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ABSTRACT

A trust�region method for unconstrained minimization� using a trust�region norm based

upon a modi�ed absolute�value factorization of the model Hessian� is proposed� It is shown

that the resulting trust�region subproblem may be solved using a single factorization� In

the convex case� the method reduces to a backtracking Newton linesearch procedure� The

resulting software package is available as HSL VF�� within the Harwell Subroutine Library�

Numerical evidence shows that the approach is e�ective in the nonconvex case�
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� Introduction

In this paper� we are concerned with trust�region methods for the unconstrained minimiza�

tion of a function f
x� of n real variables x� At the k�th iteration of such a method� a

model qk
s� of f
xk � s� is approximately minimized within a trust region ksk � 
k with

the aim of improving upon the current estimate of the minimizer xk� The approximate

solution sk of this trust�region subproblem yields the improved estimate xk�� � xk � sk if

the reduction in f predicted by this model translates into an signi�cant actual reduction

of f
xk�sk�� If such a reduction is not realized� the trust�region radius 
k is reduced� and

the model resolved� If there is a good agreement between model and function� the radius

may be increased� The method is blessed with a powerful convergence theory regardless of

which norm de�nes the trust region� provided that the chosen norm is is uniformly related

to the ���norm� Little attention has been given to the appropriate choice of norm consider�

ing how strongly this choice a�ects the computation at every iteration of the algorithm� In

this paper� we suggest that there is a particular norm which has computational advantages

over the ��� or ���norms which are commonly considered�

� The subproblem

We consider the quadratic model

q
s� � hg� si� �
�
hs�Hsi� 
����

where g and H are approximations of the gradient and Hessian of f
x�� and h�� �i denotes
the Euclidean inner product � for brevity� we have dropped the dependence of these

quantities on k� We shall be concerned with elliptical trust regions of the form

kskN � 
� where ksk�N � hs�Nsi 
����

and N is a real symmetric positive�de�nite matrix� A global solution to the trust�region

subproblem is characterized by the following result�

Theorem ��� 
Gay� �	��� Sorensen� �	��� Any global minimizer s� of q
s� subject

to kskN � 
 satis�es the equation

H
���s� � �g� 
����

where H
��� � H � �N is positive semi�de�nite� �� � � and ��
ks�kN � 
� � �� If

H
��� is positive de�nite� s� is unique�
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��� Notation

Suppose thatG is any real symmetric� possibly inde�nite� matrix� and thatG has a spectral

decomposition

G � U�UT �

where � is a diagonal matrix of eigenvalues� and U is an orthonormal matrix whose columns

are the corresponding eigenvectors� Then we say that the absolute value of G is the matrix

jGj � U j�jUT �

where j�j is the diagonal matrix of absolute values of the eigenvalues of G�

We shall denote the 
appropriately dimensioned� identity matrix by I� The square root

D
�
� of a diagonal matrix D is simply the diagonal matrix whose entries are

p
dii� while the

generalized inverse D� is the diagonal matrix whose entries are ��dii if dii �� � and � if

dii � ��

� The trust�region norm

We suppose� for now� that H is nonsingular� We will relax this assumption in Section ����

��� The spectral trust region

We believe that the shape of an ideal trust region should re�ect the geometry of the model�

and not give undeserved weight to certain directions� Indeed� perhaps the ideal trust region

would be in the jHj norm� for which

ksk�jHj � hs� jHjsi� 
����

This norm re�ects the scaling of the underlying problem � directions for which the model

is changing fastest� and thus those for which the model may di�er most from the true

function� are restricted more than those directions for which the curvature is small� It has

a further interesting property� namely� that a single matrix factorization

H � U�UT 
����

is needed to solve the problem� For� on writing

sD � UT s and gD � UT g�

and using the orthonormality of U � the solution of the trust�region subproblem may be

expressed as s � UsD� where sD solves the diagonal trust�region subproblem

minimize
sD�R

n

hgD� sDi� �
�
hsD��sDi subject to hsD� j�jsDi � 
�� 
����
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The diagonal trust�region subproblem is� as we shall see� extremely inexpensive to solve�

