OPTIMIZATION TECHNOLOGY CENTER
Argonne National Laboratory and Northwestern University

NUMERICAL EXPERIENCE WITH A REDUCED HESSIAN
METHOD FOR LARGE SCALE
CONSTRAINED OPTIMIZATION

by

Lorenz T. Biegler', Jorge Nocedal?, Claudia Schmid' and David Ternet!

May 9, 1997

! Chemical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213. These au-
thors were supported by the Engineering Design Research Center, an NSF Center at Carnegie Mellon as
well as through a grant from Bayer Corporation

2 Department of Electrical and Computer Engineering, Northwestern University, Evanston Il 60208.
Email: nocedal@ece.nwu.edu. This author was supported by National Science Foundation Grant CCR-
9625613, and by Department of Energy Grant DE-FG02-87ER25047

NUMERICAL EXPERIENCE WITH A REDUCED HESSIAN
METHOD FOR LARGE SCALE
CONSTRAINED OPTIMIZATION

by

Lorenz T. Biegler, Jorge Nocedal, Claudia Schmid and David Ternet

ABSTRACT

The reduced Hessian SQP algorithm presented in [2] is developed in this paper into
a practical method for large-scale optimization. The novelty of the algorithm lies in
the incorporation of a correction vector that approximates the cross term Z7 WY py.
This improves the stability and robustness of the algorithm without increasing its
computational cost. The paper studies how to implement the algorithm efficiently,
and presents a set of tests illustrating its numerical performance. An analytic exam-
ple, showing the benefits of the correction term, is also presented.

Key words: Successive Quadratic Programming, reduced Hessian methods, constrained
optimization, Quasi-Newton method, large-scale optimization.

Abbreviated title: Numerical Experience with a Reduced Hessian Method

1. Introduction

This paper studies the implementation and numerical performance of the reduced
Hessian algorithm described in Biegler, Nocedal and Schmid [2]. The algorithm is de-
signed to solve large equality constrained optimization problems of the form

e/)
subject to c(x) =0, (1.2)

where f : R” — R and ¢ : R" — R™ are smooth functions. The convergence analysis
given in [2] shows that the reduced Hessian method has a superlinear rate of conver-
gence and is globally convergent under certain assumptions. This paper completes the

exploration of the new algorithm by addressing the important implementation issues that
make it effective in practice. We study how to balance the conflicting goals of robustness
of the iteration and economy of computation, in the context of large-scale optimization.
This paper also presents an analytic example illustrating the difficulties that the new
reduced Hessian method is designed to overcome.

We begin with a brief outline of the Successive Quadratic Programming (SQP)
method upon which our algorithm is based. At every iterate xj, a search direction
dy is obtained by solving the quadratic subproblem

. 1
min g(zy)"d+ 5d" W (zy)d (1.3)
subject to c(xy) + A(x)Td = 0. (1.4)

Here g denotes the gradient of f, W denotes the Hessian (with respect to z) of the
Lagrangian function L(x,\) = f(z) + M'¢(x), and A stands for the n x m matrix of
constraint gradients,

A(z) = [Ver(z), ..., Ve (z)]. (1.5)

The new iterate is given by z11 = x + ardy, where oy is a steplength parameter that
provides sufficient reduction in the #; merit function

bu(z) = f(z) + plle@)l, >0 (1.6)

To compute the search direction dj, we use the null-space approach (see e.g. [17]).
We write the solution dj, of (1.3)-(1.4) as

di. = Yipy + Zikpy, (1.7)

where Z is an n x (n —m) matrix spanning the null space of A{, Y; is an n X m matrix
spanning the range of Ak, and py and p, are vectors in R™ and R"™™ ™, respectively.
(We will assume throughout the paper that Ay has full column rank for all k.) Since
AT Zy, = 0, the linear constraints (1.4) become

cr + A{Ykpy =0.

Therefore py is given by
py = —[ALYi] ex, (1.8)

showing that di has the form
dp = —Yk[A%WYk]ilck + Zipy. (19)

To determine the component p,, we substitute (1.9) into (1.3), giving rise to the uncon-
strained subproblem

. 1
D gfl{lr{l—m (Zggk + ZngYka)sz + EpZT(ZngZk)pZ, (1.10)
z

where we have omitted constant terms involving py. Assuming that Z] W} Zj, is positive
definite, the solution of (1.10) is

Pz = —(ZL WiZ) "' [Z{ g + Z{ WiYipy)- (1.11)

This determines the search direction dj.

The most expensive parts of this algorithm are: (i) the computation of the null space
and range space matrices Z and Y; (ii) the solution of the linear systems in (1.8) and
(1.11); (iii) the evaluation of f, g, ¢, A and of the Hessian of the Lagrangian W. We now
discuss each of these computations.

