INEOS:
An Interactive Environment for Nonlinear
Optimization™

Marcel Good T Jean-Pierre Goux * Jorge Nocedal
Victor Pereyra ¥

May 22, 2000

Abstract

In this paper we describe iNEOS, an Internet-based environment
which facilitates the solution of complex nonlinear optimization prob-
lems. It enables a user to easily invoke a remote optimization code
without having to supply the model to be optimized. An interactive
communication between client and server is established and maintained
using CORBA. We test the system in a simulation designed to identify
material parameters of a piezoelectric crystal.

*This work was supported by National Science Foundation grant CDA-9726385, by
Department of Energy grant DE-FG02-87ER25047-A004, and by Sandia National Labo-
ratories LDRD 97-0301.

fDepartment of Electrical and Computer Engineering, Northwestern University,
Evanston, IL 60208, mgood@ece.nwu.edu

tOptimization Technology Center, Northwestern University, Evanston, IL 60208,
goux@ece.nwu.edu

SDepartment of Electrical and Computer Engineering, Northwestern University,
Evanston, IL 60208, nocedal@ece.nwu.edu

T Weidlinger Associates, Los Altos, California, victor@ca.wai.com

1 Motivation and Overview of iNEOS

Nonlinear optimization techniques are used in a wide range of engineering
and scientific applications (see e.g. [11]). In many of these applications, off-
the-shelf optimization codes are interfaced with complex proprietary codes
that perform computationally intensive simulations. Due to the variety of
nonlinear optimization codes available to the user [10] and the diversity of
the data structures they employ, it is time consuming and difficult to install
and compare different solvers.

In this paper we describe iNEOS, an Internet-based environment which
facilitates the process of solving such nonlinear optimization problems. It
allows a user (client) to perform a simulation that requires interactive access
to a remote optimization solver (the server), and does so without revealing
any important information about the simulation. We demonstrate the effec-
tiveness of iINEOS by performing an interactive identification of parameters
in a model of piezoelectric crystals.

This work was motivated by the success of the NEOS server,

http://www-neos.mcs.anl.gov
see also [4]. The NEOS server solves a wide range of optimization problems
remotely, via the Internet, and provides several interfaces to the user. Over
the past few years, the NEOS server has proved to be very useful for hun-
dreds of users from academia, industry, and government, and is regarded as
a successful demonstration of the possibility of networked access to software
and data.

The current implementation of NEOS has, however, some limitations
that make it impractical for an important class of applications. It forces the
user to submit all the data of the problem, and do so in formats specific to
each area of optimization. To solve nonlinear optimization problems, the
user has to submit AMPL [5], Fortran or C files describing the objective
function and constraints. This mode of operation prevents many potential
users from accessing the servers, for one of the following reasons:

e The data files or codes specifying the model (objective function and
constraints) are often proprietary or confidential.

e The evaluation of the objective function and constraints is too time
consuming to be delegated to a NEOS server.

e The model is written in several languages or in a format that is not
acceptable to the NEOS servers.

By taking advantage of the particular structure of nonlinear optimiza-
tion algorithms, it is possible to circumvent these difficulties. In nonlinear
optimization, an improved solution can be generated just by knowing the
current iterate and the numerical values of the function and gradient at the
current point. These arrays of real numbers do not reveal the nonlinear
model to an observer of the data submissions.

Consider, for example, an unconstrained optimization problem,

min f(x) (1)

where f is a scalar function of n variables. This problem can be solved using
a quasi-Newton iteration of the form

pr = —Hygy, Trt1 = T + QxDr, (2)

where Hj, is an approximation to the inverse Hessian of f, g is the gradient
of f evaluated at the current iterate xy, and oy is a steplength determined
by a line search procedure. All that is needed to compute a new estimate
Zk41 18 to provide zg, g, and fx, and to supply values of f and g for all trial
values generated in the line search procedure; see for example [13]. After
Zk+1 has been computed, a new Hessian approximation Hy is generated
based on the differences zy1 — 2 and ggr1 — gi-

Some of the nonlinear optimization codes in NEOS, such as TRON [7]
and L-BFGS [2], already have such internal client-server design. In these
codes a driver computes the function and gradient values at the current iter-
ate, and then calls the optimization solver, which returns a better estimate
of the solution. iINEOS has been designed to exploit this structure in an
interactive way. The task of evaluating the objective function and gradient
(i.e., the simulation) remains in the hands of the user, and iNEOS provides
a new approximate solution which is computed on the server; see Figure 1.

