Feasible Interior Methods Using Slacks for Nonlinear
Optimization

Richard H. Byrd* Jorge Nocedal' Richard A. Waltz'

February 26, 2002

Abstract

A slack-based feasible interior point method is described which can be derived as
a modification of infeasible methods. The modification is minor for most line search
methods, but trust region methods require special attention. It is shown how the
Cauchy point, which is often computed in trust region methods, must be modified so
that the feasible method is effective for problems containing both equality and inequal-
ity constraints. The relationship between slack-based methods and traditional feasible
methods is discussed. Numerical results showing the relative performance of feasible
versus infeasible interior point methods are presented.

Key words: constrained optimization, interior point method, feasible method, large-scale
optimization, nonlinear programming, primal-dual method, sequential quadratic program-
ming, barrier method, trust region method.

*Computer Science Department, University of Colorado, Boulder, CO 80309. This author was supported
by Air Force Office of Scientific Research grant F49620-00-1-0162, Army Research Office Grant DAAGH5-
98-1-0176, and NSF grant INT-9726199.

"Electrical and Computer Engineering Department, Northwestern University, Evanston IL 60208. These
authors were supported by National Science Foundation grant CDA-9726385, and by Department of Energy
grant DE-FG02-87ER25047-A004.

1 Introduction

In many applications, it is desirable for all of the iterates generated by an optimization
algorithm to be feasible with respect to some or all of the inequality constraints. For
example, the objective function may be defined only when some of the constraints are
satisfied, making this feature absolutely necessary. In other instances one may want to
terminate an algorithm before optimality has been reached and be assured that the current
approximate solution is feasible.

Various feasible active set methods (see, e.g. [15]) have been developed by including
deflections in the search directions which ensure that the total step points towards the
interior of the feasible region. They typically require the solution of two or more linear
systems of equations per iteration, although some recent approaches [16] aim at decreasing
the cost per iteration.

Interior point approaches provide a natural framework for deriving feasible methods for
nonlinear programming. The methods proposed in [1, 7, 12, 13] either start with a feasible
point or apply a phase-one procedure to compute one, and then generate strictly feasible
iterates. Most other implementations of interior methods for nonlinear programming are
based, however, on infeasible algorithms [5, 10, 20, 23] which may enter and leave the feasible
region during the course of the minimization.

In this paper we describe a framework for transforming slack-based infeasible methods
into feasible methods. In this framework, feasible and infeasible interior algorithms can be
considered as variants of the same basic method. Feasibility is controlled by whether or not
one resets the slack variables after a trial step has been taken, and how these variables are
reset. Using this flexibility one can choose to enforce feasibility with respect to some, all,
or none of the inequality constraints depending on what is needed or desired. In addition,
this flexibility provides a convenient testing environment for analyzing the effects of staying
feasible in interior point methods.

The slack reset strategies may experience difficulties on problems with both equality
and inequality constraints. The difficulties will not arise in most line search methods,
but can occur in trust region methods. We describe a procedure for generating search
directions which ensures that the feasible methods proposed here behave efficiently for
problems containing both equality and inequality constraints.

The paper is organized as follows. We first outline, in section 2, the general formulation
of an infeasible interior point algorithm for nonlinear programming. In section 3 we describe
a strategy which transforms infeasible interior methods into methods that satisfy some or
all of the inequality constraints by resetting slack variables. The relationship between these
slack-based feasible methods and the classical methods of Fiacco and McCormick [11] is
discussed. In section 4 we describe potential difficulties with our strategy when equality
constraints are present, and provide guidelines to deal with them. A concrete procedure for
modifying the step-computation in the KNITRO algorithm is presented in section 5, and
numerical results comparing feasible and infeasible methods are reported in section 6. We
conclude the paper with final remarks in section 7.

2 Infeasible Methods

The problem under consideration will be formulated as

Irgcin f(x) (2.1a)
8.t h(z) =0 (2.1b)
g(z) 20, (2.1c)

where f, h and g are sufficiently smooth functions of the variable z € IR™. Here f is a scalar-
valued function, and h and g are vector-valued functions. By a feasible method for (2.1)
we mean one in which the starting point and all subsequent iterates satisfy the inequality
constraints (2.1c).

Infeasible interior methods do not enforce satisfaction of the inequality constraints at
each iteration. They typically make use of slack variables to transform (2.1) into the equiv-
alent problem

min f(z) (2.2a)
s.t. h(z) =0 (2.2b)
g(z) —s=0 (2.2¢)
s> 0. (2.2d)

We will consider interior methods that, at each iteration, apply a form of Newton’s method
to solve, to some degree of accuracy, the barrier problem

min (e, sip) = f(@) —p) Inlsi) (2.3a)
1€T

s.t. h(z) =0 (2.3b)

g(z) —s=0 (2.3¢c)

5> 0, (2.3d)

where p is a positive parameter and Z is the set of indices corresponding to the inequality
constraints. We will assume that the methods use a merit function of the form

¢($,S) = f(ZE) —MZIH(Si)—FX(C((II,S)), (24)
1€L
where x is some measure of infeasibility, and

c(z,s) = [g(h(x)] . (2.5)

x)— s

The function y can be chosen as a vector norm, or as some other function with the properties
that x(0) = 0 and ¢(z,s) — oo as s — 0. We will also define ¢ to have the value oo for
s <0.

Let us consider the following very general type of iterative method for solving the barrier
problem (2.3). This method will be applied until (2.3) is solved to some accuracy; then a
new barrier parameter is chosen, and the method is applied again. Methods that change
the barrier parameter at each iteration would then apply a single iteration of the following
method to each barrier problem.

Algorithm 2.1 Generic Algorithm (Infeasible method for problem (2.3))

An iterate x (possibly infeasible) and a slack vector s > 0 are given.
while a stopping rule is not satisfied
Compute the step d = (dg, ds).
Define the trial point xr =x +d;; sr= s+ ds.
while ¢(x 1, s7) is not sufficiently smaller than ¢(z,s)
Compute a shorter step d.
Setxr=x+d;; sp=s+ds.
end (while)
Set 4 =z 5S4 =5
end (while)

In a trust region method, a shorter step would be obtained by decreasing the trust
region radius and recomputing a step, whereas in a line search method, a backtracking line
search would be employed. We assume that the step-generation procedure and the merit
function ¢ are compatible in the sense that if ||d|| is sufficiently small, the merit function
will be decreased. No other assumptions will be made on d until we consider, in section 4,
its effect when both equality and inequality constraints are present.

3 A Feasible Method with Slack Resetting

We now describe a way of transforming this infeasible Generic Algorithm into a feasible
method while retaining the use of slack variables. The motivation for doing so is two-fold.
First, by using slacks, the feasible and infeasible versions can be implemented with minimal
changes to the algorithm and data structures. In particular, the linear system to be solved
at each iteration of the interior method will be identical for the feasible and infeasible
versions. Second, this framework makes it very simple to decide which constraints should
be honored — and to change this choice if desired. By contrast, in a feasible method that
does not use slacks, feasibility is imposed by applying a barrier function on the inqualities
to be honored — something that results in substantial changes in the algorithm.

In what follows we will assume for simplicity that the feasible method must satisfy all
inequality constraints at every iteration. It will become clear, however, that it is straightfor-
ward to extend the algorithm described below to the case when only some of the inequality
constraints must be honored.

3.1 Feasible Algorithm Description

Assume the current iterate is feasible with respect to the inequality constraints. To ensure
that the next iterate is also feasible, we introduce the following simple modification. After
computing a step (d,ds) we redefine the slacks as

st + g(xr), (3.6)

and test whether the point (zr, st) is acceptable for the merit function (2.4). If it is not,
we reject the step and compute a new, shorter, trial step.

If the initial iterate xzy does not satisfy all inequality constraints, we first apply the
infeasible Generic Algorithm until all inequalities are greater than some positive threshold
value. At that point the algorithm switches to the feasible mode, and stays feasible for the
rest of the optimization calculation. This algorithm (Feas-Reset) is summarized below. We
let e denote the vector of ones, of appropriate dimension. As before, we define the merit
function ¢ to have the value oo for s < 0.

Algorithm 3.1 Algorithm Feas-Reset

An iterate x (possibly infeasible), a slack vector s > 0, and a positive threshold
value T are given.
if g(z) < Te then
Run infeasible Generic Algorithm until g(x) > Te.
Set s = g(x).
end (if)
while o stopping test is not satisfied
Compute the step d = (dg,ds) as in the Generic Algorithm.