There are many possible choices for the basis matrices Z and Y. By computing a
QR factorization of A, we can define Z and Y so as to have orthonormal columns. This
gives a well conditioned representation of the null space and range space of A, but can be
very expensive when the number of variables is large. We therefore make use of a more
economical alternative in which Z and Y are defined by simple elimination of variables
[12], [17]. To do this we group the components of z into m basic or dependent variables
(which without loss of generality are assumed to be the first m variables) and n —m
nonbasic or control variables, and group the columns of A accordingly,

A(z)" = [C(x) N(x)]. (1.12)

The m x m basis matriz C(x) is assumed to be nonsingular. Then we define

Z(z) = l _C("E);N(‘”)] . and Y(z) = l ;] : (1.13)

we refer to this choice of Z and Y as coordinate bases.
Let us now consider the step computation (1.7), (1.8) and (1.11). Due to our choice
(1.13) of Y, the component py takes the simple form

py =—C; ' . (1.14)

The computation (1.11) of p, requires careful consideration. When the number of vari-
ables n is large and the number n — m of degrees of freedom is small, it is attractive
to approximate the reduced Hessian ZkTWka by means of a variable metric formula,
such as BFGS, because this eliminates the computational work required to evaluate Wy
and form ZkTWka. For the same reason, it is appealing to avoid forming the matrix
ZT'W}Yk, and some reduced Hessian methods [8, 13, 24, 19, 30, 14] simply omit the
“cross term” Z{WkYka in (1.11). Deleting this term often works well when Z and Y
are orthonormal [24, 19], but can lead to poor search directions when Z and Y are the
coordinate basis (1.13) [29]. An example illustrating this phenomenon is given in §4.
To ensure that good search directions are always generated, the algorithm presented in
Biegler, Nocedal and Schmid [2] approximates the cross term [Z] WjYy]py by a vector
Wi,

[ZI WL Yi]py = wy, (1.15)

without computing the matrix Z] Wy Y;. Two options are given for the correction vector
wg: the first computes a finite-difference approximation of ZkTWkY;,C along py, which
requires an extra evaluation of the gradient of the objective function f and constraints c;
the second option updates a quasi-Newton approximation Sy to ZkTWk, and defines wy =
S;Yipy. The finite-difference option provides more accurate information but is more
expensive than the quasi-Newton approximation. To obtain economy of computation, we
define wy via the quasi-Newton approximation Sy as often as possible, and only resort
to finite-differences when this is required to ensure a superlinear rate of convergence [2].

To summarize, the algorithm does not require the computation of the Hessian of
the Lagrangian W, and only makes use of first derivatives of f and c¢. The reduced
Hessian matrix Z,?Wk 7}, is approximated by a positive definite quasi-Newton matrix By,
using the BFGS formula, and the cross term Z,CTWkYka is approximated by a vector
wg, which is computed either by means of a finite-difference formula or via a quasi-
Newton approximation. The algorithm is therefore well-suited for large problems with
relatively few degrees of freedom. The novelty of the approach lies in the use of the
correction term wy. Because we wish to focus on the effects of this correction term, we
only consider in this paper the simpler case when all constraints are equalities. We should
note, however, that the ideas presented here can be used within an active set method for
inequality constrained optimization such as that implemented in the SNOPT code [16].
For other work on reduced or full Hessian SQP methods for large-scale optimization see
[1, 3, 10, 22, 25, 27, 23, 15].

2. The Implemented Algorithm

The broad overview just given of the reduced Hessian algorithm does not include a
description of various devices introduced in [2] to globalize the iteration and ensure a
fast rate of convergence. Other aspects of the algorithm that were not reviewed include
the definition of Lagrange multiplier estimates and quasi-Newton updating formulae.
The reader is advised to read §§1-3 of [2] before proceeding; the starting point of our
discussion will be Algorithm IT in that paper. We first describe some simplifications and
modifications to Algorithm II that are designed to improve its efficiency in practice.

The computation of the Lagrange multiplier estimates (see equation (83) in [2]) takes
the following simple form due to our choice (1.13) of Y,

M =—C, g, (2.1)

where g¢ denotes the first m components of the vector g. Using coordinate bases also
allows one to simplify the quasi-Newton update formula given in [2], which make use of
the vectors

yk = Zg [VL(xpe1, A1) = VL(2g, Meyr)] — @y (2.2)
U = Z[VL(@ps1, Met1) — VL(@g, Mg ;

see (46) and (85) in [2]. As shown by Orozco [26], the equations VL(z,) = g(z)+ A(z)A,
A(x)TZ(z) = 0, (1.13) and (2.1) imply that for any points # and & for which C(z) and
C(z) are nonsingular,

Z(&)'VL(z,\z)) = Z(z)"g(z). (2.4)

This and the equation Z}F Ay = 0 allow us to rewrite (2.2)-(2.3) as
Uk = Zi19ke1 = Zi gk — Bk, Gk = Zipa9ke1 — Zik G- (2.5)

Our next observation concerns the calculation of the correction term wy via finite
differences (see (38) in [2]). This takes place after a new iterate ;41 has been computed,
and is given by