The major drawback of such an approach is� of course� the cost of the spectral factorization


����� For problems involving a large number of variables� this decomposition is likely out

of the question�

The absolute�value factorization was originally proposed by Greenstadt 
�	��� in con�

junction with linesearch methods for unconstrained minimization�

��� The absolute�value trust region

With this in mind� we consider a symmetric� inde�nite factorization of the form

H � PLBLTP T � 
����

where P is a permutation matrix� L unit lower triangular and B block diagonal� with

blocks of size at most two� We shall refer to the blocks as � by � and � by � pivots� Notice

that the inertia of H � the numbers of positive� negative and zero eigenvalues of H �

is trivially obtained by summing the inertia of the pivots� Such a factorization was �rst

proposed by Bunch and Parlett 
�	��� and later improved by Bunch and Kaufman 
�	���

and Fletcher 
�	��� in the dense case and Du�� Reid� Munksgaard and Neilsen 
�	�	� and

Du� and Reid 
�	��� in the sparse case� More recently� Ashcraft� Grimes and Lewis 
�		��

and Higham 
�		�� have exposed a potentially serious �aw in the approach in that the

norm of the generated factor L may be unbounded relative to kHk� While� as Higham


�		�� has shown that this does not always lead to instability� a more restricted form of

pivoting� as typi�ed by the proposal of Ashcraft et al� 
�		��� may be required to ensure

that kLk stays bounded� Interestingly� the sparse method proposed by Du� and Reid


�	��� and implemented within the Harwell Subroutine Library 
�		�� code MA�� already

provided a suitably bounded kLk and will be suitable for our purposes�

We suggest that a good choice for the trust�region norm is

ksk�M � hs�Msi� 
����

where

M � PLjBjLTP T � 
����

Observe that jBj is simply computed by taking the absolute values of the � by � pivots�

and by forming an independent spectral decomposition of each of the � by � pivots and

reversing the signs of any resulting negative eigenvalues� By analogy with the Spectral

method� writing

sB � LTP T s and gB � L��P Tg� 
����
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the solution of the trust�region subproblem may be expressed as s � PL�T sB� where sB

solves the block�diagonal trust�region subproblem

minimize
sB�R

n

hgB� sBi� �
�
hsB� BsBi subject to hsB� jBjsBi � 
�� 
����

Once again� a single factorization su�ces� but this time the factorization may be a�ordable

even when n is large� Note that Gill� Murray� Poncel�eon and Saunders 
�		�� proposed this

modi�ed factorization as a preconditioner for iterative methods� while Cheng and Higham


�		�� suggest it as an alternative to the modi�ed Cholesky factorizations of Gill and

Murray 
�	���� Gill� Murray and Wright 
�	��� and Schnabel and Eskow 
�		�� within

linesearch�based methods�

We note� in passing� that others have used the factorization 
���� to de�ne trust�region

norms� Goldfarb 
�	��� suggests using 
����� but where 
���� is replaced by

M � PLLTP T � 
��	�

Following the change of variables 
����� the resulting block�diagonal trust�region is then of

the form

minimize
sB�R

n

hgB� sBi� �
�
hsB� BsBi subject to ksBk � 


and its solution is again straightforward to obtain� This idea has recently been further

explored by Xu and Zhang 
�		��� However� we believe that using 
��	� rather than 
����

does not re�ect the proper scaling of the underlying problem� Indeed� if H were a diagonal

matrix� 
���� remains as the �� norm regardless of how ill�conditioned H might be�

��� Solving the diagonal and block�diagonal trust region sub�

problems

As the diagonal trust�region subproblem is a special 
but not very special� case of the

block�diagonal case� here we shall concentrate on the latter� One could simply apply a

standard trust�region solver like GQTPAR of Mor�e and Sorensen 
�	��� to 
����� but we

prefer not to do this as this would� to some extent� ignore the structure in hand�

As B and jBj share eigenvectors� we may write

B � Q�QT and jBj � Qj�jQT �

where each column of Q is nonzero in at most two positions� with entries corresponding to

the eigenvectors of the diagonal blocks� and the entries of the diagonal matrix � are the

corresponding eigenvalues� On de�ning

sS � j�j ��QT sB and gS � j�j� �
�QT gB�
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we may solve 
���� by �nding sS to

minimize
sS�R

n

hgS� sSi� �
�
hsS� DsSi subject to ksSk� � 
� 
�����

and then recover sB � Qj�j� �
� sS� Signi�cantly� the matrix D � j�j� �

��j�j� �
� is diagonal

with entries ��� The required solution must then satisfy


D � �I�sS � �gS� 
�����

where the nonnegative Lagrange multiplier � is su�ciently large to ensure that D � �I is

positive semi�de�nite� and is zero if sS lies within the trust region ksSk� � 
�

There are two cases to consider� Firstly� if D � I� the solution to 
����� is

sS � � �

� � �
gS�

If kgSk� � 
� the solution to 
����� is given by sS � �gB and � � �� This corresponds

to the unconstrained minimizer of the model lying interior to the trust region� If� on the

other hand� kgSk� � 
� the solution to 
����� is obtained by �nding the value of � � � for

which
�


� � ��
kgSk� � 
�

This is a linear equation in � and thus the solution is trivial to obtain� the required sS is

sS � � 


kgSk�gS�

This corresponds to the case where the model is convex� but the trust region excludes

the unconstrained minimizer of the model� Notice� also� in this case� a reduction in the

trust region radius following an unsuccessful step merely reduces the length of the step

in the direction �gB� Such a strategy is identical in its e�ect 
if not in its motivation�

to a backtracking linesearch along the quasi�Newton direction �H��g� and thus there is

a strong similarity between trust�region and linesearch methods with this choice of trust

region�

Secondly� if H has negative eigenvalues� D will have some diagonal entries of ���

Suppose PS is a permutation matrix which arranges that all the positive diagonals 
��� of

D precede its negative diagonals 
���� Then it is easy to show that

sS � � �

�� � �
P T
S

�
� 
�� ��I �

� 
�� ��I

�
APSgS� 
�����

As H is inde�nite� the solution must lie on the trust�region boundary� Thus� we may

obtain � as the root larger than � of the quartic equation

hPSgS�

�
� 
�� ���I �

� 
�� ���I

�
APSgSi � 
�� � ���
��
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Although in principle this root may be found explicitly by Ferrari�s method 
see� for in�

stance� Turnbull� �	�	� and Salzer� �	���� Newton�s method is equally suitable here� A

slight complication may occur when all of the components of PSgS corresponding to the

negative diagonals of D are zero� For then 
����� yields

sS � � �

� � �
P T
S

�
� I �

� �

�
APSgS�

and it may be that there is no root larger than � of the resulting feasibility equation

hPSgS�

�
� I �

� �

�
APSgSi � 
�� ���
��

This case corresponds to the �hard� case of Mor�e and Sorensen 
�	���� and here� as there�

the solution includes a contribution from a suitable eigenvector� In our case� it is of the

form

sS
�� � � �
�
P T
S

�
� I �

� �

�
APSgS � �P T

S

�
� �

u

�
A �

where u is any nonzero vector� and � is chosen as a root of the quadratic equation

hsS
��� sS
��i � 
��

��	 Coping with singularity

Clearly� it is important to deal with any matrix H including those which are� or are close

to being� singular� Cheng and Higham 
�		�� suggest that it su�ces to compute the

factorization 
���� and to replace each eigenvalue � of the block diagonal B with the value

	 �

��
� � if � � 
 or


 otherwise

�����

for some small 
 � �� An alternative� which is closer in spirit both to the absolute value

perturbation and to Greenstadt�s 
�	��� perturbation� is to replace each eigenvalue by