The interactive environment performs the following steps, starting from
an initial estimate xy provided by the user:

Repeat until a convergence test is satisfied or an error message is generated:

1. The client computes the function and gradient (simulation phase) for
the current estimate of the optimal solution, and sends these values
over the network to the server.

2. Based on this information, the server computes a new trial point (op-
timization phase) and sends it back to the client over the network.

o 9k

Internet
Xk+1
Machine 1 Machine 2
(simulation) (Optimization)
Client Server

Figure 1: Overview of iNEOS.

3. Repeat steps 1 and 2 until a new iterate with a lower function value
has been computed.

End Repeat

This environment requires stable communication between client and server
every time that a new trial point of the optimization calculation is computed.
One must keep both processes (client and server) alive and in synchroniza-
tion until the optimization is completed. We have chosen to use CORBA
[14] to implement this environment, as described in the next section.

At present, iNEOS is capable of solving bound constrained optimization
problems of the form

min f(z) subject to [<z < u, (3)

where [and u are n-vectors of bounds. The description of the interactive
environment given above applies to (3), provided the vectors [and u are
transmitted by the client during the first invocation of the server. The
optimization is performed by means of L-BFGS-B [2, 17], a limited memory
quasi-Newton method. Solvers for general nonlinear optimization problems
(with equality and inequality constraints) will be added in the future. They
will require the transmission of second derivatives from the client to the
server.

2 Implementation

Several technologies can be used to implement iNEOS. A prototype imple-
mentation was built using the Nexus [12] communication library. However,

the lack of object-oriented design, the absence of built-in support for mul-
tiple clients, and deployment difficulties led us to choose CORBA which is
superior in all these aspects.

CORBA is well established in the computing community, and has been
successfully used for business applications and legacy system integration. It
has yet to prove its relevance in scientific computing applications due to its
lack of performance compared to libraries like MPT [8]. But since the main
goal of iNEOS is to enable optimization technology in a user-friendly and
reliable manner, the communication overhead imposed by CORBA is not
a major concern. In the applications we have in mind, the simulation re-
quires minutes or hours, and the amount of data transmitted between client
and server is not large. When solving the bound constrained optimization
problem (3), a total of 2n + 1 floating point numbers are submitted over the
Internet during each data exchange, where n denotes the number of vari-
ables. We envision solving problems of up to 1 million variables. Even in
this case, most of the time in a typical iNEOS session will be spent in the
simulations performed on the client’s computer.

Of paramount importance is the ease of deployment of iNEOS and the
robustness of the data exchange between client and server. CORBA’s IDL
allows us to describe the interface of a server as a set of methods to be
called on objects. The CORBA libraries handle network issues and marshal
data between client and server. This allowed us to develop a consistent
object oriented design of iNEOS. CORBA also provides additional services
like security, which will be discussed later.

We should mention that iNEOS could have also been built using DCOM
[9], the object oriented component technology developed by Microsoft that
provides support for distributed components as well as multiple clients. It
would allow us to treat optimization solvers as components, facilitating the
addition of future solvers. Nevertheless, we wished to develop iNEOS for
Unix systems, and even though DCOM has been ported to Solaris, it would
have to be bought and installed on the client machine. This was the main
reason for not using DCOM, which would have been our technology of choice
on Windows platforms.

2.1 Architecture

Figure 2.1 shows the architecture of iINEOS and the components involved in
the process.

The Factory is a generic object, which will allow us to easily expand
the system in the future. All that is needed to add a solver is to create a

2. Solver Object
gets created

1. CreateSolver ‘
7

3. Init /
Client m

Figure 2: iNEOS Architecture.

new object class, and make the factory aware of it. The interface with the
Factory object is shown below.

interface SolverFactory : HttpObject

{
exception FactoryException {};
Solver CreateSolver(in string type)
raises(FactoryException);
string CreateSolver2(in string type)
raises(FactoryException);
s

The SolverFactory interface inherits from HttpObject (not shown), which
enables the Servlet [15] to communicate with every running object on the
server. In this way, the use can retrieve information about the server as well
as the Solver using a regular Web browser. The servlet runs on an Apache
[1] Web Server, and facilitates the retrieval of log information documenting
the progress of the optimization. This setup makes iNEOS more accessible
to the user. The Solver object for the L-BFGS Solver is shown below.

interface LifeCycleObject : HttpObject
{

void free();

};

/* The Solver interface is the common base interface for all
Solvers. It implements a common method to act on solvers.

*/
interface Solver : LifeCycleObject
{
string GetName() ;
long GetJobID();
s

/* The LBFGSSolver interface is used by the LBFGS solver
object. The methods are LBFGS specific.