Wy = Z{[VL(J?].; + o Yipy, Metr1) — VL(zg, Apr1)], (2.6)

where oy, is the steplength used to ensure a sufficient reduction in the merit function.
The drawback of this formula is that it requires an additional evaluation of the gradient
of the Lagrangian if oy # 1; see §3.1 of [2]. To avoid this cost, we will redefine (2.6) as

Wy = apZE [VL(zg + Yipy, Mes1) — VL(Zg, Aps1)]. (2.7)

These two expressions are not equivalent, but one can show that in a neighborhood of a
solution point they have very similar effects on the algorithm. More specifically one can
show that the only part of the analysis given in [2] that is affected by the new definition
(2.7) is Lemma 5.5 of that paper, and that the proof of that lemma can easily be modified
to accept the new definition. We should stress, however, that away from the solution
(2.7) may be a poor approximation to (2.6), and to ensure good performance of the
algorithm we will only activate the finite-difference option when the algorithm appears
to be approaching a solution point. This is a significant departure from Algorithm II
in [2] and is motivated by the desire to reduce the cost of the iteration: finite-difference
corrections are not particularly valuable compared to quasi-Newton approximations away
from the solution — and are expensive in terms of gradient evaluations.
Next we should emphasize that the computation of the null space variable p, will be
exactly as in [2],
Pz = —By 2] g + Grwg]- (2.8)

The damping parameter 0 < (< 1 is one of the devices mentioned earlier on. Its
purpose is to ensure that the search direction d; is always a descent direction for the
merit function; see §3.4 of [2]. It is shown in §6 of [2] that, as the algorithm approaches
the solution, (; always takes the value 1, so that (2.8) reduces to (1.11) asymptotically.

We are now ready to state the full algorithm, which is a modification of Algorithm II
in [2]. Throughout the paper || - || denotes the Euclidean norm; we will also make use of
the infinity norm || - ||co.

Algorithm RHC. (Reduced Hessian Algorithm with Cross Term)

1. Choose constants I', vr4, A and sequences <y, and 7g; see Table 1 for suggested
values for these parameters. Set k := 1, choose a starting point x;, and initialize
the penalty parameter of the merit function (1.6) as 1 = 1. Set the initial reduced
Hessian approximation to B; = I and initialize the Broyden approximation to
the cross term as S; = [0 I]. (Postmultiplying this matrix by Z (as in SZ =~
ZT™W Z ~ B) and recalling the definition (1.13) of Z shows that this initialization
is in agreement with the choice B; = I.)

2. Evaluate f1, g1, ¢1 and Ay at z1, and compute Y7 and Z; as defined by (1.13).
3. Set findiff = false and compute py by solving the system

Ckpy = —Cg- (2.9)

4. Calculate wy using Broyden’s method,

wg = Sk Yppy, (2.10)
and then set 1/2
wy, if Jwgl| < Tllpy|
k= { wy Pl otherwise (211)
k™ g]

5. Choose the damping parameter (j from

1 if g Zy By, 'wg > 0 212
Cr = (0197 z, B Z] gy, . 2.12
min 7B oy 1 otherwise.

and compute p, from
Bipz = —[Zj; g + Cewg)- (2.13)

6. Calculate o = || Z gk|| + |lek |- If & = max{||Z] gk|loo, lIck|lo} < A and if both

Vrdllpzl
v (2.14)
O
and
o[l > i llp| (2.15)

are satisfied, set findiff = true and recompute wy from
Wg = Z]zﬂ[VL((II]C + Yipy,)\k) — g((I:k)] (2.16)

(Unlike Algorithm II in [2], the calculation of the finite difference correction occurs
only after the KKT error has been decreased beyond a certain threshold A, in order
to avoid additional gradient evaluations far away from the solution.)

10.

11.
12.

13.

equation (2.12) and recompute p, from equation (2.13).

. Define the search direction by

dr = Yipy + Zips

and set ap = 1.

. Test the line search condition

G (Tk + rdr) < Gpy (zk) + 0.1k Dy, (w5 die),

where
b (@) = fr + prllcll

If (2.18) is not satisfied, choose a new «y, from

—0.5D¢uk (:Ek; dk)az
Q) = max ,0.1
¢ {¢uk (zk + ardr) — G, (wk) — cu Dy (3 dic)

and go to 9; otherwise set

Tk4+1 = Tk + Ozkdk.

Evaluate fri1, gk+1, €41, Ak+1 at T4, and compute Y1 and Zg .

Compute the Lagrange multiplier estimate
Ner1 = —Ci 19511
and update uj by
pr1 = max(1.001 + | Nt 1lloos Bk + [Aes1]l00) /4, 107°)
Update Si1 using the Broyden update

- < \eT
Yk — SkSk)S
Sk+1 =Sk + (,T—,)k
51, Sk

where
o — g7 _ g7 = .
Yk = Lp419k+1 k 9k> Sk = Zk+1 — %k

If findiff = false calculate wy by Broyden’s method through

Wy, = g Sk+1Yrpy

and set .
. { a) < ol
k= . QklIPy i
Wk ol otherwise.