	 �

����
���

� if � � 
 or

�� if � � �
 or


 otherwise�


�����

In any event� this does not signi�cantly a�ect our previous discussion� For� if we let C

denote the 
possibly� modi�ed block diagonal matrix B� we now use the trust�region norm


���� with M de�ned as

M � PLCLTP T � 
�����
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We shall refer to 
����� as the modi�ed absolute�value factorization� If we make the change

of variables 
����� we must solve the block�diagonal trust�region subproblem

minimize
sB�R

n

hgB� sBi� �
�
hsB� BsBi subject to hsB� CsBi � 
�� 
�����

It is of little consequence that BC�� no longer necessarily has eigenvalues ��� for� as we

shall now see� solving the problem 
����� is also straightforward�

As before� B and C share eigenvectors� We may thus write

B � Q�QT and C � Q�QT �

where Q is as before� and the entries of the diagonal matrices � and � are� respectively�

the values � and 	 considered in 
����� or 
������ Using the transformation

sS � �
�
�QT sB and gS � ��

�
�QTgB�

we may recover the solution to 
����� from sB � Q��
�
� sS� where sS is found to

minimize
sS�R

n

qS
sS� � hgS� sSi� �
�
hsS� DsSi subject to ksSk� � 
� 
�����

and where D � ��
�
����

�
� is diagonal� Once again� one could simply apply the Mor�e and

Sorensen 
�	��� algorithm to this problem� but this ignores the facts that the diagonal

systems involved are trivial to solve� and that the leftmost eigenvalue of D and a corre�

sponding eigenvector are trivial to obtain� We therefore prefer the following simpli�cation�

If D merely has entries ��� the procedure outlined in Section ��� is appropriate� So�

now suppose that D has a more complicated distribution of values� Then we may apply

Algorithm ����

The iteration in Steps � to � is simply Newton�s method to �nd the appropriate root of

the secular equation
�

k � 
D � �I��gSk� �
�





see Hebden� �	��� or Mor�e and Sorensen� �	��� for details�� Step � caters for the case

where the model is strictly convex� while step � is for the more general case where the

solution must lie on the trust�region boundary� The precaution in Step �a is simply to

detect the solution when it lies interior to the trust region� while that in Step �a
i� is

to compute the solution in the �hard case� of Mor�e and Sorensen 
�	���� The iteration

is globally linearly and asymptotically quadratically convergent from the starting values

given in Steps � and �� The tolerance � should be set at the level of the machine precision�

�M � We stress that� while this algorithm is appropriate even if D is simply a diagonal

matrix with entries ��� the procedure outlined in Section ��� is more appropriate in this

case�
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Algorithm ���� Newton iteration to solve ������

Let � � 
�� ���

�� If D is positive de�nite� set � � � and sS � �D��gS�

�a� If ksSk� � 
� stop�

�� Otherwise� compute the leftmost eigenvalue� � of D� set � � �� and de�ne gn
S

so that


gn
S
�i �

��
� 
gS�i if 
D�ii � � � �

� otherwise�

�a� If gn
S
� �� set sS � �
D � �I��gS�

i� If ksSk� � 
� compute an eigenvector u corresponding to �� �nd

the root � of the equation ksS � �uk� � 
 which makes the

model qS
sS � �u� smallest� replace sS by sS � �u� and stop�

�b� Otherwise� replace � by �� kgn
S
k��
� and set sS � �
D � �I���gS�

�� If

jksSk� �
j � �
�

stop�

�� Replace � by ��

�ksSk� �





	� ksSk��
hsS� 
D � �I��sSi

	
�

�� Set sS � �
D � �I��gS and go to step ��

��
 The suitability of the norm

It remains for us to show that the norms de�ned by the modi�ed absolute�value factoriza�

tion 
����� are uniformly related to the ���norm� and thus are suitable within a trust�region

method� Thus we need to show that there are constants � � 	� � 	�� independent of the

iteration� for which

	�ksk�� � hs�Msi � 	�ksk���
Equivalently� we need to show that the smallest and largest eigenvalues� �min
M� and