*/
interface LBFGSSolver : Solver
{
exception SolverException
{
TASKTYPE task;
};

Vector Init(in long n, in long m, in Vector x_start,
in Vector 1, in Vector u,
in BoundTypes nbd, in double f,
in Vector g, in double factr,
in double pgtol, out TASKTYPE task,
in short iprint)
raises(SolverException);

Vector NextIterate(in double f, in Vector g, out TASKTYPE task)
raises(SolverException) ;

};

The Solver interface inherits from two interfaces, which specify the com-
mon part of every solver. LifeCycleObject is used to destroy a solver when
it is not anymore used. As we can see from the LBFGSSolver interface, the
communication between client and solver is reduced to mainly two methods,
which take care of exchanging the data between client and solver. The us-
age of the server object is further simplified by a procedural C/C++ library,
which hides the CORBA details from a client. This API can also be used
with Fortran applications, which would otherwise not be possible due to the
lack of a CORBA binding for Fortran.

3 Application to a Parameter Identification Prob-
lem

To demonstrate the viability of iNEOS as an optimization problem-solving
environment, we use it for the determination of parameters in a piezoelectric
crystal model.

Piezoelectric transducers convert electrical signals to mechanical signals
and vice versa. They serve as transmitters and receivers in imaging sys-
tems for sonar, medical, and non-destructive evaluation applications. One
of the most technically demanding applications is ultrasound medical imag-
ing. Today nearly all of the major ultrasound system companies are experi-
menting with finite element models that describe the transient response of a
piezoelectric material. Most have enjoyed only limited success at significant
development or simulation costs, and it is therefore important to improve
the accuracy of the models as much as possible.

In this study we will use least squares techniques to determine the ma-
terial parameters in a model of a homogeneous piezoelectric crystal, given
a set of measured impedances. The nonlinear least squares problem can be
posed as

m
ﬁsMWSN.Q% — If(a))? (4)
1=
subject to
a; <o < &. (5)

Here I?, I, are the observed and calculated complex fast Fourier transforms
of the impedance samples respectively, and 0 < w; are some weights. The
vector a has ten components that represent the parameters describing the
elastic, electromagnetic and coupling properties of the homogeneous piezo-
electric crystal sample. Since there is only a narrow range of the parameters
that lead to valid physically possible materials, the upper and lower bounds
(5) are imposed.

The partial derivatives of the impedance with respect to the parameters,

Ia) = - 22)

are approximated by finite differences. A full description of the model and
the simulation methods is given in [3].

3.1 Utilization of iINEOS

Our goal is to improve upon the accuracy of an initial choice of parameters.
From the point of view of nonlinear optimization this is a small problem,
since the number of parameters is 10, but the function evaluation is expen-
sive. In addition, the model is proprietary, making this application ideal for
testing iNEOS.

As mentioned earlier, the optimization code employed in our experiments
is L-BFGS-B [2], which is written in Fortran, using a reverse communication
structure. The modeler provides an initial choice of the parameters, and
evaluates the objective function and its gradient for every trial value of the
parameters, and L-BFGS-B provides an improved guess of the parameters.
iNEOS establishes and controls communication between client (modeler)
and server (optimizer).

Since the objective here is to validate the method, the experiments will
be performed in the following controlled environment. For a given setting of
the parameters « (the target), the finite element code is used to produce the
resulting impedance. Then we perturb the initial values of the parameters
by 7.5%, and ask whether we can recover the initial values using the least
squares approach. We wish to reconstruct each of the parameters to at least
1% of accuracy. The client computer was a 300 MHz Pentium II, running
Solaris, and was located in California; the server was a Sun Ultrad running
Solaris and located in Illinois. The client had a firewall that required a small
modification of the way we handle object references; see [6]. Each evaluation
of the objective function f and gradient g requires approximately 10 minutes
in the client machine. The fitted real and imaginary parts of the impedance
are shown in Figures 3 and 4.

The interactive optimization was successfully completed; for a more de-
tailed description of these experiments see [3].

4 Final Remarks

The experiment reported in the previous section demonstrates that the cur-
rent implementation of iINEOS is capable of solving challenging problems in
computational optimization. The interface with the remote solver is very
simple due to iNEOS’ intuitive API, and overcomes one of the main limita-
tions of the standard NEOS servers. iNEOS can be extended, with relatively
little effort, so as to handle optimization problems with general constraints.
The transmission of second derivatives of the objective function and con-
straints from the client to the server would permit the use of some of the

0T

‘oouepoduur oyY Jo Jred [edY ¢ 9InJIg

le+05

50000

LBFGS (remote):Real Part
Disc 1/2 Aspect Ratio

—— Target
——— After 20 LBFGS iterations

le+06

11

-oouepaduut ot} jo jred Areurdew] :f oIn3ig

40000

-10000

—-60000
0

LBFGS (remote):Imaginary Part

Disc 1/2 Aspect Ratio

—— Target
——— After 20 iterations

1 L 1 L 1 L 1 L
2e+05 4e+05 6e+05 8e+05 le+06

most powerful nonlinear programming solvers.