. If findiff = true use this new value of wy, to choose the damping parameter (; from

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

If findiff = true calculate wy by

Wy = ap 2y [VL(k + Yiepy, A1) — g(@)] (2.28)
and]l < xllpwl/
_ Wy if ||wg || < akllpyIl/7
Wk = { . QklPx |l otherwise. (2.29)
Vi |0]

(Another departure from Algorithm IT in [2] is the addition of the bound (2.29)
on the correction term computed by finite-differences; in our previous paper only
the Broyden correction was safeguarded by (2.27). Since 7, < 7y, (see Table 1)
this bound is weaker than that imposed on the Broyden correction, but still gives
greater stability to the algorithm.)

14. If s;‘cpyk < 0 or if (2.14) is not satisfied, set By,1 = By. Else, compute
Sk = OgDyz
Y = Zi9en — ZFgr — wk
and update By by the BFGS formula

Bisksk By yryl

Byy1 = By — (2.30)

T T, °
s}, Bgsg, Yk Sk

15. If 63, = max{|| Z] gk |0, l|lck|lo } < tol, STOP; else set k := k + 1, and go to 3.

The convergence tolerance tol used to terminate the algorithm is set by the user. The
numerical values for the other parameters used to obtain the results in § 5 are given in
Table 1; n — m is the number of independent (or control) variables of the problem and
k is the iteration count. Our numerical testing suggests that the values in Table 1 give
good performance.

As in [2] we retain oy, in the decision rules for choosing the correction factor as this
leads to a smooth measure of the KKT error. However, in order to determine the region
in the neighborhood of the solution where we invoke the finite difference correction (and
later) the watchdog line search, we prefer to use 6 as this is independent of the problem
size.

‘ Parameter H Reference ‘ Suggested Value ‘
r 2.11 20
Ytd 2.14 10
Vi 2.27 0.1(n —m)"?°k 11
i 2.29 0.01(n —m)Y#k 1
A step 6 0.1

Table 1. Suggested value for parameters in Algorithm RHC.

3. Further Details of Implementation

Even though our description of the new reduced Hessian method has been quite
extensive, it leaves out three important details of implementation: the choice of basic
or control variables, the adjustment to the quasi-Newton matrices when the basis has
changed, and the use of the watchdog technique to permit a fast rate of convergence. We
now discuss these algorithmic features which have an important effect on performance.

3.1. Selection of the Basis

The algorithm requires the partition of the variables into dependent and independent
variables. This determines the choice of basis Cj in (1.12) and the definitions of Z
and Y;. While many different selections are often possible, it is necessary that the basis
matrix Cj be non-singular and not too ill-conditioned.

Let us begin by discussing the choice of initial basis. In some areas of application,
such as optimal control, the choice is straightforward since the control variables constitute
a suitable set of independent variables. But for most other optimization problems the
selection is not easy, and a procedure that does this automatically is required. Our
strategy is to supply the rectangular matrix A to the sparse linear equations solver
MAZ28 from the Harwell library [20], and let this code select a nonsingular basis. (MA48,
the successor of MA28 could also be used.) MA28 computes also sparse LU factors of
the basis matrix C, thereby providing all the information needed to define Z; and Y.
We should note, however, that even though M A28 usually provides a good choice for the
basis matrix, there is no guarantee of this. As described below, our code includes a test
to determine if the basis is unsuitable, and a procedure for constructing a new one.

Once the initial basis has been determined, we attempt to keep the same choice of
basic variables during all subsequent iterations because the quasi-Newton formulae that
update By and S} require that Z changes smoothly. It is necessary, however, to monitor
the conditioning of the basis matrices C}, and make a different selection if they are
considered too ill-conditioned. Ideally the monitoring should be done by computing the
condition number of C} at every iteration, but this is too expensive when the number of
variables is large. Instead we use the following heuristic.

At the current iterate z;, compute

B = H;?X{I(CEINk)i,ﬂ};

see (1.12) to recall the definition of N. W request a new basis from the sparse linear
solver MA28 if

Br > 10 X Br_1
or if
g1 <1073 and Br > Br—1,

where ay_1 is the steplength used at iteration k& — 1.

This heuristic attempts to determine whether the inverse of Cy, is growing rapidly or
whether a poor choice of basis has produced an excessively large search direction that
forced the line search procedure to generate a very small steplength.

To request a new basis from MA28 we provide it with the rectangular matrix Ay
and invoke MA28’s analyze phase, which returns a nonsingular basis matrix. There is
no guarantee, however, that MA28 will return a different basis. In this (unlikely) case
our code continues the iteration with this choice of basis, in spite of the possibility of ill-
conditioning. Constructing a more exhaustive procedure that will force MA28 to consider
another basis is a refinement that our code does not yet include.

