is not difficult to design strategies that will satisfy the conditions of
our analysis. In practice, additional safeguards are desirable that ensure efficiency and
robustness over a wide range of problems, This and other implementation issues are studied
in the companion paper [7].

References

[1] R.H. Bartels, A.R. Conn, and J.W. Sinclair. Minimization techniques for piecewise
differentiable functions – the L1 solution to an overdetermined linear system. SIAM
Journal on Numerical Analysis, 15:224–241, 1978.

[2] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. An algorithm for non-
linear optimization using linear programming and equality constrained subproblems.
Mathematical Programming, Series B, 100(1):27–48, 2004.



Piecewise-Linear Models for Optimization 33

[3] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. On the convergence of
successive linear-quadratic programming algorithms. SIAM Journal on Optimization,
16(2):471–489, 2006.

[4] R. H. Byrd, J. Nocedal, and R. Schnabel. Representations of quasi-newton matrices
and their use in limited memory methods. Mathematical Programming, 63(4):129–156,
1994.

[5] R. H. Byrd, J. Nocedal, and R. A. Waltz. Steering exact penalty methods. Optimization
Methods and Software, 23(2), 2008.
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