Several enhancements of the current system can improve its security,
reliability, portability, and ease of use.

CORBA provides all the basic services for building highly reliable dis-
tributed systems over the Internet. For iNEOS to be heavily used, it must
be deployed on a reliable platform that can handle requests from numerous
users, and it must deal well with failures of a single server as well as secu-
rity. An array of “Application Server Solutions” are currently available in
the market, and most of them are CORBA-based. Such Application Servers
allow deployment of an application into a framework which handles cluster-
ing, fail over, load balancing, and security. Since iNEOS is CORBA-based,
the step of migrating it into such an Application Server Environment is
rather simple.

Currently, the iNEOS APT still reveals specific details of a particular
solver. Since not every solver requires the same amount of data, the inte-
gration of new solvers into iNEOS would be facilitated by the development
of a common solver interface that represents data in the calling sequence in
XML [16]. This would greatly facilitate the testing of a variety of solvers.
The overhead incurred by the use of XML may be of concern, however, and
must be measured relative to the total interaction time.

User-level security has not been incorporated into the current imple-
mentation of iNEOS. Anyone has access to iNEOS and can view the data
submitted to it. This is not a major concern at present, because as stated
in the introduction, all the confidential information about the simulation is
kept on the client, and the data submitted to the solver does not reveal the
model. A future implementation of iNEOS, must however contain security
mechanisms to control the usage of iNEOS. This can be done by using the
CORBA security service or the Framework provided by Application Server
Environments.

Acknowledgment. We would like to thank Todd Plantenga for his encour-
agement and support in the early stages of this work.

References

[1] The Apache Software Foundation. The Apache Server Project. Avail-
able from http://www.apache.org/httpd.html

12

2]

R.H. Byrd, P. Lu, J. Nocedal and C. Zhu (1995). “A limited mem-
ory algorithm for bound constrained optimization”, STAM Journal on
Scientific Computing, 16, 5, pp. 1190-1208.

L. Carcione, J. Mould, V. Pereyra, D. Powell and G. Wojcik. “Nonlinear
inversion of piezoelectric transducer impedance data”, 1999, Technical
Report, Weidlinger Associates, Los Altos, California.

J. Czyzyk, M. Mesnier, and J. Moré. The NEOS server. IEEE Jour-
nal on Computational Science and Engineering, 5:68-75, 1998. See
http://www-neos.mcs.anl.gov/.

R. Fourer, D. Gay, and B. Kernighan. “AMPL: A Modeling Language
for Mathematical Programming”. Duxbury Press, Belmont, CA, 1993.

M. Good. “Applications of CORBA in metacomputing environments”,
M.Sc. Dissertation, Electrical and Computer Engineering, Northwest-
ern University.

C.J. LIN AND J.J. MORE “Newton’s method for large bound-
constrained optimization problems”, STAM J. Optim. 9 (1999), pp.
1100-1127.

Message Passing Interface Forum. MPI. Available from
http://www.mpi-forum.org.

Microsoft. Microsoft COM, 1999. Available from
http://www.microsoft.com/com

J. Moré and S.J. Wright, “Optimization Software Guide”, STAM Pub-
lications, 1993.

J.J. Moré. “A collection of nonlinear model problems”, in Computa-
tional Solution of of Nonlinear Systems of Equations, vol. 26 of Lec-
tures in Applied Mathematics, American Mathematical Society, (1990),
pp-723-762.

The Nexus Multithreaded Communication Library. Available from
http://www.globus.org/nexus.

J. Nocedal and S.J. Wright, “Numerical Optimization”, Springer Ver-
lag, New York, 1999.

Object Management Group. CORBA. Available from
http://www.omg.org.

13

[15] Sun Microsystems, “The Java Servlet Technology”. Available from
http://www.java.sun.com

[16] William J. Pardi. XML in Action, Web Technology. Microsoft Press
1999. ISBN 0-0756-0562-9

[17] C. Zhu, R.H. Byrd, P. Lu and J. Nocedal. “Algorithm 778:L-BFGS-B,
Fortran subroutines for large scale bound constrained optimization”,
ACM Transactions on Mathematical Software, 23 (1997), pp. 550-560.

14