3.2. Adjusting the Quasi-Newton Matrices

Suppose that at iterate zp; we have decided to make a new selection of basic and
independent variables. The new partitioning affects the definitions (1.13) of the null
space and range space basis Z and Y, which will therefore change abruptly from xj
to xgyr1. This will have a detrimental effect in the quasi-Newton updating formulae
(2.24), (2.30) which involve differences in Z. The simplest strategy to overcome this
difficulty would be to reinitialize the BFGS and Broyden matrices Biy1 and Sky1 as in
step 1 of Algorithm RHC. But this is not always desirable since it leads to a loss of the
curvature information gathered in these matrices — information that makes a rapid rate
of convergence possible. Therefore we have developed the following strategy, which is
similar to that used by Xie [30], for modifying the previous matrices By and Si (so as to
reflect the new choice of basis) before the update leading to By, and Sk is performed.

To simplify the discussion that follows, we drop the iteration subscript k& from all
matrices. The constraint Jacobian Ay, given the partition of the variables at xj, will be
written as A = [C N]. Let AT = [C N] be the matrix obtained by permuting some
of the columns of A so that the columns corresponding to the new set of basic variables
appear in the first m positions. We can therefore write

AT = ATp (3.1)

where P is a permutation matrix. The null space bases for the old and new choice of
basis are given by

_C-IN _ _C N
Z:l 7] and Z:l 7]; (3.2)

thus ATZ =0 and ATZ = 0. Using (3.1) we have
ATZ = AT(PZ) =0, (3.3)

showing that the columns of the matrix PZ also lie in the null space of AT. Therefore
there exists a square nonsingular matrix R of dimension n — m such that

PZ = ZR. (3.4)

10

Now, the Hessian of the Lagrangian with respect to the current ordering of the variables
has been denoted by W. When the selection of basic and nonbasic variables changes, the
Hessian of the Lagrangian must reflect this new ordering of the variables. If we denote
this new Hessian by W, we have that

w = PTwP.

Since the current reduced Hessian matrix B approximates Z' W Z, our goal is to find a
new matrix B that approximates Z7W Z. Using (3.4) we have

B ~7"WZ =Z"P"WPZ
= RTZTWZR. (3.5)

This suggests that B be defined by B = RT BR. Nevertheless computing R is in general
very expensive, and we therefore eliminate it by means of the following operations. Let
T = [0 I] be an (n —m) X n matrix partitioned so that 7Z = I. Using (3.5) and (3.4)
we obtain

Z'Wwz =RTZTTTZTWZTZR (3.6)
= (ZR)'TT(ZT"W Z)T(ZR)
=Z'PITT(Z"WZ2)TPZ.

This suggests the formula o B
B=Z"P'T'BTPZ (3.9)

for computing the reduced Hessian approximation using the new null space basis Z.
A similar derivation shows that a good choice of the Broyden matrix at xj, for the
the new selection of basis variables, is given by

S=7TPTTTSP. (3.10)

Having redefined By, and Sj as Bj and S; we can now safely apply the updating
formula (2.24), (2.30) to obtain Bj41 and Sky1. Our numerical experience indicates that
this strategy for adjusting the quasi-Newton matrices after a change of basis is beneficial
compared to the simple alternative of resetting the matrices to their default values.

3.3. The Watchdog Technique

One of the requirements for 1-step superlinear convergence of Algorithm RHC is that
the line search technique must allow full steps (a = 1) close to the solution [2]. When
a smooth merit function such as Fletcher’s differentiable function [11] is used, it is not
difficult to show that near the solution unit steplengths give a sufficient reduction in
the merit function and will be accepted. However, the nondifferentiable exact penalty
function (2.19) used in our algorithm may reject unit steplengths as the iterates approach

11

the solution; this is commonly referred to as the Maratos effect. To circumvent this
problem we use the non-monotone line search (or watchdog technique) of Chamberlain
et al [7], as described in Byrd and Nocedal [6].

Even though the idea behind the watchdog technique is conceptually simple, a full
description can be complicated. Therefore we will now only outline the main steps and
refer the reader to [6] for a more details.

At the current iterate zj, we compute the search direction dj, (step 8 of Algorithm RHC).
If 2y + dj, gives sufficient reduction in the merit function, as measured by (2.18), we set
ZTra1 = Tk +di, and go to step 11 of Algorithm RHC. Otherwise we initiate the watchdog
procedure. At & = xp + dr we compute a new search direction d and the new point
2’ = & + ad, where @& is a steplength giving a sufficient reduction of the merit function
along d. If z' gives sufficient reduction with respect to xy, then we set x4, = ' and
terminate the watchdog procedure. Otherwise we compare the merit function values at
2’ and . If 2/ has a lower merit function value, we compute yet another search direction
from z', perform a line search along it enforcing the sufficient decrease condition (2.18),
and define the new iterate as z;;1. On the other hand, if the merit function value at x
is smaller than at z’, we fall back to x; and perform a line search along dj, to obtain the
new iterate xy 1 giving a sufficient reduction in the merit function. This terminates the
watchdog procedure.