Define the trial point £, =z + dy; |s;=g(zr) |
while ¢(x 1, s1) is not sufficiently smaller than ¢(z, s)
Compute a shorter step d.
Set zr=x+dy; |sr=g(z7)|
end (while)
Set xy =z Sy = Sp.
end (while)

The test g(x) > Te, can be replaced by some other condition that does not treat each
constraint equally and that takes into account the scale of the constraints.

Note that the vector ds is not needed in Algorithm Feas-Reset, but we still assume that
a step in the slacks and variables is computed at every iteration, so that the feasible and
infeasible modes require the same data structures and variables — and only differ in the two
instructions enclosed in boxes. Our numerical experience indicates that the cost of solving
the larger system (in (dg,ds)) using the HSL routine MA27 [14] is not significantly larger
(if at all) than solving a reduced system (in d, only).

Making the substitution (3.6) has the effect of replacing In(s;) with In(g;(z)) in the merit
function, which is the standard form of classical barrier functions [11]. If at a trial point
we have that g;(zr) < 0 for some inequality constraint, the value of the merit function is
400, and we reject the trial point. Note that this approach will also reject steps x +d, that
are too close to the boundary of the feasible region because such steps increase the barrier
term —p) ;o7 In(s;) in the merit function (2.4).

In section 6 we show that a trust region implementation of this feasible method is
efficient in practice for problems with inequality constraints only, but that in order to handle
problems with both equalities and inequalities, a modification to the step computation must
be made.

3.2 Equivalence of Slack-based and Classical Feasible Methods

We now ask if Algorithm Feas-Reset, in its feasible mode, is identical to a classical barrier
method without slacks of the type described in [11]. By a classical barrier method we mean
one in which Newton’s method is applied to the problem:

min - f(z) —p Y In(gi(x)) (3.7a)
T
1€l

s.t. h(z) = 0. (3.7b)
(Throughout this section we assume that g(z) > 0.) At first it may appear that Algorithm
Feas-Reset cannot be equivalent to this method because it uses slack variables in the step
computation—even in feasible mode. It is easy to see, however, that for a class of interior
methods, the reset (3.6) has the effect of eliminating the slacks in the step computation and

working directly with problem (3.7).
To show this we first note that the KKT conditions of (3.7) are

Vi(z) — Ay — pA,G(z) e =
h(z) = 0,
where Az and Ag’ denote the Jacobian matrices of h and g, respectively, \;, is the vector
of Lagrange multipliers for the equality constraints (3.7b), G(z) is a diagonal matrix whose

diagonal is given by the components of g(z), and e is a vector of all ones. These conditions
can be reformulated so as to be more benign for Newton’s method: introducing the variable

A = uG (@)e,
we obtain
Vf(x) — Ah>\h — Ag>\g =

h(x)
—pe + G(z)Ag

(3.8)
0.

Applying Newton’s method (in the variables, z, Ay, Ag) to this system gives a primal-dual
interior method for (3.7); see e.g. [8].

To study the relationship between this method and Algorithm Feas-Reset, let us consider
a slack-based, feasible method for solving (2.3) that computes steps by applying Newton’s
method in the variables x, s, A\, Ay to the system

Vf((II) — Ah)\h — Ag)\g = 0
Aisg = u, 1€
h(z) =
g(]?) -8 = 07
which is equivalent to the KKT conditions for (2.3). This system is the basis for primal-

dual infeasible algorithms; see e.g. [5, 20]. Application of Newton’s method gives rise to
the linear system

V2L 0 Ap(z) Ay(z) dy ViL(z, \)

0 A 0 -5 ds _ | —He+SA (3.9)
Ap(x)T 0 0 0 —dy, h(z) ’ ‘
Ag(z)T T 0 0 —dy, g(x) —s

where S and A denote diagonal matrices with s and A\; on their respective diagonals, and
L stands for the Lagrangian of (2.1):

L(z, Ay Ag) = f(2) = Ay h(z) — Ngg(2). (3.10)

Using the fact that g(z) —s = 0 due to the reset (3.6), we can eliminate ds and s to obtain
the equivalent linear system

VZ,L An(z) Agyz) dy V.L(z,\)
Ap(z)T 0 0 —dy, | =- h(z) : (3.11)
My(@) 0 —G)) \ —d, —pie +G(z)A

This system is just Newton’s method in the variables x, A\, Ay applied to (3.8). Therefore, a
primal-dual step for (3.7) is equivalent to a primal-dual step for (2.3), when the reset (3.6)
is applied.

This equivalence does not hold for interior methods [5, 9, 23] in which the step d is only
an approximate solution of (3.9), or is computed as the solution of a related problem with
a trust region. However, as the iterates of those methods approach a solution, their steps
approximate (3.9) with increasing accuracy, and their feasible version resembles a classical
barrier method.

4 Effects of Equality Constraints

An iteration of Algorithm Feas-Reset (Algorithm 3.1) is successful if it results in a decrease
in the merit function (2.4). The computation of the step (d,d) is designed to cause such
a decrease, but the slack reset step st < g(zr) can, however, offset it. In particular, if d,
leads toward the boundary of an inequality constraint, the reset s; < g(x) in Algorithm

Feas-Reset can cause the corresponding slack variable to take on a smaller value, increasing
the term —p) ;- In(s;) in the merit function. If this results in a total increase in the
merit function, then a shorter step is computed. This behavior is not unexpected: it is
the mechanism that prevents Algorithm Feas-Reset from generating steps that leave the
feasible region or that get too close to its boundary. Indeed, for problems with inequality
constraints only, this mechanism steers the iterates away from the boundary and results in
an effective method.

It turns out, however, that when both equality and inequality constraints are present,
it is harder to keep the iterates away from the boundary of the feasible region, and the
attempt to stay feasible by means of slack resetting can actually cause the method to fail.
To see what is the source of this problem, let us denote by §,; the change in the slack due
to the reset, i.e.,

s+ds+ s =sp=g(x +dy). (4.12)

As mentioned above, ds can cause an increase in the merit function even when the original
step d = (dg,ds) would have decreased it, and this is not necessarily undesirable. It is
essential, however, that if a sequence of steps is rejected and the steps become increasingly
small, any merit function increase due to the slack reset §, is eventually offset by the decrease
in ¢ provided by the step d. This guarantees that, if the current iterate is not a stationary
point, the algorithm will move away from this point. Unfortunately this may not be the
case in methods that handle constraints by a trust region method. To illustrate this, we
now present an example that occurs with a feasible version of the algorithm implemented
in the KNITRO package [4, 5].

Example 1. Consider the problem GAUSSELM from the CUTE collection [2]. One version
of this problem has 385 nonlinear equality constraints along with 750 linear inequality
constraints and some bounds on the variables. Using an initial point which was feasible with
respect to the inequality constraints, we attempted to solve this problem using Algorithm
Feas-Reset with steps d generated by KNITRO, a trust region interior method. The merit
function is given by (2.4) with x(-) = v|| - ||2, and » > 0. Some of the first 20 and last 3
iterations of the run are shown in Table 1. All the iterations of the run occur for a fixed
barrier parameter value p.

In Table 1, Iter refers to the iteration number, Step indicates whether or not the trial
point was accepted or rejected, Barr 0bj is the barrier objective value ¢ defined in (2.3a),
||h(x)]|2 is the norm of the equality constraints, Delta is the trust region radius, Merit Red
is the reduction in the merit function ¢ obtained by the step, Trial indicates whether the
trial point is feasible or not and ||0s||2 is the norm of the perturbation due to the slack reset
(3.6). We note that the slack reset is not performed if the trial point is infeasible.