�max
M�� of M are bounded� and bounded away from zero� The analysis here is based

upon that given by Higham 
�		���

Firstly� by construction� both of 
����� and 
����� satisfy the bounds


 � kCk � max 

� kDk� � max



� kHkk
LLT ���k

�
�
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Using Theorem ��� of Higham 
�		��� it then follows that

�min
LL
T ��min
C� � �min
M� � �max
M� � �max
LL

T ��max
C��

and hence that


�min
LL
T � � �min
M� � �max
M� � �max
LL

T �max



� kDk � kHkk
LLT ���k

�
�

But� as Higham then points out� if the largest entry in L is bounded by some 
� it is

straightforward to bound

� � �max
LL
T � � n� �

�
n
n� ��
� and 
� � 
����n � �min
LL

T � � ��

Thus so long as L and H are bounded� the norms de�ned by the modi�ed absolute�value

factorization 
����� are uniformly related to the ���norm�

The matrix H will be bounded if� for instance� a Newton 
second�order Taylor series�

model is used� and if the iterates stay in a bounded set� But now we see the importance of

using a factorization which bounds the growth in the elements of L� Ashcraft et al� 
�		��

show that the original method of Bunch and Parlett 
�	��� and that of Fletcher 
�	��� both

generate bounded L� as do the sparse methods of Du� and Reid 
�	��� �		��� However�

the more popular Bunch and Kaufman 
�	��� method and the block version implemented

in LAPACK may not� and thus must be viewed as untrustworthy for our application�

� Numerical experiments

The algorithm sketched in Sections ��� and ��� has been implemented as a Fortran 	�

module� HSL VF��� within the Harwell Subroutine Library 
HSL� 
�		��� The factorization


���� is performed using the HSL code MA�� 
see� Du� and Reid� �	���� A concise summary

of HSL VF�� is given as Algorithm ����
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Algorithm 	��� HSL VF��

�� FactorizeH � PLBLTP T � using subroutines MA��A and MA��B� and B � Q�QT �

Obtain the diagonal matrix � from 
����� with 
 �
p
�M � and set C � Q�QT

and D � ��
�
����

�
� �

�� Solve PLP Tgb � g using MA��Q�

�� Obtain gs � ��
�
�QTP Tgb

�� Find sS � argmin hgS� sSi � �
�
hsS� DsSi subject to ksSk� � 
 using Algo�

rithm ���� with stopping tolerance � � ��n�M �

�� Recover sq � PQ�
�
� sS�

�� Solve PCLTP T s � sq using MA��R�

In order to demonstrate the potential of our proposal� we have conducted a limited number

of numerical tests using HSL VF��� We consider the standard trust�region method for the

minimization of an objective f
x� of n real variables x presented as Algorithm ����

We choose the speci�c values �g � �������� �� � ����� �� � ��	�� 	� � ���� and 	� � ��

and set an upper limit of ��n iterations� In all cases� the initial trust�region radius is

set to kM�k�� The step sk in step � is computed using either Algorithm ���� or using the

algorithm proposed by Gould� Lucidi� Roma and Toint 
�		�� and implemented as the HSL

fortran 	� module HSL VF�� using default settings� The latter algorithm is appropriate for

general trust�region norms� but is not as e�cient as HSL VF�� when the absolute�value

norm 
���� 
���� is used�

In our tests we compare three choices of norm� namely the �� norm� the absolute�value

norm� and the norm de�ned by forming the Schnabel and Eskow 
�		�� modi�ed Cholesky

factorization of H� The latter also uses MA��� and is available as part of the LANCELOT

nonlinear programming package 
see� Conn� Gould and Toint� �		�� Chapter ��� Other

norms have been compared by Gould et al� 
�		���

All our tests were performed on an IBM RISC System!���� �BT workstation with ��

Megabytes of RAM� the codes are all double precision Fortran 	�� compiled under xlf	�

with �O optimization� and IBM library BLAS are used� The test examples we consider

are the currently available larger examples from the CUTE test set 
see Bongartz� Conn�

Gould and Toint� �		�� for which negative curvature is frequently encountered� Tests were

terminated if more than thirty CPU minutes elapsed�
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Algorithm 	��� Standard Trust
Region Algorithm

�� An initial point x� and an initial trust�region radius 
� are given� as are con�

stants �g� ��� ��� 	�� and 	�� which are required to satisfy the conditions

� � �� � �� � � and � � 	� � � � 	��

Set k � ��

�� Stop if krxf
xk�k� � �g�

�� De�ne a second�order Taylor series model qk and a positive�de�nite precondi�

tioner Mk� Compute a step sk to �su�ciently reduce the model� qk within the

trust�region kskMk
� 
k�

�� Compute the ratio

�k �
f
xk�� f
xk � sk�

qk
xk�� qk
xk � sk�
�

If �k � ��� let xk�� � xk � sk� otherwise let xk�� � xk�

�� Set


k�� �

����
���
	�
k if �k � ���


k if �k � "��� ����

	�
k if �k � ���

Increment k by one and go to Step ��

The results of our tests are given in Table ���� In these tables� in addition to the

name and dimension of each example� we give the number of objective function 
�#f��

and derivative 
�#g�� values computed� and the total CPU time required in seconds� We

indicate those cases where one or other method performs at least ��$ better than its

competitors by highlighting the relevant �gure in bold� A y indicates that convergence to

di�erent local minimizers occurred�

The results may e�ectively be divided into three categories� Into the �rst category fall

problems which appear to be relatively easy� that is those which require few evaluations

without a sophisticated trust�region norm� For such problems� the �� norm performs best�

and the other norms add little while incurring the extra expense of the factorization�

The excellent behaviour of the �� norm on such problems has already been noted 
see�

Gould et al�� �		��� The second category contains problems for which the Hessian or

its factors are relatively dense� and the cost of forming the preconditioner dominates�

This category includes problems EIGENALS� MSQRTALS� NONCVXU�� SPARSINE and SPMSRTLS�
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�� modi�ed Cholesky modi�ed abs�value