As other authors have observed (see [28] and the references therein) it is not advan-
tageous to use a non-monotone line search in the first few iterations of an algorithm,
before the correct scale of the problem has been determined. In the tests reported in §5,
we activate the watchdog technique only after the KKT error 6 is below a user-specified
tolerance.

4. An Analytic Example

We present a simple example that shows that for a practical choice of basis Z, Y, the
reduced Hessian algorithm can produce very poor steps if the cross term Z'WYpy is
omitted. The example also shows that this undesirable behavior disappears if the term
ZTWYpy is included.

Let us write #7 = [u,v] and consider the problem

min f(z) = %(uQ +0?) (4.1)
subject to ¢(z) = u(v —1) —6v =0, (4.2)

where 6 is an adjustable parameter. It is easy to see that u, = v, = A, = 0 is a solution,
and that

V2, L(z,, \) = I (4.3)

To simplify the calculations, we will not update By by the BFGS formula, and instead
define it as By = Z,?Zk; due to (4.3), this is a very good approximation of the true
reduced Hessian ZkTWka near the solution.

12

Let us first apply Algorithm RHC, with no correction terms wj and Wy, but using
orthogonal bases satisfying ZkTY/c =0, ZkTZk =1, m, YkTYk = Ip,. If the current iterate
is of the form 27 = [uy,vx] = [0, 6], we find (see Appendix) that

oo Mot dill 1
50 ||z l]? 2(02 +1)1/2°

(4.4)

Thus we obtain a quadratic contraction in the error, if xj is near the solution (note that
since z, = 0 the error z; — x, is given by xy).

In contrast, if we apply Algorithm RHC using the coordinate basis (1.13), we find
that for the same iterate zy

i %6 T dell _ 6(1 +6)
=0 ||zgll V20 +6%)

This ratio will be large when 6 is large, showing that the step from xj to zx + di can be
very poor. The algorithm may not accept this point, since for at least some values of 6
the merit function increases at xj + di, and the line search will be forced to compute a
small steplength — at the cost of several function evaluations. Now, if the point xj + dj
were to be accepted, then at the next iterate we would have (see Appendix)

sl
- 9’
5 ol

which is consistent with the property of 2-step Q-superlinear convergence of this method
demonstrated by Byrd [5] and Yuan [31]. But it would be too risky to enforce descent
in the merit function only every two iterations because, as the example shows, the first
step can be arbitrarily bad.

Finally, let us consider Algorithm RHC with a coordinate basis and using the cor-
rection term wy. (The term Wy, is not needed since BFGS updating is not used.) Using
the same starting point one can show (see Appendix) that the behavior of the algorithm
is very similar to that obtained with an orthogonal basis, and that quadratic contraction
(4.4) takes place. Thus the correction term has a dramatic effect on the method in this
case.

5. Numerical Results

As noted in the introduction, the novelty of Algorithm RHC lies in the use of the
correction term, whose goal is to give stability to the iteration when the bases Y and
Z do not provide a well conditioned representation of R™. The correction term cannot
be expected to improve the performance of the algorithm when the basis matrices are
adequate, but should prevent poor performance from taking place. We will begin with
some experiments that test the algorithm under rather unfavorable circumstances. Then
we will observe its overall behavior on some problems from the well known CUTE and
Hock-Schittkowski collections.

13

We tested Algorithm RHC and two variants of it. The standard implementation of
Algorithm RHC computes the correction vector by the Broyden or finite-difference ap-
proaches. In the first variation, labeled “No Correction”, the correction term was com-
pletely eliminated from the algorithm, which then resembles a classical reduced Hessian
method. In the version labeled “Broyden Correction”, the correction vector was always
computed via Broyden’s method. These variants were introduced to better understand
the practical behavior of the algorithm. The convergence tolerance in Step 15 was set to
tol = 1075, The watchdog and finite difference corrections were activated when &5 < 0.1.
All tests were performed on a DEC-ALPHA 3000-400, in double precision FORTRAN.

The first two test problems are generalizations of problem (4.1)-(4.2) of §4: in Exam-
ple 2 we increase the problem size but maintain the number of degrees of freedom at 1,
and in Example 3 both the number of variables and the number of degrees of freedom are
increased. The starting point and solution points are denoted by z° and z*, respectively,
and in the following description subscripts refer to components of a vector.

Example 2 (1 degree of freedom)

min% iy :1:22
st. zi(xj41 —1) =10z, =0 j=1,...,n—1
x? =0.1 :Jc;‘ =0.

Example 3 (Number of degrees of freedom = n/2)

min% ity x?
st @j(Tpjoqj — 1) = 10z,01; =0, j=1,...,n/2
x? =0.1 x;‘ =0.