Even though all iterates are feasible with respect to the inequality constraints, we can
see from Table 1 that there exist violated equality constraints. From iteration 18 on, all
the trial steps are feasible, but the merit function increases even as the trust region radius
approaches zero. It is easy to see that this increase in the merit function is caused by
the slack reset perturbation ds which is relatively large starting at iteration 5 and does
not decrease quickly enough as the trust region approaches zero. Note that in the later

Iter Step Barr 0bj lh(x)]|2 Delta Merit Red Trial 1052
1 OK 4.51e+01 1.294e-03 1.000e+00 6.98e-01 feas 3.486e-15
2 OK 4.14e+01 3.014e-03 7.000e+00 3.69e+00 feas 4.253e-15
3 0K 3.28e+01 7.173e-02 4.900e+01 8.50e+00 feas 5.989e-15
4 OK 3.07e+01 9.705e-01 9.800e+01 1.28e+00 feas 5.224e-15
5 OK 2.82e+01 8.083e-01 9.800e+01 9.89e-01 feas 2.345e-01
6 rej 2.66e+01 3.285e-01 9.800e+01 9.89e-01 inf --——--————-
7 rej 2.49e+01 4.642e-01 3.434e+00 9.89e-01 inf --—————-
14 0K 2.82e+01 7.980e-01 2.683e-02 8.09e-02 feas 4.347e-02
15 rej 2.81le+01 7.769e-01 5.366e-02 8.09e-02 inf --——--————-
16 rej 2.82e+01 7.874e-01 2.683e-02 8.09e-02 inf -—-————-——-
17 rej 2.82e+01 7.927e-01 1.341e-02 8.09e-02 inf --——--————-
18 rej 2.84e+01 7.954e-01 6.707e-03 -1.34e-01 feas 1.115e-02
19 rej 2.83e+01 7.967e-01 3.354e-03 -3.82e-02 feas 5.579e-03
20 rej 2.82e+01 7.974e-01 1.677e-03 -1.54e-02 feas 2.789e-03
55 rej 2.82e+01 7.980e-01 4.880e-14 -2.86e-13 feas 8.136e-14
56 rej 2.82e+01 7.980e-01 2.440e-14 -5.42e-14 feas 4.088e-14

57 rej 2.82e+01 7.980e-01 1.220e-14 -1.55e-13 feas 2.007e-14

Table 1: Algorithm Feas-Reset on problem GAUSSELM

iterations the length of ds is comparable to the trust region radius and, as a consequence,
to the length of the step d. The algorithm eventually fails because the trust region radius
becomes smaller than a preset tolerance.

This example indicates that the step produced by a feasible trust region method, such
as the one implemented in KNITRO, is not appropriate for a slack reset in the presence
of equality and inequality constraints. We will show, however, that by modifying the step
computation, slack resets can still be effective.

4.1 Step acceptance in Algorithm Feas-Reset

As we will show later on, it is notable that the difficulties in Algorithm Feas-Reset observed
in Example 1 do not occur for problems with only inequality constraints. To propose reme-
dies, we need to understand what is special about the handling of equality and inequality
constraints in a trust region method.

Let us begin by considering, by way of contrast, line search interior methods. They
typically demand [1, 7, 10, 13, 20] that the step satisfy the linearized constraints

c(z,s) + A(z)Td =0, (4.13)

where ¢(z, s) is defined by (2.5) and A(x)? denotes its Jacobian matrix, i.e.,

Alz) = [Ane) Agl2)] . (4.14)

If 2 is feasible such that g(xz) — s = 0, the second block of equations in (4.13) reads
Ay(x)Td, —ds = 0. (4.15)

We now show that, when all steps satisfy (4.15), the slack reset in Algorithm Feas-Reset
will cause at most a small increase in the merit function ¢ which is offset by the decrease
due to d—provided this step is of appropriate length. As a consequence, when (4.15) holds,
the type of failure exhibited in Example 1 will not occur.

We first note that most constrained optimization methods generate a step d that is a
direction of first order decrease of the merit function, or at the very least, is arbitrarily close
to such a direction when ||d|| is sufficiently small [8]. (This property holds at any iterate
that is not a stationary point of the problem, and where regularity holds.) This implies
that at such a point there is a positive constant « such that when d is sufficiently small, the
decrease in the merit function satisfies

P(z,5) = P(z + da, s + ds) = |- (4.16)

The following result gives conditions under which the perturbation d5 defined in (4.12) will
be much smaller than d, ensuring that the decrease in the merit function due to the step d
will be maintained.

Theorem 4.1 Suppose Algorithm Feas-Reset is applied to the barrier problem (2.3), and
that the function x in (2.4) and the Jacobian A(x)T are Lipschitz continuous. Let (z,s) be
a feasible iterate with s > 0, and suppose that the step d = (dy,ds) satisfies (4.15). Then
the perturbation in the slacks due to the reset (3.6) satisfies

18] = O(llda)?.

As a consequence, if (4.16) holds, then for d sufficiently small the total step (dg,ds + ds)
will reduce the merit function and the step will be accepted.

Proof. The equality g(z) — s = 0, and (4.15) imply that
lg(z + dz) — (5 + ds) | = O(llda). (4.17)
Combining this with (4.12) we obtain
13511 = O(llda). (4.18)

The effect of this reset on the merit function ¢ is also O(||ds]|) since ¢ is Lipschitz continuous
so that
$(@ + dy, s + dy) = P(a + dy, 5 + ds + 65) = O(||,]]) = O(||ds||).

10

Together with (4.16) this implies
¢(z,5) — ¢(z + dy, s + ds + 05) > v||d|| + O(||dx||2)a v > 0.

Clearly for d sufficiently small the first term on the right hand side dominates the second
term and we have that ¢(z + dg, s + ds + d5) < ¢(z, s) so that the step is accepted.

O

Theorem 4.1 guarantees that the failure observed in Example 1 cannot occur with line
search methods since their search directions typically satisfy (4.15) and (4.16). On the
other hand, many trust region methods, including the algorithm in KNITRO, do not always
impose (4.15) and the guarantee of Theorem 4.1 is not available. (Of course for such trust
region methods (4.16) still holds so the merit function increase in cases like Example 1 for
small ||d|| must be due to the reset d5.) We now discuss why (4.15) may not be satisfied by
trust region methods, and how the difficulties illustrated in Example 1 can be remedied.

4.2 Behavior of feasible trust region methods

In a trust region method for solving the equality constrained barrier problem (2.3a)-(2.3¢),
the step d = (dg,ds) is not computed by solving the Newton system (3.9). Instead it is
defined as the (approximate or exact) solution of a subproblem of the form

mdin Td"Wd+ Vip(z,s;0)"d (4.19a)
st. h(z)+Ald=ry, (4.19b)
g(x) — s+ A;dm —ds =1y (4.19c¢)
ld]] < A. (4.19d)

Here W is the Hessian of the Lagrangian of the barrier problem (2.3), or a related matrix,
and 1) is the barrier function. The vectors rj, and r, are chosen with the dual objective
of ensuring that the constraints (4.19b)-(4.19d) are compatible, and that the step makes
sufficient progress towards achieving feasibility. The methods of Vardi [21], Celis, Dennis
and Tapia [6], Powell and Yuan [19], Byrd and Omojokun [3, 17], and Yamashita and Yabe
[22] can be described in this framework.

If there is a step d satisfying (4.19b)-(4.19d) for r;, = ry = 0, then these trust region
methods will usually define r, and r, to be zero. In particular, these methods always set
rq = 0 when the problem contains only inequality constraints and the current iterate is
feasible. In this case g(z) = s, and thus (4.19¢) can be satisfied with r, = 0 by arbitrarily
small steps d that lie inside the trust region. Thus if Algorithm Feas-Reset is used with such
a method, (4.15) will be always be satisfied, and by Theorem 4.1 a failure like Example 1
will not occur for problems containing only inequality constraints.

It is often the case, however, that for general problems the constraints (4.196)-(4.19d)
are inconsistent and nonzero values of r; and r, must be chosen. Moreover, in many
standard trust region methods [3, 6, 17, 19] r = (rp,7y) is chosen based on the constrained
minimization of the squared Euclidean norm |[|r||3 (see. e.g. (5.21)), making it almost

11

certain that if one of the vectors ry, rj, is nonzero then both r4 and r; will be nonzero. As a
result the linear equation (4.15), which we have seen guarantees that the slack reset is not
harmful, will not be satisfied in general. This is undesirable in the context of Algorithm
Feas-Reset because the reset perturbation ds can be as large as the step d and cause a net
increase in the merit function even as ||d;|| — 0. This can even occur when all constraints
are linear.

Since the violation of (4.15) occurs no matter how small A is, it could cause Algorithm
Feas-Reset to get stuck at a non-optimal point from which it could make no further progress,
as seen from Example 1. Note that the problem cannot be overcome simply by backtracking
along d since if Ag(z)"d, — ds # 0 the same holds for any scalar multiple of d. We now
propose a general strategy for overcoming this problem.

Feasible Step Conditions: The difficulties mentioned above can be resolved by demand-
ing that, whenever g(z) —s = 0, the vector r, be chosen to be zero in (4.19¢). The vector 7},
should still ensure that (4.19b) and (4.19d) are compatible and that the step makes sufficient
progress toward satisfying the equality constraints h(z).

Below we discuss how to apply this strategy in the algorithm implemented in the KNI-
TRO package.