example n �f �g CPU �f �g CPU �f �g CPU

BROYDN�D y ���� ��� ��	 ��� �� 	� ��� �
� �� ����

BRYBND ���� �	 �	 ��� �� �� 
�	 
	 �� 
��

CHAINWOO y ���� 
�� �
� ���� ��� ��� ��� ��� ��	 
��

COSINE ���� �� �� ��� �� 
� ��	 
� �� ���

CRAGGLVY y ���� �
 �
 ��
 
	 
	 ��� �� �� ��	

CURLY�� ���� 
	 
� 

�
 �� 	� ��� �� 		 ���

CURLY�� ���� 
� 
� 	��� �� 	� 
��� � � ���

CURLY�� ���� 

 
� ���
 �� �
 ���
 �
 
 ���	

DIXMAANA ���� �	 �	 ��	 	� 
	 ��� � � ���

DIXMAANE ���� �� �� ��� ��� �� ��
 ��� �� ��


DQRTIC ���� �	 �	 ��	 �� �� ��	 		 	
 ��	

EIGENALS 
	� �� �	 ���� �	 �� ���� � ���� secs�

FREUROTH ���� �� �� ��� �� �� 	�� �	
 �� ���

GENHUMPS ���� ����� �	
�� ��
	�� � 
�n its� ��
�� 
�
� �����

GENROSE ���� �
� ��� ���� �	� 	�
 ���	 ���
 ��� ����

MANCINO ��� 
� 
	 
��
 �� �� 
���
 �
 �� 	���

MSQRTALS ��
� 	� 	� 	���
 � ���� secs� � ���� secs�

NCB��B ���� �� 

 ����� 		 
� 
��� 
� �
 ����

NONCVXUN ���� � ���� secs� � 
�n its� 	�
� 
�
	 �����

NONCVXU� ���� 
�
 

� 
��� � 
�n its� � 
�n its�

SBRYBND ���� � ���� secs� �
 
� 
�� �� 
� ���

SCOSINE y ���� � ���� secs� 
� �� ��� �� �� ���

SCURLY�� ���� � ���� secs� �� �� ���
 �� � 
�


SCURLY�� ���� � ���� secs� �� �
 ���	 �� � ��	

SCURLY�� ���� � ���� secs� �� �
 ����� �� � ���	

SENSORS y ��� 
� 
� ��� �� �� 	
�� �� 	
 
����

SINQUAD ���� ��
 

 
��� �� �� ����� �� �� ����

SPARSINE ���� �� �� 	��� 	�� 
�� ������ � ���� secs�

SPMSRTLS y ���� �� �� 
��� � ���� secs� � ���� secs�

Table ���% A comparison of trust�region methods using the ��� modi�ed Cholesky and

modi�ed absolute�value norms� See the text for a key to the data�

These indicate the limitations of our approach� and for these problems preconditioners

which try to mimic the structure of the Hessian without incurring the cost of the �ll�in

� such as the limited�memory incomplete Cholesky factorization proposed by Lin and

Mor�e 
�		��� and the references contained therein � are likely to be preferable� The third

category contains the harder� highly nonlinear problems CURLYxx� NONCVXUN� SBRYBND�

SCOSINE and SCURLYxx� For these problems� the �� norm is ine�ective� and some rescaling

is necessary� Interestingly� the modi�ed absolute�value preconditioner outperforms the
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other sophisticated preconditioner on all but one of these� often by a large margin�

It is interesting to note that the number of �wasted� function evaluations 
the di�erence

between #g and #f in in Table ���� is signi�cantly higher for the new method than for

its competitors� There appear to be two reasons for this� Firstly� the initial trust�region

radius� kM�k�� is often far too large when using the factorization preconditioners� and

many iterations are required to cut it to a value for which progress may be made� In

our experience� it is usually bene�cial to determine a good initial radius� and� given how

inexpensive the wasted iterations are in our case � the functions are cheap to evaluate�

and the solution of the block�diagonal trust�region problems are� by design� trivial � the

cost is not especially high� However� as evaluation costs may be high in general� more

sophisticated strategies� such as that by Sartenaer 
�		��� may be preferred� The second

cause of wasted function evaluations happened far less frequently� but occurs following

a change in the shape of the trust�region as one or more eigenvalues change sign� In

some cases� � the example SCOSINE is a point in case � a signi�cant number of radius

reductions were required to �nd a value appropriate for the new geometry� We foresee this

as a signi�cant problem� and are currently investigating more sophisticated schemes for

trust�region management�

� Discussion and conclusions

We believe that our results indicate that the modi�ed absolute�value factorization provides

a useful norm for trust�region minimization so long as as the factorization is feasible� In

particular� for ill�conditioned problems� the norm appears to be especially e�ective� We

do not pretend that 
����� is uniformly appropriate� but suggest that� at the very least� its

use should be considered when a problem is know to be ill�conditioned�

We recognize some potential di�culties with our approach� The attendees at the �	��

NATO Advanced Research Institute on �Nonlinear Optimization� 
see Powell� �	��� con�

tributions ���� ����� had much to say about Goldfarb�s 
�	��� proposal� and the comments

made there are equally appropriate here� In particular Roger Fletcher 
Dundee� expressed

concern that the distortion induced by 
���� and 
��	� may be substantial� We accept that


����� may not be as desirable as 
����� but believe that while 
���� is out of the question for

most large�scale problems� 
����� is practical� and often useful� for many of them� Fletcher

also worried that changes in the pivot ordering during the factorization of a sequence of

problems may make it di�cult to derive e�ective methods for adjusting the trust�region

radius� Whilst we have observed occasions where pivot�order changes have drastically al�

tered the geometry� and while this sometimes requires a large number of wasted iterations

in which the trust�region radius is reduced� for the vast majority of iterations the usual�

naive trust�region management seems to be satisfactory� However� we recognize this as a
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possible defect� and are currently investigating more sophisticated trust�region adjustment

strategies both in this and other contexts�
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