For these two test problems we dictated the choice of basis, and the algorithm was
not allowed to change this choice. The analysis in the previous section indicates how to
choose good and bad bases.

14

Number of No Broyden Algorithm
variables Correction Correction RHC

Ind. variable = z; (Good choice)

80 9(9/9) 9(9/9) 8 (8/11)
200 12 (13/12) 10 (11/10) 9 (10/13)
Independent variable = x5 (Poor choice)
80 19 (34/19) 9 (12/9) 8 (11/10)
200 12 (19/12) 7 (11/ 7) 7 (11/ 9)

Table 2. Results for Example 2.
No. of iterations (No. function eval./No. of gradient eval.)

Number of No Broyden Algorithm
variables Correction Correction RHC

Ind. variable = z; (Good choice)

80 6 (6/6) 6 (6/6) 6 (6/6)
200 6 (6/6) 6 (6/6) 6 (6/6)
Independent variable = x5 (Poor choice)
80 27 (39/27) 19 (28/19) 17 (21/18)
200 25 (36/25) 19 (26/19) 18 (22/19)

Table 3. Results for Example 3
No. of iterations (No. function eval./No. of gradient eval.)

For the good choice of basis, inclusion of the correction term has little effect on
performance in both examples, but for the poor choice of basis the correction is highly
beneficial. These results are consistent with the analysis given in [2] which shows that
the correction term improves the local convergence rate only when the path followed by
the iterates is not tangential to the constraints.

In the next set of tests, given in Table 4, we report the performance of Algorithm RHC
on some of the problems from the Hock-Schittkowski collection [21]. Since these problems
are of small dimension, we do not report execution times. In these and the rest of
experiments reported in this paper, the algorithm chooses the basis freely, as described
in §3.

15

Problem | N/M No Broyden Algorithm
Correction Correction RHC

HS 80 5/3 19(25/ 19) 11(11/ 11) 9(9/ 15)
HS 81 5/3 || 24(38/ 24) 11(11/ 11) 9(9/ 15)
HS 99 7/2 15(18/ 15) 16(28/ 17) 6(28/ 19)
HS100 /4 21(29/ 21) 20(29/ 20) 20(29/ 22)
HS101 7/2 || 54(93/ 54) 43(69/ 43) 43(69/ 47)
HS102 7/3 102(118/105) 105(173/106) 101(167/107)
HS103 7/4 || 96(208/ 99) 119(221/121) 7(218/129)
HS104 8/4 4(87/ 36) 29(70/ 31) 29(70/ 39)
HS111 | 10/3 || 59(75/ 61) 48(55/ 49) 49(57/ 67)
HS112 | 10/3 6(66/ 36) 33(60/ 33) 33(60/ 33)
HS113 | 10/6 13(16/ 13) 15(19/ 15) 15(19/ 17)

Table 4. Results on several problems from Hock and Schittkowski [21].
No. of iterations (No. function eval./No. of gradient eval.)

In these problems the standard implementation of Algorithm RHC outperforms the
option that does not make use of the correction term, in terms of iterations and function
evaluations. But taking into account the number of gradient evaluations, the option that
always computes the correction by Broyden’s method, appears to be quite efficient.

We now consider some challenging test problems from the CUTE collection [4]. They
were selected for their difficulty and variety (see [22]), and allow us to test most of the
devices of Algorithm RHC. The results are given in Table 5.

16

Problem N/M No Broyden Algorithm
Correction Correction RHC

30/15 32(57/32/0.9 32(59/32/1.0 32(59/39/1.0)
EIGENC2 56,28 49(91/49/1.5 58(116/59/2.1 58(116/72/2.3)
90/45 60(114/61/3.1 67(125/67/3.5 67(125/84/3.9
30/15 32(56/32/0.9 33(57/33/1.0 33(57/41/1.1
EIGENCCO | 56/28 58(117/59/2.3 44(80/45/2.0 45(81/56/2.2

90/45 69(133/70/4.1 64(123/65/4.3 65(122/88/4.9

37/16 110(262/113/ 2.5 91(189/ 92/ 2.7 91(189/97/ 2.7
ORTHREGA | 133/64 || 185(417/191/ 36.0) 308(608/313/ 72.3) 308(608/322/ 72.6

205/100 || 118(239/122/ 30.1 51(92/ 52/ 19.4 49(84/ 65/ 19.8
ORTHREGC | 305/150 81(135/ 82/ 43.0 90(185/ 93/ 81.2 89(183/137/ 86.9
405/200 79(107/ 81/ 96.0) 123(181/126/196.2) 123(181/182/207.2
505/250 || 144(297/149/258.6) 108(193/109/246.0) 107(185/170/261.0