5 Feasible Steps in KNITRO

The algorithm implemented in KNITRO is a composite-step trust region method (following
the terminology of [8]; Chapter 15). The step d is given as the sum of two components,

d=n+t, (5.20)

where the “tangential component” ¢ lies in the null space of A(z)? and attempts to move
towards optimality, while the “normal component” 7 attempts to improve feasibility. The
vectors rj, and 74 in (4.19) are obtained during the computation of the normal component
7, and are not changed by the tangential component. Therefore, in order to enforce the
satisfaction of (4.15) by the step d computed by KNITRO, we must make sure that the
normal component of the step sets r, = 0. We now discuss the computation of the normal
component 7 in detail.

The normal component 1 = (1, 7s)” is defined as the solution of the auxiliary problem®
min [|A(@) T+ (o) (5.21a)
s.t. 7]l < OA, (5.21b)

where A is given by (4.14) and the constant # € (0,1]. The trust region norm | - ||rr is
scaled by ||7]ltr = [|(z, S~ !ns)|| in order to steer the step away from the slack bounds; see

Tn addition to (5.21b) a bound on slack steps is imposed, but this is done after the solution of (5.21).

12

[5]. Once the solution 7 is computed, we define
rh = h(z) + Ap(z) g, re =g(x) — s+ Ag(x)Tnm — N (5.22)

To determine whether r, is set to zero when g(z) — s = 0, we note that in KNITRO
problem (5.21) is solved approximately using a dogleg method [18]: 7 is a linear combination
of a Newton step " and a Cauchy direction. Specifically, it is the minimizer of (5.21a)
along the piecewise linear path from 0 to an® to n subject to the trust region constraint,
where a > 0 is the minimizer of ||A(z)Tan® + c(z, 5)||3.

The Newton step is a solution of A(z)Tn" = —¢(x,s) of minimum scaled norm || - ||og.

Hence by (4.14) when 1z is feasible the Newton step ¥ = (n¥,n) satisfies (4.15), i.e.,
Ag(@)Tng = =0. (5.23)

If the Newton step lies inside the trust region (5.216) then the dogleg method defines n = ",
and ry will be set to zero in (5.22). Therefore (4.15) will be satisfied when g(z) —s = 0 and
Algorithm Feas-Reset will not encounter any difficulties in this case.

On the other hand, when the trust region is active, the dogleg method defines the step
7 to be a (nonzero) combination of the Cauchy direction ¢ and the Newton step V. The
Cauchy step does not satisfy (4.15) in general. To see this, note from (5.21) that 7 is the
direction of steepest descent for the function

1A(2)"n + c(z,)13 (5.24)

in the scaled norm. Differentiating (5.24) we see the when g(z) —s = 0, the steepest descent
direction n¢ = (n¢,n¢) is given by

nS = —Ap(z)h(z), and 7 =0, (5.25)

and therefore Ay(z)Tn$ —n¢ # 0, in general. Thus, since the Cauchy direction n® given
by (5.25) will not, in general, satisfy (4.15) when the trust region is active, the same is true
for the total step n which is a combination of n¢ and 7. Because of this, the difficulties
illustrated in Example 1 may occur for Algorithm Feas-Reset with steps given by KNITRO
when the trust region constraint is active in the normal step computation.

We can resolve these difficulties by redefining the Cauchy direction 7¢. We will require
that the new Cauchy direction satisfy the following three properties when g(x) — s = 0:

(1) it should satisfy (4.15),

Ag(2)"ng —ng =05 (5.26)

(ii) it should make progress on the linearized equality constraints similar to that of the
standard Cauchy step computed via (5.25). From (5.25) we can see that the first-order
reduction on the equality constraints achieved by the standard Cauchy step is given by

h(z) = (h(z) + aAp(2)Tng) = —adu(@)Tng (5.27)

T

= ady(z)TAp(2)h(z). (5.28)

13

In order to achieve similar reduction we require that the new Cauchy direction satisfy
Ap(z) 0 = = Ap(z)T Ap(2)h(). (5.29)

(iii) Finally, to control the quality of the normal step and to take into account the shape
of the trust region (5.21b), we require, as in the standard version of KNITRO, that the
normal step should be in the range of the scaled Jacobian, i.e.,

C = [AhO(IL') z‘l_gé:g)] [z;]

for some vectors py, p2; see (2.11) in [4].
Together these three desired properties of the modified Cauchy direction amount to
requiring that n¢ = (n¢,7%) solve the equations

I 0 Ap(x) Ay(x) n¢ 0

0 I 0 52 nt | 0 £ 30
Ay@” 0 0 0 —p1 | | —An(@)" Ap(z)h(z) (5:30)
Ag(@x) -1 0 0 —p 0

In summary, the change needed in the step computation of KNITRO occurs only in the
normal component 7 of the step (5.20). This normal component is formed by a Newton
step !V, which needs no modification, and a Cauchy direction n®, which is now computed
via (5.30).

Note that if A, (z) is rank deficient, the Cauchy direction ¢ is still determined by
(5.30). If we delete the columns and rows of the matrix in (5.30) that correspond to the
dependent columns of A,(z), the resulting matrix is nonsingular. If we then solve the
resulting system, deleting the corresponding components of the right hand side, it is clear
that the resulting solution will automatically satisfy the equations in (5.30) corresponding
to the deleted columns due to the linear dependence.

We now apply Theorem 4.1 to show that the new step does not suffer from the difficulties
illustrated in Example 1.

Corollary 5.1 Suppose that Algorithm Feas-Reset is applied to the barrier problem (2.3),
and that the step d is given by (5.20), where t is in the null space of A(xz)T, and n is
a dogleg step whose Cauchy component is computed via (5.30). Assume the function x
in (2.4) is given by vl|c(z,s)|, that the scalar v is sufficiently large, and that A(x) and
V f(x) are Lipschitz continuous. Let (x,s) be a feasible iterate (with respect to the inequality
constraints, and with g(x) = s > 0) that is not a stationary point of |h(x)||?>. If the trust
region radius ot (z,s) is sufficiently small, the step d will reduce the merit function and be
accepted.

Proof. The normal step n in (5.20) is a dogleg step which is a linear combination of a
Newton step ™ and a Cauchy direction 7. By (5.23) and (5.30) both components satisfy
(4.15) when z is feasible, so that Agy(z)Tn, —ns = 0. Tt follows from (5.22) that r, = 0,

14

so by (4.19¢) and the fact that ¢ is in the null space of A(z), we have that the full step d
satisfies (4.15) whenever g(z) —s = 0.

Now to use the second part of Theorem 4.1 we need only establish that d satisfies
(4.16). As argued above, the matrix in (5.30) may be assumed nonsingular without loss of
generality, so that n* is well defined. Note that the dogleg step has the property that if
the trust region radius AA is sufficiently small, the dogleg step is a scalar multiple of the
Cauchy direction . Thus, for sufficiently small A, we have from (5.25)

n=0A0/|ln|l, and An(x)"n, = —0AAL(2)" An(2)h(z)/|In |-

Since f and ¢ are smooth and h(z) # 0, the merit function is continuously differentiable in
a neighborhood of the iterate (z,s). Using this, (2.4), and the fact that g(z) —s = 0 we get

$(x,5) — p(a +dy,s +ds) = —V(x,5)"d +o(|d]])
= —Vf(z,s) dy + pe’ S ds — V(Ah(’ﬂlﬂi)lf(liﬂ)ﬂ|)|)sz + o([|d]})
= —Vf(z,s)'d, + pe’ S7d,
OA || An(z)h(z)[|> + o). (5.31)

[ealliivel

Note that ||A,h(z)|| # 0 since (z,s) is not a stationary point of ||h(x)||?. Clearly, we can
choose v sufficiently large such that the sum of the first three terms of (5.31) is greater than
half the (positive) third term, i.e.,

B(2,5) = B3+ day s +d) > Sy 2RI 1o (jq)) (5.32)
> yld]l + o(ld]), (5.33)

for some constant -y, where the last step follows from the fact that ||d|| < A. Tt follows that
(4.16) must hold for A sufficiently small, concluding the proof. (Note that the assumption
that v is sufficiently large is not restrictive since the type of adjustment described above is
commonly done in practice; see e.g. [5]).

O

The step defined by (5.30) is not the only modification that would be effective in the
context of Algorithm Feas-Reset. For example, computing the steepest descent direction of
| Ap(z)"ny +h(z)||3 in the subspace of vectors satisfying (5.26) would yield an effective step,
although it might be computationally expensive. A major advantage of using the solution
to (5.30) is that (5.30) can be rewritten in such a way so that the coefficient matrix used to
compute the new Cauchy direction is one which is already factored in KNITRO to compute
the Newton direction ", Lagrange multiplier estimates, and each step of the projected
conjugate gradient iteration used to solve (4.19). Thus the extra cost of computing the
proposed Cauchy step is quite moderate, amounting to the cost of one backsolve using the
factors of the coefficient matrix in (5.30), where several such backsolves usually are already
performed for each iteraion.

