
Feasible Interior Methods Using Slacks for Nonlinear

Optimization

Richard H� Byrd� Jorge Nocedaly Richard A� Waltzy

February ��� ����

Abstract

A slack�based feasible interior point method is described which can be derived as
a modi�cation of infeasible methods� The modi�cation is minor for most line search
methods� but trust region methods require special attention� It is shown how the
Cauchy point� which is often computed in trust region methods� must be modi�ed so
that the feasible method is e�ective for problems containing both equality and inequal�
ity constraints� The relationship between slack�based methods and traditional feasible
methods is discussed� Numerical results showing the relative performance of feasible
versus infeasible interior point methods are presented�
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� Introduction

In many applications� it is desirable for all of the iterates generated by an optimization
algorithm to be feasible with respect to some or all of the inequality constraints� For
example� the objective function may be de�ned only when some of the constraints are
satis�ed� making this feature absolutely necessary� In other instances one may want to
terminate an algorithm before optimality has been reached and be assured that the current
approximate solution is feasible�

Various feasible active set methods �see� e�g� ���	
 have been developed by including
de�ections in the search directions which ensure that the total step points towards the
interior of the feasible region� They typically require the solution of two or more linear
systems of equations per iteration� although some recent approaches ���	 aim at decreasing
the cost per iteration�

Interior point approaches provide a natural framework for deriving feasible methods for
nonlinear programming� The methods proposed in ��� 
� ��� ��	 either start with a feasible
point or apply a phase�one procedure to compute one� and then generate strictly feasible
iterates� Most other implementations of interior methods for nonlinear programming are
based� however� on infeasible algorithms ��� ��� ��� ��	 which may enter and leave the feasible
region during the course of the minimization�

In this paper we describe a framework for transforming slack�based infeasible methods
into feasible methods� In this framework� feasible and infeasible interior algorithms can be
considered as variants of the same basic method� Feasibility is controlled by whether or not
one resets the slack variables after a trial step has been taken� and how these variables are
reset� Using this �exibility one can choose to enforce feasibility with respect to some� all�
or none of the inequality constraints depending on what is needed or desired� In addition�
this �exibility provides a convenient testing environment for analyzing the e�ects of staying
feasible in interior point methods�

The slack reset strategies may experience di�culties on problems with both equality
and inequality constraints� The di�culties will not arise in most line search methods�
but can occur in trust region methods� We describe a procedure for generating search
directions which ensures that the feasible methods proposed here behave e�ciently for
problems containing both equality and inequality constraints�

The paper is organized as follows� We �rst outline� in section �� the general formulation
of an infeasible interior point algorithm for nonlinear programming� In section � we describe
a strategy which transforms infeasible interior methods into methods that satisfy some or
all of the inequality constraints by resetting slack variables� The relationship between these
slack�based feasible methods and the classical methods of Fiacco and McCormick ���	 is
discussed� In section � we describe potential di�culties with our strategy when equality
constraints are present� and provide guidelines to deal with them� A concrete procedure for
modifying the step�computation in the KNITRO algorithm is presented in section �� and
numerical results comparing feasible and infeasible methods are reported in section �� We
conclude the paper with �nal remarks in section 
�
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� Infeasible Methods

The problem under consideration will be formulated as

min
x

f�x
 ����a


s�t� h�x
 � � ����b


g�x
 � �� ����c


where f� h and g are su�ciently smooth functions of the variable x � IRn� Here f is a scalar�
valued function� and h and g are vector�valued functions� By a feasible method for ����

we mean one in which the starting point and all subsequent iterates satisfy the inequality
constraints ����c
�

Infeasible interior methods do not enforce satisfaction of the inequality constraints at
each iteration� They typically make use of slack variables to transform ����
 into the equiv�
alent problem

min
x�s

f�x
 ����a


s�t� h�x
 � � ����b


g�x
 � s � � ����c


s � �� ����d


We will consider interior methods that� at each iteration� apply a form of Newton�s method
to solve� to some degree of accuracy� the barrier problem

min
x�s

��x� s��
 � f�x
� �
X
i�I

ln�si
 ����a


s�t� h�x
 � � ����b


g�x
� s � � ����c


s � �� ����d


where � is a positive parameter and I is the set of indices corresponding to the inequality
constraints� We will assume that the methods use a merit function of the form

��x� s
 � f�x
� �
X
i�I

ln�si
 � ��c�x� s

� ����


where � is some measure of infeasibility� and

c�x� s
 �

�
h�x


g�x
 � s

�
� ����


The function � can be chosen as a vector norm� or as some other function with the properties
that ���
 � � and ��x� s
 � � as s � �� We will also de�ne � to have the value � for
s � ��
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Let us consider the following very general type of iterative method for solving the barrier
problem ����
� This method will be applied until ����
 is solved to some accuracy� then a
new barrier parameter is chosen� and the method is applied again� Methods that change
the barrier parameter at each iteration would then apply a single iteration of the following
method to each barrier problem�

Algorithm ��� Generic Algorithm �Infeasible method for problem ����
�

An iterate x �possibly infeasible� and a slack vector s � � are given�

while a stopping rule is not satis�ed

Compute the step d � �dx� ds
�
De�ne the trial point xT � x� dx� sT � s� ds�
while ��xT� sT
 is not su�ciently smaller than ��x� s


Compute a shorter step d�
Set xT � x� dx� sT � s� ds�

end �while�

Set x� � xT� s� � sT�
end �while�

In a trust region method� a shorter step would be obtained by decreasing the trust
region radius and recomputing a step� whereas in a line search method� a backtracking line
search would be employed� We assume that the step�generation procedure and the merit
function � are compatible in the sense that if kdk is su�ciently small� the merit function
will be decreased� No other assumptions will be made on d until we consider� in section ��
its e�ect when both equality and inequality constraints are present�

� A Feasible Method with Slack Resetting

We now describe a way of transforming this infeasible Generic Algorithm into a feasible
method while retaining the use of slack variables� The motivation for doing so is two�fold�
First� by using slacks� the feasible and infeasible versions can be implemented with minimal
changes to the algorithm and data structures� In particular� the linear system to be solved
at each iteration of the interior method will be identical for the feasible and infeasible
versions� Second� this framework makes it very simple to decide which constraints should
be honored � and to change this choice if desired� By contrast� in a feasible method that
does not use slacks� feasibility is imposed by applying a barrier function on the inqualities
to be honored � something that results in substantial changes in the algorithm�

In what follows we will assume for simplicity that the feasible method must satisfy all
inequality constraints at every iteration� It will become clear� however� that it is straightfor�
ward to extend the algorithm described below to the case when only some of the inequality
constraints must be honored�
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��� Feasible Algorithm Description

Assume the current iterate is feasible with respect to the inequality constraints� To ensure
that the next iterate is also feasible� we introduce the following simple modi�cation� After
computing a step �dx� ds
 we rede�ne the slacks as

sT � g�xT
� ����


and test whether the point �xT� sT
 is acceptable for the merit function ����
� If it is not�
we reject the step and compute a new� shorter� trial step�

If the initial iterate x� does not satisfy all inequality constraints� we �rst apply the
infeasible Generic Algorithm until all inequalities are greater than some positive threshold
value� At that point the algorithm switches to the feasible mode� and stays feasible for the
rest of the optimization calculation� This algorithm �Feas�Reset
 is summarized below� We
let e denote the vector of ones� of appropriate dimension� As before� we de�ne the merit
function � to have the value � for s � ��

Algorithm ��� Algorithm Feas�Reset

An iterate x �possibly infeasible�� a slack vector s � �� and a positive threshold

value � are given�

if g�x
 	 �e then
Run infeasible Generic Algorithm until g�x
 � �e�
Set s � g�x
�

end �if�

while a stopping test is not satis�ed

Compute the step d � �dx� ds
 as in the Generic Algorithm�

De�ne the trial point xT � x� dx� sT � g�xT
 �

while ��xT� sT
 is not su�ciently smaller than ��x� s

Compute a shorter step d�

Set xT � x� dx� sT � g�xT
 �

end �while�

Set x� � xT� s� � sT�
end �while�

The test g�x
 � �e� can be replaced by some other condition that does not treat each
constraint equally and that takes into account the scale of the constraints�

Note that the vector ds is not needed in Algorithm Feas�Reset� but we still assume that
a step in the slacks and variables is computed at every iteration� so that the feasible and
infeasible modes require the same data structures and variables � and only di�er in the two
instructions enclosed in boxes� Our numerical experience indicates that the cost of solving
the larger system �in �dx� ds

 using the HSL routine MA�
 ���	 is not signi�cantly larger
�if at all
 than solving a reduced system �in dx only
�
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Making the substitution ����
 has the e�ect of replacing ln�si
 with ln�gi�x

 in the merit
function� which is the standard form of classical barrier functions ���	� If at a trial point
we have that gi�xT
 � � for some inequality constraint� the value of the merit function is
��� and we reject the trial point� Note that this approach will also reject steps x�dx that
are too close to the boundary of the feasible region because such steps increase the barrier
term ��

P
i�I ln�si
 in the merit function ����
�

In section � we show that a trust region implementation of this feasible method is
e�cient in practice for problems with inequality constraints only� but that in order to handle
problems with both equalities and inequalities� a modi�cation to the step computation must
be made�

��� Equivalence of Slack�based and Classical Feasible Methods

We now ask if Algorithm Feas�Reset� in its feasible mode� is identical to a classical barrier
method without slacks of the type described in ���	� By a classical barrier method we mean
one in which Newton�s method is applied to the problem�

min
x

f�x
� �
X
i�I

ln�gi�x

 ���
a


s�t� h�x
 � �� ���
b


�Throughout this section we assume that g�x
 � ��
 At �rst it may appear that Algorithm
Feas�Reset cannot be equivalent to this method because it uses slack variables in the step
computation�even in feasible mode� It is easy to see� however� that for a class of interior
methods� the reset ����
 has the e�ect of eliminating the slacks in the step computation and
working directly with problem ���

�

To show this we �rst note that the KKT conditions of ���

 are

rf�x
�Ah
h � �AgG�x
��e � �

h�x
 � ��

where AT
h and AT

g denote the Jacobian matrices of h and g� respectively� 
h is the vector
of Lagrange multipliers for the equality constraints ���
b
� G�x
 is a diagonal matrix whose
diagonal is given by the components of g�x
� and e is a vector of all ones� These conditions
can be reformulated so as to be more benign for Newton�s method� introducing the variable


g � �G���x
e�

we obtain

rf�x
�Ah
h �Ag
g � �

h�x
 � � ����


��e�G�x

g � ��

Applying Newton�s method �in the variables� x� 
h� 
g
 to this system gives a primal�dual
interior method for ���

� see e�g� ��	�
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To study the relationship between this method and Algorithm Feas�Reset� let us consider
a slack�based� feasible method for solving ����
 that computes steps by applying Newton�s
method in the variables x� s� 
h� 
g to the system

rf�x
�Ah
h �Ag
g � �


isi � �� i � I

h�x
 � �

g�x
� s � ��

which is equivalent to the KKT conditions for ����
� This system is the basis for primal�
dual infeasible algorithms� see e�g� ��� ��	� Application of Newton�s method gives rise to
the linear system