15

Example 2. We consider again the behavior of Algorithm Feas-Reset on problem GAUS-
SELM, this time using the modified normal step for KNITRO described above. The optimal
solution is reached in 102 iterations without any difficulties. For the sake of space only the
first 15 iterations (all using the same barrier parameter value) are shown in Table 2. We
note that the perturbation caused by the slack reset, d,, is always of the order of unit
roundoff, and therefore does not prevent a decrease in the merit function.

We also tested the modified normal step by comparing the performance of Algorithm
Feas-Reset implemented in the KNITRO package with and without the modified step. Our
test set had 153 problems, all containing equality constraints, and of those the two versions
of KNITRO performed differently on 45 problems. Of these 45 problems the new step
resulted in failure on 3 problems, as compared to 17 failures for the unmodified step. On
the 25 problems solved by both, KNITRO with the new Cauchy step required significantly
fewer iterations.

Iter Step Barr 0Obj lh(x)]|2 Delta Merit Red Trial 1052
1 0K 4.51e+01 1.294e-03 1.000e+00 6.98e-01 feas 3.486e-15
2 OK 4.14e+01 3.014e-03 7.000e+00 3.69e+00 feas 4.253e-15
3 0K 3.28e+01 7.173e-02 4.900e+01 8.50e+00 feas 5.989e-15
4 OK 3.04e+01 7.269e-01 9.800e+01 1.31e+00 feas 1.164e-14
5 0K 2.58e+01 5.199e-01 9.800e+01 4.86e+00 feas 4.063e-15
6 OK 1.20e+01 4.832e-01 9.800e+01 1.34e+01 feas 4.783e-15
7 0K -2.77e-01 1.216e-01 9.800e+01 1.33e+01 feas 5.038e-15
8 OK -1.03e+01 3.787e-01 9.800e+01 9.65e+00 feas 5.968e-15
9 OK -1.62e+01 1.416e-01 9.800e+01 6.17e+00 feas 5.933e-15
10 0K -1.82e+01 3.236e-02 9.800e+01 2.37e+00 feas 6.203e-15
11 OK -1.98e+01 2.976e-01 9.800e+01 9.05e-01 feas 6.670e-15
12 0K -2.52e+01 4.853e-02 9.800e+01 6.09e+00 feas 7.339e-15
13 OK -2.98e+01 3.315e-02 9.800e+01 4.54e+00 feas 7.767e-15
14 OK -3.44e+01 4.580e-02 9.800e+01 4.68e+00 feas 7.536e-15
15 OK -3.82e+01 5.248e-02 9.800e+01 3.82e+00 feas 7.449e-15

Table 2: Algorithm Feas-Reset using the modified normal step on problem GAUSSELM

We conclude this section by briefly discussing another, even simpler modification of the
Generic Algorithm 2.1 that would result in a feasible method. Instead of resetting the slack
variables, as in Algorithm Feas-Reset, we could simply reject any trial iterate xr that is
infeasible. In a trust region method we would reduce the trust region and compute a new
step; in a line search method we would simply backtrack. This algorithm would therefore
be identical to Feas-Reset method except for the fact that the slack variables are never
redefined.

For different reasons, the presence of equality constraints can also cause this algorithm
to be very inefficient or even fail in some cases. Suppose for example that the current iterate

16

lies at the boundary of the feasible region defined by the inequality constraints and that the
problem contains also equality constraints. Then it is possible for the direction generated
by an interior point method to point towards the outside of the feasible region. In this case
a line search method would fail when the trial steplength approached zero. If the current
iterate lies near the boundary of the feasible region, the algorithm would generate very
small steps.

A trust region version of this approach can also fail. (We observed such failures in
our numerical experiments.) In analogy with Algorithm Feas-Reset, one could also try to
improve upon this method by modifying the step computation. However, since this method
is inherently different, a new type of step modification is in order. We have not explored
this because Algorithm Feas-Reset, with its step modification, has proven to be a robust
and efficient feasible method, but it is plausible that a careful modification of the approach
just described could be just as effective.

6 Numerical Tests

To our knowledge there have been no studies comparing the performance of feasible versus
infeasible interior point methods for nonlinear optimization. The algorithmic framework
described in this paper is convenient for doing such tests as it allows us to easily switch
between a feasible method and an infeasible method while keeping all other algorithmic
features the same. One might expect that the flexibility provided by an infeasible method
would be advantageous in certain circumstances allowing the iterates to take a more direct
path to the solution through infeasible intermediate steps. However, by the same token, it
is also conceivable that this additional freedom may allow for poor steps not permitted by
feasible methods; this may make an infeasible code less efficient at times. To our surprise,
the tests we report below do not indicate a clear superiority of either method and the
potential advantages of each approach do not appear to be a major factor.

To compare the relative merits of these approaches we tested both feasible and infeasible
versions of KNITRO on a set of 216 test problems from the CUTE collection. The problems,
and some of their properties, are listed in the Appendix. The infeasible version follows the
Generic Algorithm (Algorithm 2.1) with steps generated by KNITRO. The feasible version is
based on Algorithm Feas-Reset (Algorithm 3.1) with steps determined by KNITRO modified
to incorporate the new Cauchy step given by (5.30); the threshold value 7 is chosen as
T=10"%

All the results were performed on a Sun Ultra 5/10 workstation with 384 MB of memory,
in double precision Fortran. The termination test for the runs was the default KNITRO
stopping test with a tolerance of 1075; this test is based on a normalized KKT condition.

The results are summarized in Figure 1, and are reported in detail in the Appendix.
Figure 1 plots the ratio

(fevals Infeasible Alg)

fevals Feas-Reset Alg)’

089 ((6.34)

where fevals denotes the number of function evaluations required to meet the stopping test.
In the figure, the problems are arranged along the horizontal axis in decreasing order of the

17

absolute value of (6.34). We report results only for those problems for which both methods
converged to the same solution. Also we only include problems where the feasible algorithm
entered feasible mode (obtained an iterate where g(z) > Te).

Feas—Reset vs. Infeasible
3 T T T

N

i

!M Feas—Reset better
“ ||||||II||||Illllllll-“mlﬁl....—---- ”””””””””””””””””””””””””””””””””]

-1+ o

Infeasible better

log2[fevals(Infeasible)/fevals(Feas—Reset)]
o

2k o

,3 1 Il Il Il Il
0 20 40 60 80 100 120
Problems in the CUTE collection

Figure 1: Comparison of infeasible and feasible versions of KNITRO on 119 problems in
which both algorithms found the same solution and where the feasible version entered
feasible mode. A bar on the upper half means that the feasible algorithm required fewer
function evaluations. The logarithmic scale (6.34) was used.

The feasible algorithm solved 181 problems and the infeasible algorithm 179; they mainly
failed on the same problems. ;From this fact and Figure 1 we remark that for most of these
problems, there is little difference between the two approaches. We observed that on 58 of
the 216 problems Algorithm Feas-Reset never entered feasible mode. On these problems,
therefore, the feasible and infeasible methods are identical. Moreover on a number of other
problems there is little or no difference either because Algorithm Feas-Reset only entered
feasible mode near the end of the run or the problems were solved too quickly or easily for
there to be much difference. On three problems, the feasible algorithm was dramatically
better than the infeasible method, but an examination of the runs does not suggest that
this is due to the properties of the feasible iteration.

We interpret these results as being very positive because they indicate that staying
feasible has no overall detrimental effect on the performance of the problems tested. They
also suggest that the modified Cauchy step successfully overcomes the difficulties discussed
in section 4. In particular, these results suggest that the feasible version of KNITRO
represents a robust approach for handling problems in which feasibility with respect to

18

some or all of the inequality constraints must be retained.

We should point out that there is a feature of the KNITRO step computation that
contributes to the lack of disparity between the feasible and infeasible methods compared
in Figure 1. Although the standard version of KNITRO [5] is an infeasible algorithm, it
makes use of a slack adjustment to accelerate convergence. KNITRO adjusts the slack
variables at the end of each iteration (regardless of whether the iterate is feasible or not)
according to the rule

sp < max(g(xr),s + dy), (6.35)

where the max function is applied component-wise; see step 5 of Algorithm I in [4]).

If one of the components of g is non-positive, this rule will not modify its associated
slack variable. But suppose that one of the components of g, say g;, satisfies gj(zr) > 0
and that (s + ds); < gj(zr). Then the rule (6.35) increases the corresponding slack so
that (g(zr) — sr); = 0, while at the same time achieving a smaller barrier term value
—1t Y ;erIn(s;) in the merit function. Note also that if one of the inequality constraints
satisfies gj(xr) > 0 and (s 4+ d); > gj(2+), then the value of the slack will not be changed
by (6.35), even though by decreasing it we would obtain (g(zr) — sr); = 0. We choose not
to adjust the slacks in this case because this could cause an increase in the merit function.

This slack adjustment cannot cause the difficulties discussed in section 4.1 because it
never gives rise to an increase in the merit function, and there is no need for modifying
the step when equalities are present. The rule (6.35) has been analyzed in the context
of the KNITRO algorithm in [4], and in practice has proven to be superior to using no
slack adjustment scheme. In the numerical tests described above, the slack adjustment rule
(6.35) is applied at every iteration of the infeasible method. In Algorithm Feas-Reset the
slack adjustment is applied only before this method enters feasible mode (at which point it
switches to the feasible slack reset scheme). Hence, the two methods benefit from the slack
adjustment (6.35) where possible. We should stress that using this adjustment dampens the
disparity between the two methods, since the slack adjustment is identical to the feasible
reset when g(zr) > s + ds. However, we use it in our comparison taking the view that all
methods should be tested using their best implementation within the KNITRO framework.

7 Final Remarks

We have shown how infeasible slack-based interior methods can be transformed into feasible
methods by using slack resets. Even though the modification is straightforward in most
line search methods, care must be taken in trust region methods because, for problems
containing both equality and inequality constraints, the slack reset can be harmful. We
have given guidelines for the step computation so as to maintain feasibility with respect
to inequality constraints, while improving the equality constraints. A specific normal step
computation for the algorithm in KNITRO was developed and shown to be effective in
practice.

The formulation (2.1) of a nonlinear program made it simple to transform infeasible
interior methods into feasible methods since it identifies the inequality constraints and the
slack variables. It is important not to erase this information during the problem formulation.

19

In particular, if all inequalities are transformed to equalities by introducing slacks, and the
problem is given in the form

min f(z) s.t. c(z)=0, x>0,
x

without any distinction between the components of = that are slacks and those that are not,
then the notion of feasibility with respect to the original inequality is lost, and it would be
very inconvenient to apply the techniques discussed in this paper.

We should also point out that in all cases of slack resetting, the reset should take
place before the evaluation of the merit function. If it is done after evaluating the merit
function performance can be significantly degraded since the slack reset effectively changes
the iterate, but the merit function does not have the opportunity to measure its quality.

The ideas presented in this paper are applicable to the case when only some of the
inequality constraints must be honored. The slack reset in Algorithm Feas-Rest would only
be applied to those inequality constraints that must be satisfied. Similarly, to obtain the
improved normal component discussed in section 4, we must maintain linear feasibility for
the inequality constraints that must be honored.

We conclude by pointing out that the merit function considered in this paper has the
form (2.4), but this choice is not of particular importance. Many other choices of merit
functions would be allowed in Algorithm Feas-Reset.

8 Acknowledgments

We would like to thank Guanghui Liu who performed some initial experiments with the
feasible methods described in this paper. We also thank Marcelo Marazzi for valuable sug-
gestions during this research, and Jose Luis Morales for suggesting the method for displaying
the results in the figures.

9 Appendix

Problem n m || # of function evaluations final function value
Infeasible Feasible Infeasible | Feasible
AGG* 163 488 (1) (D) (D) (1)
AIRPORT* 84 42 12 12 || 4.80e+04 | 4.80e+04
AUG2DCQP 850 400 27 27 || 3.24e+03 | 3.24e+03
AUG2DQP* 850 400 25 25 || 2.20e+03 | 2.20e+03
AUG3DCQP 156 27 20 20 || 3.93e+01 | 3.93e+01
AUG3DQP 156 27 20 20 || 4.18e+00 | 4.18e+00
BATCH* 48 73 385 385 || 2.61le+05 | 2.61le+05
BLOCKQP1 205 101 14 15 || 2.49e4+00 | 2.49e+00
BLOCKQP2 205 101 12 12 || -9.61e4+01 | -9.61e+01
BLOCKQP3 205 101 17 17 || 2.48e+00 | 2.48e+00
BLOCKQP4 205 101 22 22 || -4.81e+01 | -4.81e+01
continued on next page

continued from previous page

Problem n m || # of function evaluations final function value
Infeasible Feasible Infeasible | Feasible

BLOCKQP5 205 101 15 15 || 2.48e+00 | 2.48e+00
BLOWEYA 202 102 11 11 -4.56e-01 | -4.56e-01
BLOWEYB 202 102 11 11 -3.05e-01 | -3.05e-01
BLOWEYC 202 102 11 12 -3.05e-01 | -3.05e-01
BRAINPCO 6907 | 6900 (2) (2) (2) (2)
BRAINPC1 6907 | 6900 97 34 4.00e-04 4.27e-04
BRAINPC2 13807 | 13800 (2) (2) (2) (2)
BRAINPC3 6907 | 6900 (2) 116 (2) 3.65e-01
BRAINPC4 6907 | 6900 (2) (2) (2) (2)
BRAINPC5 6907 | 6900 (2) (2) (2) (2)
BRAINPC6 6907 | 6900 200 366 3.46e-01 3.47e-01
BRAINPC7 6907 | 6900 (2) (2) (2) (2)
BRAINPCS 6907 | 6900 (2) (2) (2) (2)
BRAINPC9 6907 | 6900 (2) 314 (2) 3.51e-01
C-RELOAD 342 284 60 54 || -1.03e+00 | -1.03e+-00
CLNLBEAM 303 200 21 25 || 3.50e+02 | 4.13e+02
CORKSCRW* 906 700 146 146 || 4.44e4+01 | 4.44e+01
COSHFUN 61 20 (1) 957 (1) | -7.99e-01
CRESC100 6 200 (1) 671 (1) 5.69e-01
CRESC132* 6 | 2654 (4) (4) (4) (4)
CRESC50* 6 100 (3) (3) (3) (3)
CVXQP1 1000 500 11 11 1.09e+06 | 1.09e+06
CVXQP2 1000 250 13 13 || 8.20e+05 | 8.20e+05
CVXQP3 1000 750 13 12 || 1.36e+06 | 1.36e+06
DALLASL* 906 667 100 100 || -2.00e+05 | -2.00e+05
DALLASM* 196 151 49 49 || -4.53e+04 | -4.53e+04
DECONVC 61 1 70 99 1.11e-05 9.67e-07
DISCS* 36 66 (1) (D) (D) (1)
DITTERT* 601 521 (3) (3) (3) (3)
DIXCHLNV 100 50 19 19 1.44e-19 1.52e-19
DNIEPER. 61 24 12 12 || 1.87e+04 | 1.87e+04
DRUGDIS 604 400 48 54 || 4.27e+00 | 4.26e+00
DRUGDISE 603 500 (1) (4) (D) (4)
DUAL1 85 1 16 16 3.50e-02 3.50e-02
DUAL2 96 1 14 15 3.37e-02 3.37e-02
DUAL3 111 1 16 16 1.36e-01 1.36e-01
DUAL4 75 1 13 13 7.46e-01 7.46e-01
DUALC1* 9 215 66 66 || 6.16e+03 | 6.16e+03
DUALC2* 7 229 42 42 || 3.58e+03 | 3.58e+03
DUALC5* 8 278 21 21 || 4.27e+02 | 4.27e+02
DUALCS* 8 503 32 32 || 1.83e+04 | 1.83e+04
EG3 101 200 31 38 1.28e-01 1.28e-01
EIGMAXB 101 101 36 52 -7.79e-02 | -4.72e-02
EIGMINA* 101 101 25 25 || 1.00e+00 | 1.00e+00
EIGMINB 101 101 36 52 7.79e-02 4.72e-02

continued on next page

20

continued from previous page

Problem n m || # of function evaluations final function value
Infeasible Feasible Infeasible | Feasible