�
BB�

r�
xxL � Ah�x
 Ag�x

� � � �S

Ah�x

T � � �

Ag�x

T �I � �

�
CCA
�
BB�

dx
ds
�d�h
�d�g

�
CCA � �

�
BB�

rxL�x� 


��e� S
g

h�x

g�x
 � s

�
CCA � ����


where S and � denote diagonal matrices with s and 
g on their respective diagonals� and
L stands for the Lagrangian of ����
�

L�x� 
h� 
g
 � f�x
� 
Thh�x
 � 
Tg g�x
� �����


Using the fact that g�x
� s � � due to the reset ����
� we can eliminate ds and s to obtain
the equivalent linear system

�
� r�

xxL Ah�x
 Ag�x

Ah�x


T � �
�Ag�x


T � �G�x


�
A
�
� dx
�d�h
�d�g

�
A � �

�
� rxL�x� 



h�x

��e�G�x

g

�
A � �����


This system is just Newton�s method in the variables x� 
h� 
g applied to ����
� Therefore� a
primal�dual step for ���

 is equivalent to a primal�dual step for ����
� when the reset ����

is applied�

This equivalence does not hold for interior methods ��� �� ��	 in which the step d is only
an approximate solution of ����
� or is computed as the solution of a related problem with
a trust region� However� as the iterates of those methods approach a solution� their steps
approximate ����
 with increasing accuracy� and their feasible version resembles a classical
barrier method�

� E�ects of Equality Constraints

An iteration of Algorithm Feas�Reset �Algorithm ���
 is successful if it results in a decrease
in the merit function ����
� The computation of the step �dx� ds
 is designed to cause such
a decrease� but the slack reset step sT � g�xT
 can� however� o�set it� In particular� if dx
leads toward the boundary of an inequality constraint� the reset sT � g�xT
 in Algorithm






Feas�Reset can cause the corresponding slack variable to take on a smaller value� increasing
the term ��

P
i�I ln�si
 in the merit function� If this results in a total increase in the

merit function� then a shorter step is computed� This behavior is not unexpected� it is
the mechanism that prevents Algorithm Feas�Reset from generating steps that leave the
feasible region or that get too close to its boundary� Indeed� for problems with inequality
constraints only� this mechanism steers the iterates away from the boundary and results in
an e�ective method�

It turns out� however� that when both equality and inequality constraints are present�
it is harder to keep the iterates away from the boundary of the feasible region� and the
attempt to stay feasible by means of slack resetting can actually cause the method to fail�
To see what is the source of this problem� let us denote by �s the change in the slack due
to the reset� i�e��

s� ds � �s � sT � g�x� dx
� �����


As mentioned above� �s can cause an increase in the merit function even when the original
step d � �dx� ds
 would have decreased it� and this is not necessarily undesirable� It is
essential� however� that if a sequence of steps is rejected and the steps become increasingly
small� any merit function increase due to the slack reset �s is eventually o�set by the decrease
in � provided by the step d� This guarantees that� if the current iterate is not a stationary
point� the algorithm will move away from this point� Unfortunately this may not be the
case in methods that handle constraints by a trust region method� To illustrate this� we
now present an example that occurs with a feasible version of the algorithm implemented
in the KNITRO package ��� �	�

Example �� Consider the problem GAUSSELM from the CUTE collection ��	� One version
of this problem has ��� nonlinear equality constraints along with 
�� linear inequality
constraints and some bounds on the variables� Using an initial point which was feasible with
respect to the inequality constraints� we attempted to solve this problem using Algorithm
Feas�Reset with steps d generated by KNITRO� a trust region interior method� The merit
function is given by ����
 with ��	
 � �k 	 k�� and � � �� Some of the �rst �� and last �
iterations of the run are shown in Table �� All the iterations of the run occur for a �xed
barrier parameter value ��

In Table �� Iter refers to the iteration number� Step indicates whether or not the trial
point was accepted or rejected� Barr Obj is the barrier objective value � de�ned in ����a
�
kh�x
k� is the norm of the equality constraints� Delta is the trust region radius� Merit Red

is the reduction in the merit function � obtained by the step� Trial indicates whether the
trial point is feasible or not and k�sk� is the norm of the perturbation due to the slack reset
����
� We note that the slack reset is not performed if the trial point is infeasible�

Even though all iterates are feasible with respect to the inequality constraints� we can
see from Table � that there exist violated equality constraints� From iteration �� on� all
the trial steps are feasible� but the merit function increases even as the trust region radius
approaches zero� It is easy to see that this increase in the merit function is caused by
the slack reset perturbation �s which is relatively large starting at iteration � and does
not decrease quickly enough as the trust region approaches zero� Note that in the later
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Iter Step Barr Obj kh�x
k� Delta Merit Red Trial k�sk�
� OK ����e��� �����e	�
 �����e��� ����e	�� feas 
����e	��

� OK ����e��� 
����e	�
 
����e��� 
���e��� feas ����
e	��


 OK 
���e��� 
��

e	�� �����e��� ����e��� feas �����e	��

� OK 
��
e��� ��
��e	�� �����e��� ����e��� feas �����e	��

� OK ����e��� ����
e	�� �����e��� ����e	�� feas ��
��e	��

� rej ����e��� 
����e	�� �����e��� ����e	�� inf 									


 rej ����e��� �����e	�� 
��
�e��� ����e	�� inf 									

���

�� OK ����e��� 
����e	�� ����
e	�� ����e	�� feas ��
�
e	��

�� rej ����e��� 
�
��e	�� ��
��e	�� ����e	�� inf 									

�� rej ����e��� 
��
�e	�� ����
e	�� ����e	�� inf 									

�
 rej ����e��� 
���
e	�� ��
��e	�� ����e	�� inf 									

�� rej ����e��� 
����e	�� ��
�
e	�
 	��
�e	�� feas �����e	��

�� rej ���
e��� 
���
e	�� 
�
��e	�
 	
���e	�� feas ���
�e	�


�� rej ����e��� 
��
�e	�� ���

e	�
 	����e	�� feas ��
��e	�


���

�� rej ����e��� 
����e	�� �����e	�� 	����e	�
 feas ���
�e	��

�� rej ����e��� 
����e	�� �����e	�� 	����e	�� feas �����e	��

�
 rej ����e��� 
����e	�� �����e	�� 	����e	�
 feas ����
e	��

Table �� Algorithm Feas�Reset on problem GAUSSELM

iterations the length of �s is comparable to the trust region radius and� as a consequence�
to the length of the step d� The algorithm eventually fails because the trust region radius
becomes smaller than a preset tolerance�

This example indicates that the step produced by a feasible trust region method� such
as the one implemented in KNITRO� is not appropriate for a slack reset in the presence
of equality and inequality constraints� We will show� however� that by modifying the step
computation� slack resets can still be e�ective�

��� Step acceptance in Algorithm Feas�Reset

As we will show later on� it is notable that the di�culties in Algorithm Feas�Reset observed
in Example � do not occur for problems with only inequality constraints� To propose reme�
dies� we need to understand what is special about the handling of equality and inequality
constraints in a trust region method�

Let us begin by considering� by way of contrast� line search interior methods� They
typically demand ��� 
� ��� ��� ��	 that the step satisfy the linearized constraints

c�x� s
 �A�x
Td � �� �����




�

where c�x� s
 is de�ned by ����
 and A�x
T denotes its Jacobian matrix� i�e��

A�x
 �

�
Ah�x
 Ag�x


� �I

�
� �����


If x is feasible such that g�x
� s � �� the second block of equations in �����
 reads

Ag�x

T dx � ds � �� �����


We now show that� when all steps satisfy �����
� the slack reset in Algorithm Feas�Reset
will cause at most a small increase in the merit function � which is o�set by the decrease
due to d�provided this step is of appropriate length� As a consequence� when �����
 holds�
the type of failure exhibited in Example � will not occur�

We �rst note that most constrained optimization methods generate a step d that is a
direction of �rst order decrease of the merit function� or at the very least� is arbitrarily close
to such a direction when kdk is su�ciently small ��	� �This property holds at any iterate
that is not a stationary point of the problem� and where regularity holds�
 This implies
that at such a point there is a positive constant 
 such that when d is su�ciently small� the
decrease in the merit function satis�es

��x� s
� ��x� dx� s� ds
 � 
kdk� �����


The following result gives conditions under which the perturbation �s de�ned in �����
 will
be much smaller than d� ensuring that the decrease in the merit function due to the step d
will be maintained�

Theorem ��� Suppose Algorithm Feas�Reset is applied to the barrier problem ����
� and
that the function � in ����
 and the Jacobian A�x
T are Lipschitz continuous� Let �x� s
 be
a feasible iterate with s � �� and suppose that the step d � �dx� ds
 satis�es �����
� Then

the perturbation in the slacks due to the reset ����
 satis�es

k�sk � O�kdxk

��

As a consequence� if �����
 holds� then for d su�ciently small the total step �dx� ds � �s

will reduce the merit function and the step will be accepted�

Proof� The equality g�x
 � s � �� and �����
 imply that

kg�x� dx
� �s� ds
k � O�kdxk
�
� ����



Combining this with �����
 we obtain

k�sk � O�kdxk
�
� �����


The e�ect of this reset on the merit function � is also O�k�sk
 since � is Lipschitz continuous
so that

��x� dx� s� ds
� ��x� dx� s� ds � �s
 � O�k�sk
 � O�kdxk
�
�



��

Together with �����
 this implies

��x� s
� ��x� dx� s� ds � �s
 � 
kdk �O�kdxk
�
� 
 � ��

Clearly for d su�ciently small the �rst term on the right hand side dominates the second
term and we have that ��x� dx� s� ds � �s
 	 ��x� s
 so that the step is accepted�

�

Theorem ��� guarantees that the failure observed in Example � cannot occur with line
search methods since their search directions typically satisfy �����
 and �����
� On the
other hand� many trust region methods� including the algorithm in KNITRO� do not always
impose �����
 and the guarantee of Theorem ��� is not available� �Of course for such trust
region methods �����
 still holds so the merit function increase in cases like Example � for
small kdk must be due to the reset �s�
 We now discuss why �����
 may not be satis�ed by
trust region methods� and how the di�culties illustrated in Example � can be remedied�

��� Behavior of feasible trust region methods

In a trust region method for solving the equality constrained barrier problem ����a
�����c
�
the step d � �dx� ds
 is not computed by solving the Newton system ����
� Instead it is
de�ned as the �approximate or exact
 solution of a subproblem of the form

min
d

�
�d

TWd�r��x� s��
T d �����a


s�t� h�x
 �AT
hd � rh �����b


g�x
� s�AT
g dx � ds � rg �����c


kdk � �� �����d


Here W is the Hessian of the Lagrangian of the barrier problem ����
� or a related matrix�
and � is the barrier function� The vectors rh and rg are chosen with the dual objective
of ensuring that the constraints �����b
������d
 are compatible� and that the step makes
su�cient progress towards achieving feasibility� The methods of Vardi ���	� Celis� Dennis
and Tapia ��	� Powell and Yuan ���	� Byrd and Omojokun ��� �
	� and Yamashita and Yabe
���	 can be described in this framework�

If there is a step d satisfying �����b
������d
 for rh � rg � �� then these trust region
methods will usually de�ne rh and rg to be zero� In particular� these methods always set
rg � � when the problem contains only inequality constraints and the current iterate is
feasible� In this case g�x
 � s� and thus �����c
 can be satis�ed with rg � � by arbitrarily
small steps d that lie inside the trust region� Thus if Algorithm Feas�Reset is used with such
a method� �����
 will be always be satis�ed� and by Theorem ��� a failure like Example �
will not occur for problems containing only inequality constraints�

It is often the case� however� that for general problems the constraints �����b
������d

are inconsistent and nonzero values of rh and rg must be chosen� Moreover� in many
standard trust region methods ��� �� �
� ��	 r � �rh� rg
 is chosen based on the constrained
minimization of the squared Euclidean norm krk�� �see� e�g� �����

� making it almost



��

certain that if one of the vectors rg� rh is nonzero then both rg and rh will be nonzero� As a
result the linear equation �����
� which we have seen guarantees that the slack reset is not
harmful� will not be satis�ed in general� This is undesirable in the context of Algorithm
Feas�Reset because the reset perturbation �s can be as large as the step d and cause a net
increase in the merit function even as kdxk � �� This can even occur when all constraints
are linear�

Since the violation of �����
 occurs no matter how small � is� it could cause Algorithm
Feas�Reset to get stuck at a non�optimal point from which it could make no further progress�
as seen from Example �� Note that the problem cannot be overcome simply by backtracking
along d since if Ag�x


T dx � ds 
� � the same holds for any scalar multiple of d� We now
propose a general strategy for overcoming this problem�

Feasible Step Conditions� The di�culties mentioned above can be resolved by demand�
ing that� whenever g�x
�s � �� the vector rg be chosen to be zero in �����c
� The vector rh
should still ensure that �����b
 and �����d
 are compatible and that the step makes su�cient
progress toward satisfying the equality constraints h�x
�

Below we discuss how to apply this strategy in the algorithm implemented in the KNI�
TRO package�

� Feasible Steps in KNITRO

The algorithm implemented in KNITRO is a composite�step trust region method �following
the terminology of ��	� Chapter ��
� The step d is given as the sum of two components�

d � � � t� �����


where the �tangential component t lies in the null space of A�x
T and attempts to move
towards optimality� while the �normal component � attempts to improve feasibility� The
vectors rh and rg in �����
 are obtained during the computation of the normal component
�� and are not changed by the tangential component� Therefore� in order to enforce the
satisfaction of �����
 by the step d computed by KNITRO� we must make sure that the
normal component of the step sets rg � �� We now discuss the computation of the normal
component � in detail�

The normal component � � ��x� �s

T is de�ned as the solution of the auxiliary problem�

min
�

kA�x
T � � c�x� s
k�� �����a


s�t� k�kTR � ��� �����b


where A is given by �����
 and the constant � � ��� �	� The trust region norm k 	 kTR is
scaled by k�kTR � k��x� S

���s
k in order to steer the step away from the slack bounds� see

�In addition to ����
b� a bound on slack steps is imposed� but this is done after the solution of ����
��



��

��	� Once the solution � is computed� we de�ne

rh � h�x
 �Ah�x

T �x� rg � g�x
 � s�Ag�x


T �x � �s� �����


To determine whether rg is set to zero when g�x
 � s � �� we note that in KNITRO
problem �����
 is solved approximately using a dogleg method ���	� � is a linear combination
of a Newton step �N and a Cauchy direction� Speci�cally� it is the minimizer of �����a

along the piecewise linear path from � to ��C to �N subject to the trust region constraint�
where � � � is the minimizer of kA�x
T��C � c�x� s
k���

The Newton step is a solution of A�x
T �N � �c�x� s
 of minimum scaled norm k 	 kTR�
Hence by �����
 when x is feasible the Newton step �N � ��Nx � �

N
s 
 satis�es �����
� i�e��

Ag�x

T �Nx � �Ns � �� �����


If the Newton step lies inside the trust region �����b
 then the dogleg method de�nes � � �N �
and rg will be set to zero in �����
� Therefore �����
 will be satis�ed when g�x
� s � � and
Algorithm Feas�Reset will not encounter any di�culties in this case�

On the other hand� when the trust region is active� the dogleg method de�nes the step
� to be a �nonzero
 combination of the Cauchy direction �C and the Newton step �N � The
Cauchy step does not satisfy �����
 in general� To see this� note from �����
 that �C is the
direction of steepest descent for the function

kA�x
T � � c�x� s
k�� �����


in the scaled norm� Di�erentiating �����
 we see the when g�x
�s � �� the steepest descent
direction �C � ��Cx � �

C
s 
 is given by

�Cx � �Ah�x
h�x
� and �Cs � �� �����


and therefore Ag�x

T �Cx � �Cs 
� �� in general� Thus� since the Cauchy direction �C given

by �����
 will not� in general� satisfy �����
 when the trust region is active� the same is true
for the total step � which is a combination of �C and �N � Because of this� the di�culties
illustrated in Example � may occur for Algorithm Feas�Reset with steps given by KNITRO
when the trust region constraint is active in the normal step computation�

We can resolve these di�culties by rede�ning the Cauchy direction �C � We will require
that the new Cauchy direction satisfy the following three properties when g�x
 � s � ��

�i
 it should satisfy �����
�
Ag�x


T �Cx � �Cs � �� �����


�ii
 it should make progress on the linearized equality constraints similar to that of the
standard Cauchy step computed via �����
� From �����
 we can see that the �rst�order
reduction on the equality constraints achieved by the standard Cauchy step is given by

h�x
� �h�x
 � �Ah�x

T �Cx 
 � ��Ah�x


T �Cx ����



� �Ah�x

TAh�x
h�x
� �����




��

In order to achieve similar reduction we require that the new Cauchy direction satisfy

Ah�x

T �Cx � �Ah�x


TAh�x
h�x
� �����


�iii
 Finally� to control the quality of the normal step and to take into account the shape
of the trust region �����b
� we require� as in the standard version of KNITRO� that the
normal step should be in the range of the scaled Jacobian� i�e��

�C �

�
Ah�x
 Ag�x


� �S�

� �
p�
p�

�

for some vectors p�� p�� see �����
 in ��	�
Together these three desired properties of the modi�ed Cauchy direction amount to

requiring that �C � ��Cx � �
C
s 
 solve the equations

�
���

I � Ah�x
 Ag�x

� I � �S�

Ah�x

T � � �

Ag�x

T �I � �

	


�
�
���

�Cx
�Cs
�p�
�p�

	


� �

�
���

�
�

�Ah�x

TAh�x
h�x

�

	


� � �����


In summary� the change needed in the step computation of KNITRO occurs only in the
normal component � of the step �����
� This normal component is formed by a Newton
step �N � which needs no modi�cation� and a Cauchy direction �C � which is now computed
via �����
�

Note that if Ah�x
 is rank de�cient� the Cauchy direction �C is still determined by
�����
� If we delete the columns and rows of the matrix in �����
 that correspond to the
dependent columns of Ah�x
� the resulting matrix is nonsingular� If we then solve the
resulting system� deleting the corresponding components of the right hand side� it is clear
that the resulting solution will automatically satisfy the equations in �����
 corresponding
to the deleted columns due to the linear dependence�

We now apply Theorem ��� to show that the new step does not su�er from the di�culties
illustrated in Example ��

Corollary 	�� Suppose that Algorithm Feas�Reset is applied to the barrier problem ����
�
and that the step d is given by �����
� where t is in the null space of A�x
T � and � is

a dogleg step whose Cauchy component is computed via �����
� Assume the function �
in ����
 is given by �kc�x� s
k� that the scalar � is su�ciently large� and that A�x
 and
rf�x
 are Lipschitz continuous� Let �x� s
 be a feasible iterate �with respect to the inequality

constraints� and with g�x
 � s � �� that is not a stationary point of kh�x
k�� If the trust

region radius at �x� s
 is su�ciently small� the step d will reduce the merit function and be

accepted�

Proof� The normal step � in �����
 is a dogleg step which is a linear combination of a
Newton step �N and a Cauchy direction �C � By �����
 and �����
 both components satisfy
�����
 when x is feasible� so that Ag�x


T �x � �s � �� It follows from �����
 that rg � ��



��

so by �����c
 and the fact that t is in the null space of A�x
� we have that the full step d
satis�es �����
 whenever g�x
� s � ��

Now to use the second part of Theorem ��� we need only establish that d satis�es
�����
� As argued above� the matrix in �����
 may be assumed nonsingular without loss of
generality� so that �C is well de�ned� Note that the dogleg step has the property that if
the trust region radius �� is su�ciently small� the dogleg step is a scalar multiple of the
Cauchy direction �C � Thus� for su�ciently small �� we have from �����


� � ���C�k�Ck� and Ah�x

T �x � ���Ah�x


TAh�x
h�x
�k�
Ck�

Since f and c are smooth and h�x
 
� �� the merit function is continuously di�erentiable in
a neighborhood of the iterate �x� s
� Using this� ����
� and the fact that g�x
� s � � we get

��x� s
� ��x� dx� s� ds
 � �r��x� s
Td� o�kdk


� �rf�x� s
Tdx � �eTS��ds � �
�Ah�x
h�x



T dx
kh�x
k

� o�kdk


� �rf�x� s
Tdx � �eTS��ds

��
��kAh�x
h�x
k

�

kh�x
kk�Ck
� o�kdk
� �����


Note that kAhh�x
k 
� � since �x� s
 is not a stationary point of kh�x
k�� Clearly� we can
choose � su�ciently large such that the sum of the �rst three terms of �����
 is greater than
half the �positive
 third term� i�e��

��x� s
� ��x� dx� s� ds
 � �
��

��kAh�x�h�x�k
�

kh�x�kk�Ck
� o�kdk
 �����


� 
kdk� o�kdk
� �����


for some constant 
� where the last step follows from the fact that kdk � �� It follows that
�����
 must hold for � su�ciently small� concluding the proof� �Note that the assumption
that � is su�ciently large is not restrictive since the type of adjustment described above is
commonly done in practice� see e�g� ��	
�

�

The step de�ned by �����
 is not the only modi�cation that would be e�ective in the
context of Algorithm Feas�Reset� For example� computing the steepest descent direction of
kAh�x


T �x�h�x
k�� in the subspace of vectors satisfying �����
 would yield an e�ective step�
although it might be computationally expensive� A major advantage of using the solution
to �����
 is that �����
 can be rewritten in such a way so that the coe�cient matrix used to
compute the new Cauchy direction is one which is already factored in KNITRO to compute
the Newton direction �N � Lagrange multiplier estimates� and each step of the projected
conjugate gradient iteration used to solve �����
� Thus the extra cost of computing the
proposed Cauchy step is quite moderate� amounting to the cost of one backsolve using the
factors of the coe�cient matrix in �����
� where several such backsolves usually are already
performed for each iteraion�



��

Example �� We consider again the behavior of Algorithm Feas�Reset on problem GAUS�
SELM� this time using the modi�ed normal step for KNITRO described above� The optimal
solution is reached in ��� iterations without any di�culties� For the sake of space only the
�rst �� iterations �all using the same barrier parameter value
 are shown in Table �� We
note that the perturbation caused by the slack reset� �s� is always of the order of unit
roundo�� and therefore does not prevent a decrease in the merit function�

We also tested the modi�ed normal step by comparing the performance of Algorithm
Feas�Reset implemented in the KNITRO package with and without the modi�ed step� Our
test set had ��� problems� all containing equality constraints� and of those the two versions
of KNITRO performed di�erently on �� problems� Of these �� problems the new step
resulted in failure on � problems� as compared to �
 failures for the unmodi�ed step� On
the �� problems solved by both� KNITRO with the new Cauchy step required signi�cantly
fewer iterations�

Iter Step Barr Obj kh�x
k� Delta Merit Red Trial k�sk�
� OK ����e��� �����e	�
 �����e��� ����e	�� feas 
����e	��

� OK ����e��� 
����e	�
 
����e��� 
���e��� feas ����
e	��


 OK 
���e��� 
��

e	�� �����e��� ����e��� feas �����e	��

� OK 
���e��� 
����e	�� �����e��� ��
�e��� feas �����e	��

� OK ����e��� �����e	�� �����e��� ����e��� feas ����
e	��

� OK ����e��� ���
�e	�� �����e��� ��
�e��� feas ��
�
e	��


 OK 	��

e	�� �����e	�� �����e��� ��

e��� feas ���
�e	��

� OK 	���
e��� 
�
�
e	�� �����e��� ����e��� feas �����e	��

� OK 	����e��� �����e	�� �����e��� ���
e��� feas ���

e	��

�� OK 	����e��� 
��
�e	�� �����e��� ��

e��� feas ����
e	��

�� OK 	����e��� ���
�e	�� �����e��� ����e	�� feas ���
�e	��

�� OK 	����e��� ����
e	�� �����e��� ����e��� feas 
�

�e	��

�
 OK 	����e��� 
�
��e	�� �����e��� ����e��� feas 
�
�
e	��

�� OK 	
���e��� �����e	�� �����e��� ����e��� feas 
��
�e	��

�� OK 	
���e��� �����e	�� �����e��� 
���e��� feas 
����e	��

Table �� Algorithm Feas�Reset using the modi�ed normal step on problem GAUSSELM

We conclude this section by brie�y discussing another� even simpler modi�cation of the
Generic Algorithm ��� that would result in a feasible method� Instead of resetting the slack
variables� as in Algorithm Feas�Reset� we could simply reject any trial iterate xT that is
infeasible� In a trust region method we would reduce the trust region and compute a new
step� in a line search method we would simply backtrack� This algorithm would therefore
be identical to Feas�Reset method except for the fact that the slack variables are never
rede�ned�

For di�erent reasons� the presence of equality constraints can also cause this algorithm
to be very ine�cient or even fail in some cases� Suppose for example that the current iterate



��

lies at the boundary of the feasible region de�ned by the inequality constraints and that the
problem contains also equality constraints� Then it is possible for the direction generated
by an interior point method to point towards the outside of the feasible region� In this case
a line search method would fail when the trial steplength approached zero� If the current
iterate lies near the boundary of the feasible region� the algorithm would generate very
small steps�

A trust region version of this approach can also fail� �We observed such failures in
our numerical experiments�
 In analogy with Algorithm Feas�Reset� one could also try to
improve upon this method by modifying the step computation� However� since this method
is inherently di�erent� a new type of step modi�cation is in order� We have not explored
this because Algorithm Feas�Reset� with its step modi�cation� has proven to be a robust
and e�cient feasible method� but it is plausible that a careful modi�cation of the approach
just described could be just as e�ective�

� Numerical Tests

To our knowledge there have been no studies comparing the performance of feasible versus
infeasible interior point methods for nonlinear optimization� The algorithmic framework
described in this paper is convenient for doing such tests as it allows us to easily switch
between a feasible method and an infeasible method while keeping all other algorithmic
features the same� One might expect that the �exibility provided by an infeasible method
would be advantageous in certain circumstances allowing the iterates to take a more direct
path to the solution through infeasible intermediate steps� However� by the same token� it
is also conceivable that this additional freedom may allow for poor steps not permitted by
feasible methods� this may make an infeasible code less e�cient at times� To our surprise�
the tests we report below do not indicate a clear superiority of either method and the
potential advantages of each approach do not appear to be a major factor�

To compare the relative merits of these approaches we tested both feasible and infeasible
versions of KNITRO on a set of ��� test problems from the CUTE collection� The problems�
and some of their properties� are listed in the Appendix� The infeasible version follows the
Generic Algorithm �Algorithm ���
 with steps generated by KNITRO� The feasible version is
based on Algorithm Feas�Reset �Algorithm ���
 with steps determined by KNITROmodi�ed
to incorporate the new Cauchy step given by �����
� the threshold value � is chosen as
� � �����

All the results were performed on a Sun Ultra �!�� workstation with ��� MB of memory�
in double precision Fortran� The termination test for the runs was the default KNITRO
stopping test with a tolerance of ���	� this test is based on a normalized KKT condition�

The results are summarized in Figure �� and are reported in detail in the Appendix�
Figure � plots the ratio

log�
�fevals Infeasible Alg


�fevals Feas�Reset Alg

� �����


where fevals denotes the number of function evaluations required to meet the stopping test�
In the �gure� the problems are arranged along the horizontal axis in decreasing order of the