ELATTAR 7 102 59 65 1.43e-01 1.43e-01
EXPFITB 5 102 43 43 5.02e-03 5.02e-03
EXPFITC 5 502 188 178 2.33e-02 2.33e-02
FEEDLOC* 90 259 126 126 1.93e-08 1.93e-08
GAUSSELM 819 | 1926 257 244 || -1.30e+01 | -1.35e+01
GILBERT 1000 1 38 42 || 4.82e+02 | 4.82e+02
GMNCASE1 175 300 9 9 2.67e-01 2.67e-01
GMNCASE2 175 | 1050 10 10 || -9.94e-01 | -9.94e-01
GMNCASE3 175 | 1050 9 9 || 1.53e+00 | 1.53e+00
GMNCASE4* 175 350 27 27 || 5.95e+03 | 5.95e+03
GOFFIN 51 50 46 47 1.28e-05 1.28e-05
GOULDQP2 699 349 2 2 2.53e-04 2.53e-04
GOULDQP3 699 349 15 15 || 2.03e4+00 | 2.03e+00
GPP 250 498 15 21 1.44e4+04 | 1.44e+04
GRIDNETA 924 484 22 21 1.35e+02 | 1.35e+02
GRIDNETC 924 484 19 19 || 7.64e+01 | 7.64e+01
GRIDNETD 924 484 20 21 1.48¢+02 | 1.48e+02
GRIDNETF 924 484 20 22 || 8.79e+01 | 8.79e+01
GRIDNETG 924 484 21 22 || 1.48e+02 | 1.48e+02
GRIDNETI 924 484 28 28 || 8.79e+01 | 8.79e+01
GROUPING* 100 125 (2) (2) (2) (2)
HADAMARD* 401 | 1010 (3) (3) (3) (3)
HAGERA4 201 100 17 17 || 2.80e+00 | 2.80e+00
HATFAL* 343 | 8958 (2) (2) (2) (2)
HAIFAM 99 150 262 141 || -4.50e+01 | -4.50e+01
HANGING 300 180 41 45 || -6.20e+02 | -6.20e+02
HELSBY 1408 | 1399 2 2| 5.77e4+01 | 5.77e+01
HET-Z 2| 1002 25 26 || 1.00e+00 | 1.00e+00
HIMMELBI 100 12 54 55 || -1.74e+03 | -1.74e+03
HUES-MOD 1000 2 (1) 408 (1) | 3.48e+07
HUESTIS 1000 2 (1) 403 (1) | 3.48e+10
HVYCRASH 404 300 38 32 -2.19e-01 | -2.18e-01
HYDROELL 1009 | 1008 (1) (D) (D) (1)
HYDROELM 505 504 (1) (D) (D) (1)
HYDROELS 169 168 493 504 || -3.56e+06 | -3.57e+06
KISSING 211 903 190 105 8.43e-01 8.46e-01
KSIP 20 | 1001 34 34 5.76e-01 5.76e-01
LAKES 90 78 (3) 38 (3) | 3.51e+05
LEAKNET 156 153 2 2| 1.53e+01 | 1.53e+01
LHAIFAM 99 150 (3) (3) (3) (3)
LINSPANH* 97 33 10 10 || -7.70e+01 | -7.70e+01
LISWET1* 403 400 8 8 || 1.04e+00 | 1.04e+00
LISWET10* 403 400 8 8 || 1.06e4+00 | 1.06e+00
LISWET11* 403 400 7 7| 1.04e4+00 | 1.04e+00
LISWET12* 403 400 9 9 || 3.06e+01 | 3.06e+01

continued on next page

continued from previous page

Problem n m || # of function evaluations final function value
Infeasible Feasible Infeasible | Feasible

LISWET2* 403 400 8 8 || 1.05e400 | 1.05e+00
LISWET3* 403 400 8 8 || 1.06e4+00 | 1.06e+00
LISWET4* 403 400 8 8 || 1.05e+00 | 1.05e+00
LISWET5* 403 400 8 8 || 1.05e+00 | 1.05e+00
LISWETG6* 403 400 8 8 || 1.05e+00 | 1.05e+00
LISWET7* 403 400 8 8 || 1.05e4+00 | 1.05e+00
LISWETS8* 403 400 8 8 || 1.22e4+00 | 1.22e+00
LISWET9* 403 400 9 9| 2.83e+01 | 2.83e+01
LUBRIF* 751 500 (1) (1) (1) (1)
MADSSCHJ 201 398 55 (1) || -4.99¢+03 (1)
MANNE 300 200 64 9 || -9.74e-01 | -9.74e-01
MINC44 583 519 39 32 9.95e-04 1.00e-03
MINPERM 583 520 90 91 1.19e-03 9.37e-04
MODEL* 1542 38 (1) (1) (1) (1)
MOSARQP1 900 30 11 11 || -3.80e+02 | -3.80e+02
MOSARQP2 900 30 10 10 || -5.10e+02 | -5.10e4-02
MRIBASIS 36 55 50 55 || 1.82e+01 | 1.82e+01
NCVXQP1 1000 500 55 54 || -7.16e4+07 | -7.16e+07
NCVXQP2 1000 500 50 49 || -5.78e+07 | -5.78e+07
NCVXQP3 1000 500 67 72 || -3.08e+07 | -3.08e+07
NCVXQP4 1000 250 50 48 || -9.40e+07 | -9.40e+07
NCVXQP5 1000 250 54 51 || -6.63e+07 | -6.63e+07
NCVXQP6 1000 250 90 87 || -3.46e+07 | -3.47e+07
NCVXQP7 1000 750 40 37 || -4.34e+07 | -4.34e+07
NCVXQP8 1000 750 55 59 || -3.05e+07 | -3.05e+07
NCVXQP9 1000 750 68 (3) || -2.15e4+07 (3)
NGONE 100 | 1273 314 (D) -6.43e-01 (1)
OET1 3| 1002 36 24 5.38e-01 5.38e-01
OET2 3| 1002 252 56 8.72e-02 8.72e-02
OET3 4 | 1002 23 23 4.51e-03 4.51e-03
OET4 4 | 1002 51 49 4.30e-03 8.56e-01
OET5 5| 1002 122 311 2.66e-03 2.66e-03
OET6 5| 1002 82 146 8.72e-02 8.72e-02
OET7 71 1002 100 (D) 2.09e-03 (1)
OPTCDEG2 302 200 30 34 || 2.37e+02 | 2.37e+02
OPTCDEGS3 302 200 22 40 || 4.76e+01 | 4.76e+01
OPTMASS 610 505 26 15 -1.26e-01 | -1.26e-01
ORTHREGE 999 662 168 268 || 1.32e4+02 | 1.32e+02
ORTHREGF 680 225 37 23 || 9.19e+00 | 9.19e+00
POWELL20* 1000 | 1000 596 596 || 5.21e+07 | 5.21e+07
PRIMAL1 325 85 22 22 -3.50e-02 | -3.50e-02
PRIMAL2 649 96 21 21 -3.37e-02 | -3.37e-02
PRIMAL3 745 111 21 21 -1.36e-01 | -1.36e-01
PRIMAL4 1489 75 22 22 -7.46e-01 | -7.46e-01
PRIMALC1 230 9 17 17 || -6.15e4+03 | -6.15e+03

continued on next page

22

continued from previous page

Problem n m || # of function evaluations final function value
Infeasible Feasible Infeasible | Feasible