�


absolute value of �����
� We report results only for those problems for which both methods
converged to the same solution� Also we only include problems where the feasible algorithm
entered feasible mode �obtained an iterate where g�x
 � �e
�
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Figure �� Comparison of infeasible and feasible versions of KNITRO on ��� problems in
which both algorithms found the same solution and where the feasible version entered
feasible mode� A bar on the upper half means that the feasible algorithm required fewer
function evaluations� The logarithmic scale �����
 was used�

The feasible algorithm solved ��� problems and the infeasible algorithm �
�� they mainly
failed on the same problems� "From this fact and Figure � we remark that for most of these
problems� there is little di�erence between the two approaches� We observed that on �� of
the ��� problems Algorithm Feas�Reset never entered feasible mode� On these problems�
therefore� the feasible and infeasible methods are identical� Moreover on a number of other
problems there is little or no di�erence either because Algorithm Feas�Reset only entered
feasible mode near the end of the run or the problems were solved too quickly or easily for
there to be much di�erence� On three problems� the feasible algorithm was dramatically
better than the infeasible method� but an examination of the runs does not suggest that
this is due to the properties of the feasible iteration�

We interpret these results as being very positive because they indicate that staying
feasible has no overall detrimental e�ect on the performance of the problems tested� They
also suggest that the modi�ed Cauchy step successfully overcomes the di�culties discussed
in section �� In particular� these results suggest that the feasible version of KNITRO
represents a robust approach for handling problems in which feasibility with respect to



��

some or all of the inequality constraints must be retained�
We should point out that there is a feature of the KNITRO step computation that

contributes to the lack of disparity between the feasible and infeasible methods compared
in Figure �� Although the standard version of KNITRO ��	 is an infeasible algorithm� it
makes use of a slack adjustment to accelerate convergence� KNITRO adjusts the slack
variables at the end of each iteration �regardless of whether the iterate is feasible or not

according to the rule

sT � max�g�xT
� s� ds
� �����


where the max function is applied component�wise� see step � of Algorithm I in ��	
�
If one of the components of g is non�positive� this rule will not modify its associated

slack variable� But suppose that one of the components of g� say gj � satis�es gj�xT
 � �
and that �s � ds
j 	 gj�xT
� Then the rule �����
 increases the corresponding slack so
that �g�xT
 � sT
j � �� while at the same time achieving a smaller barrier term value
��
P

i�I ln�si
 in the merit function� Note also that if one of the inequality constraints
satis�es gj�xT
 � � and �s� ds
j � gj�xT
� then the value of the slack will not be changed
by �����
� even though by decreasing it we would obtain �g�xT
� sT
j � �� We choose not
to adjust the slacks in this case because this could cause an increase in the merit function�

This slack adjustment cannot cause the di�culties discussed in section ��� because it
never gives rise to an increase in the merit function� and there is no need for modifying
the step when equalities are present� The rule �����
 has been analyzed in the context
of the KNITRO algorithm in ��	� and in practice has proven to be superior to using no
slack adjustment scheme� In the numerical tests described above� the slack adjustment rule
�����
 is applied at every iteration of the infeasible method� In Algorithm Feas�Reset the
slack adjustment is applied only before this method enters feasible mode �at which point it
switches to the feasible slack reset scheme
� Hence� the two methods bene�t from the slack
adjustment �����
 where possible� We should stress that using this adjustment dampens the
disparity between the two methods� since the slack adjustment is identical to the feasible
reset when g�xT
 � s� ds� However� we use it in our comparison taking the view that all
methods should be tested using their best implementation within the KNITRO framework�

� Final Remarks

We have shown how infeasible slack�based interior methods can be transformed into feasible
methods by using slack resets� Even though the modi�cation is straightforward in most
line search methods� care must be taken in trust region methods because� for problems
containing both equality and inequality constraints� the slack reset can be harmful� We
have given guidelines for the step computation so as to maintain feasibility with respect
to inequality constraints� while improving the equality constraints� A speci�c normal step
computation for the algorithm in KNITRO was developed and shown to be e�ective in
practice�

The formulation ����
 of a nonlinear program made it simple to transform infeasible
interior methods into feasible methods since it identi�es the inequality constraints and the
slack variables� It is important not to erase this information during the problem formulation�



��

In particular� if all inequalities are transformed to equalities by introducing slacks� and the
problem is given in the form

min
x

f�x
 s�t� c�x
 � �� x � ��

without any distinction between the components of x that are slacks and those that are not�
then the notion of feasibility with respect to the original inequality is lost� and it would be
very inconvenient to apply the techniques discussed in this paper�

We should also point out that in all cases of slack resetting� the reset should take
place before the evaluation of the merit function� If it is done after evaluating the merit
function performance can be signi�cantly degraded since the slack reset e�ectively changes
the iterate� but the merit function does not have the opportunity to measure its quality�

The ideas presented in this paper are applicable to the case when only some of the
inequality constraints must be honored� The slack reset in Algorithm Feas�Rest would only
be applied to those inequality constraints that must be satis�ed� Similarly� to obtain the
improved normal component discussed in section �� we must maintain linear feasibility for
the inequality constraints that must be honored�

We conclude by pointing out that the merit function considered in this paper has the
form ����
� but this choice is not of particular importance� Many other choices of merit
functions would be allowed in Algorithm Feas�Reset�
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Table 
� Comparison of Infeasible and Feasible versions of KNI�
TRO in terms of function evaluations� ��� Maximum number
of iterations ������ reached� ��� Maximum allowable CPU time
�	� minutes� reached� ��� Terminate because trust region radius�
� � �� � �mach� where �mach is unit roundo� error� ��� Other
abnormal termination� A ��� next to the problem name indicates
that the Feasible version never entered feasible mode�
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