PRIMALC2 231 7 14 14 || -3.52e+03 | -3.52e+03
PRIMALCS 287 8 19 19 || -4.27e+02 | -4.27e+402
PRIMALCS 520 8 27 29 || -1.83e+04 | -1.83e+04
PRODPLO* 60 29 38 38 || 5.88e+01 | 5.88e+01
PRODPL1* 60 29 31 31| 3.57e+01 | 3.57e+01
PT 2 501 26 26 1.78e-01 1.78e-01
QPCBLEND* 83 74 9 9 || -7.52e-03 | -7.52e-03
QPCBOEI1* 384 351 (3) (3) (3) (3)
QPCBOEI2* 143 166 233 233 || 8.17e+06 | 8.17e+06
QPCSTAIR* 467 356 269 269 || 6.20e+06 | 6.20e+06
QPNBLEND* 83 74 12 12 -9.12e-03 | -9.12e-03
QPNBOEI1* 384 351 155 155 || 6.75e4+06 | 6.75e+06
QPNBOEI2* 143 166 (3) (3) (3) (3)
QPNSTAIR* 467 356 328 328 || 5.15e+06 | 5.15e+06
READING1 202 100 52 55 -1.60e-01 | -1.60e-01
READING2 303 200 12 12 -1.25e-02 | -1.25e-02
READING3 202 101 35 35 -1.53e-01 | -1.53e-01
READING4 501 500 140 77 || -2.89e-01 | -2.89e-01
READINGS 501 500 6 6 || -2.30e-10 | -2.40e-10
READING6 102 50 20 20 || -1.45e+02 | -1.45e+02
READING7 1002 500 41 41 || -1.24e+03 | -1.24e+03
READING9 402 200 15 15 -4.38¢-02 | -4.38e-02
ROTDISC 905 | 1081 (1) (D) (D) (1)
SAWPATH 583 774 15 24 || 7.50e+02 | 7.50e+02
SINROSNB 1000 999 (1) 90 (1) | 1.41e4+00
SIPOW1 2| 2000 17 16 || -1.00e+00 | -1.00e+4-00
SIPOW1M 2| 2000 17 17 || -1.00e400 | -1.00e+4-00
SIPOW2 2| 2000 29 29 || -1.00e+00 | -1.00e+4-00
SIPOW2M 2| 2000 34 34 || -1.00e+00 | -1.00e+00
SIPOW3 4 | 2000 25 25 5.35e-01 5.35e-01
SIPOW4 4 | 2000 29 29 2.72e-01 2.72e-01
SMBANK 117 64 23 (3) || -7-13e4+06 (3)
SMMPSF* 720 263 365 365 || 1.03e+06 | 1.03e+06
SOSQP1 200 101 21 23 9.06e-05 7.96e-05
SOSQP2 200 101 21 21 || -4.87e+01 | -4.87e+01
SPANHYD* 97 33 18 18 || 2.40e+02 | 2.40e+02
SREADIN3 202 101 30 30 || -1.53e-01 | -1.53e-01
SSEBLIN 194 72 212 213 || 1.62e+07 | 1.62e+07
SSEBNLN* 194 96 74 74 || 1.89e+07 | 1.89e+07
SSNLBEAM* 303 200 23 23 || 3.43e+02 | 3.43e+02
STATIC3* 434 96 (1) (1) (1) (1)
STCQP1 257 128 11 11 || 4.04e+03 | 4.04e+03
STCQP2 257 128 11 11 1.43e+03 | 1.43e+03
STEENBRA 432 108 147 148 || 1.70e+04 | 1.70e+04
STEENBRB 468 108 154 252 || 9.19e+03 | 9.08e+03

continued on next page

23

continued from previous page
Problem n m || # of function evaluations final function value
Infeasible Feasible Infeasible | Feasible

STEENBRC 540 126 527 489 || 2.76e4+04 | 2.75e+04
STEENBRD* 468 108 (3) (3) (3) (3)
STEENBRE* 540 126 (3) (3) (3) (3)
STEENBRF 468 108 171 296 || 9.13e+03 | 8.99e+03
STEENBRG 540 126 390 616 || 2.75e+04 | 2.74e+04
STNQP1 257 128 10 10 || -4.47e+03 | -4.47e+03
STNQP2 257 128 11 11 || -7.23e4+03 | -7.23e+03
SVANBERG 1000 | 1000 18 22 || 1.67e+03 | 1.67e+03
SWOPF 83 92 18 13 6.79¢-02 6.79e-02
TFI1 3 101 45 50 || 5.33e+00 | 5.33e+00
TFI2* 3 101 12 12 || 1.14e4+00 | 1.14e+00
TFI3 3 101 25 25 || 4.30e+00 | 4.30e+00
TRAINF 808 402 355 345 || 3.08e+00 | 3.08e+00
TRAINH 808 402 485 441 || 1.23e+01 | 1.23e+01
TRIMLOSS 142 75 78 43 || 9.06e+00 | 9.06e+00
UBH1 909 600 852 (D) 1.12e4-00 (1)
UBH5 110 70 (1) (D) (D) (1)
YAO* 202 200 9 9 || 2.02e+01 | 2.02e+01
YORKNET* 312 256 (1) (1) (1) (1)
ZAMB2 1326 480 56 37 || -4.14e+00 | -4.14e+00
ZAMB2-10 270 96 40 40 || -1.58e+00 | -1.58e+00
ZAMB2-11 270 96 30 30 || -1.12e+00 | -1.12e4+00
ZAMB2-8 138 48 28 28 || -1.53e-01 | -1.53e-01
ZAMB2-9 138 48 32 33 || -3.55e-01 | -3.55e-01
ZIGZAG* 604 500 (1) (1) (1) (1)

Table 3: Comparison of Infeasible and Feasible versions of KNI-
TRO in terms of function evaluations: (1) Maximum number
of iterations (1000) reached; (2) Maximum allowable CPU time
(60 minutes) reached; (3) Terminate because trust region radius,
A <10 X € ch,> Where €. 1 is unit roundoff error; (4) Other
abnormal termination. A “*” next to the problem name indicates
that the Feasible version never entered feasible mode.

References

[1] P. Armand, J.-Ch. Gilbert, and S. Jan-Jégou. A feasible BFGS interior point algorithm
for solving strongly convex minimization problems. SIAM Journal on Optimization,

11:199-222, 2000.

[2] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. ACM Transactions on Mathematical Software,

21(1):123-160, 1995.

[3] R. H. Byrd. Robust trust region methods for constrained optimization. Third STAM

Conference on Optimization, Houston, Texas, May 1987.

[4]

25

R. H. Byrd, J. Ch. Gilbert, and J. Nocedal. A trust region method based on interior
point techniques for nonlinear programming. Mathematical Programming, 89(1):149—
185, 2000.

R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale
nonlinear programming. SIAM Journal on Optimization, 9(4):877-900, 2000.

M. R. Celis, J. E. Dennis, and R. A. Tapia. A trust region strategy for nonlinear
equality constrained optimization. In P. T. Boggs, R. H. Byrd, and R. B. Schnabel,
editors, Numerical Optimization 1984, pages 71-82, Philadelphia, USA, 1985. STAM.

A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-
region algorithm for non-convex nonlinear programming. Mathematical Programming,
87(2):215-249, 2000.

A. R. Conn, N. I. M. Gould, and Ph. Toint. Trust-region methods. MPS-STAM Series
on Optimization. STAM publications, Philadelphia, PA, USA, 2000.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A primal-dual algorithm for minimizing
a nonconvex function subject to bound and linear equality constraints. In G. Di Pillo

and F. Giannessi, editors, Nonlinear Optimization and Related Topics, pages 15-50,
Dordrecht, The Netherlands, 1999. Kluwer Academic Publishers.

A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and
theory of the Newton interior-point method for nonlinear programming. Journal of
Optimization Theory and Applications, 89(3):507-541, June 1996.

A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. J. Wiley and Sons, Chichester, England, 1968. Reprinted as
Classics in Applied Mathematics 4, STAM, Philadelphia, USA, 1990.

A. Forsgren and P. E. Gill. Primal-dual interior methods for nonconvex nonlinear
programming. SIAM Journal on Optimization, 8(4):1132-1152, 1998.

D. M. Gay, M. L. Overton, and M. H. Wright. A primal-dual interior method for non-
convex nonlinear programming. In Y. Yuan, editor, Advances in Nonlinear Program-
ming, pages 31-56, Dordrecht, The Netherlands, 1998. Kluwer Academic Publishers.

Harwell Subroutine Library. A catalogue of subroutines (HSL 2000). AEA Technology,
Harwell, Oxfordshire, England, 2000.

C. T. Lawrence and A. L. Tits. Nonlinear equality constraints in feasible sequential
quadratic programming. Optimization Methods and Software, 6(4):265-282, 1996.

C. T. Lawrence and A. L. Tits. A computationally efficient feasible sequential quadratic
programming algorithm. Technical report, Institute for Systems Research Technical
Report TR 98-46, University of Maryland, College Park, 1998.

[17]

[18]

[19]

[20]

[21]

[22]

23]

26

E. O. Omojokun. Trust region algorithms for optimization with nonlinear equality and
inequality constraints. PhD thesis, University of Colorado, Boulder, Colorado, USA,
1989.

M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, editor,
Numerical Methods for Nonlinear Algebraic Equations, pages 87-114, London, 1970.
Gordon and Breach.

M. J. D. Powell and Y. Yuan. A trust region algorithm for equality constrained opti-
mization. Mathematical Programming, 49(2):189-213, 1990.

R. J. Vanderbei and D. F. Shanno. An interior point algorithm for nonconvex nonlinear
programming. Computational Optimization and Applications, 13:231-252, 1999.

A. Vardi. A trust region algorithm for equality constrained minimization: convergence
properties and implementation. SIAM Journal on Numerical Analysis, 22(3):575-591,
1985.

H. Yamashita and H. Yabe. Superlinear and quadratic convergence of some primal-
dual interior point methods for constrained optimization. Mathematical Programming,

Series A, 75(3):377-397, 1996.

H. Yamashita, H. Yabe, and T. Tanabe. A globally and superlinearly convergent primal-
dual point trust region method for large scale constrained optimization. Technical
report, Mathematical Systems, Inc., Sinjuku-ku, Tokyo, Japan, 1997.