23/10 23(26/23/ 0.2 20(24/20/ 0.3 25(30/40/ 0.3)
ORTHREGD | 103/50 28(35/28/ 1.4 24(30/24/ 2.0 29(38/48/ 2.0)
203,/100 33(42/33/ 6.5 28(36/28/10.1 23(27/37/10.3
303,150 26(30/26/14.0 23(26/23/27.9 33(41/55/28.1

~— — — — [— ' O O — O — O — | — —

))
))
))
))
))
))
) i
517/256 || 341(864/358/1294.5) 298(681/312/1370.6) 298(681/338/1379.9
))
))
))
))
))
))
))
))

Table 5. Results on several problems from the CUTE collection [4].
No. of iterations (No. function eval./No. of gradient eval./CPU secs)

Problems EIGENC2 and EIGENCCO, have a quadratic objective function and quadratic
constraints; they are reformulations of symmetric eigenvalue problems as a systems of
nonlinear equations. These runs require a change of basis to avoid poorly conditioned
bases, and our strategy for handling bases changes performed effectively. The initial
point in these problems satisfies the equality constraints; hence the correction terms are
relatively small and the performance of all options of the algorithm is similar.

ORTHREGA, ORTHREGC and ORTHREGD are orthogonal regressions problems
[18] where the objective is to fit orthogonally a cardioid to a set of points in the plane.
Frequent basis changes were necessary to avoid ill-conditioned Jacobian matrices. Here
the correction vectors are not small relative to the step, and larger differences in perfor-
mance are observed among the three options. In these problems, the number of degrees
of freedom is large relative to the size of the problem (about half the variables are inde-
pendent variables). Even though this leads to large Broyden matrices we observe that
computing time is not greatly increased by the Broyden approximations. Note that the
number of gradient evaluations is the least for the pure Broyden option.

Taken as a whole these numerical tests indicate, first of all, that Algorithm RHC
is robust and efficient, and capable of dealing well with ill-conditioned problems. The
results also indicate that the inclusion of the correction term provides stability to the

17

iteration, and does not give rise to a significant increase in function evaluations, or in
CPU time. The results also suggest that if the evaluation of gradients is expensive, it
may be advantageous to compute the correction term always by Broyden’s method. We
conclude that a correction term developed in this paper may be a very useful feature in
any reduced Hessian SQP method for constrained optimization.

6. Conclusions

This research was motivated by numerical tests on chemical process control problems
performed, a few years ago, by the first author. The algorithm was of the reduced
Hessian SQP type and used non-orthogonal bases. He observed that the algorithm was
sometimes very inefficient, and an examination of the results revealed that poor search
directions were being generated. This suggested that an approximation to the cross
term ZTWYpy might resolve the difficulties, and the result of this investigation was
the algorithm analyzed in [2] and developed here into a practical method for large-scale
equality constrained optimization. We have introduced various features in the algorithm
that ensure its robustness and speed, while at the same time keeping the computational
cost and evaluations of gradients at the same level as that of a standard SQP method.

7. Appendix: Derivation of the Results of §4

We have already noted that u. = v, = Ay = 0 is a solution of (4.1)-(4.2) for any 6,
and that V2, L(z., \:) = I. We also have that

wo-[i71]- ae[3]

Let us first choose

Z(m):lz:ﬂ Y(m):[(u_g)}(v_l)]. (7.1)

Note that Z is a smooth function, and that ¥ and Z are mutually orthogonal (i.e.
Y (z)"'Z(x) = 0), but the the columns of Y and Z are not of norm 1.

Since near the solution W}, = I, we have that Z,?WkYk ~ 0, it is appropriate to define
the correction term wy, to be zero for all k. The matrix By will not updated by the BFGS
formula, but will be given instead by By = Z,?Zk; therefore the correction w; need not
be defined. From (1.8) and (2.8) we have

_ (vk = 1)(Bv — up(ve — 1))
by (0 —ug)? + (v, — 1)?

(0 — ug)ug + (v — vy
(0 —up)? + (v, — 1)2 7

Pz = —

18

and therefore (1.9) gives

di — 1 (g — 1) = (0 — ug)?) ug
ET 0 —up)2+ (o — 12 | (Bug —0) — (v — 1)) v |

Let zj be of the form z1 = [uy, v] = [6,]. Then

1 526 —1
Tpp1 = T +di = [()],

(0—0)24 (0 —1)2
and we see that for any 0 # J,

bl
=0 ||zg||? 2(02 4+ 1)1/2°

(7.3)

Thus, near the solution, and when Y and Z are mutually orthogonal we obtain a quadratic
contraction in the error.
Let us now suppose that Z is defined by (7.1), but that Y is given by

Y (z)" =[1,0].

We no longer have that Y (z)7 Z(x) = 0, and in fact, for large values of @, this vector Y is
almost orthogonal to the one defined in (7.1). The null-space component p; is still given
by (7.2), but now

v —u(v—1)

S (7.4)

Py =

Substituting into (1.9) gives
—u
4 = l ;

so that zx41 = g + di is given by

l’

1 [(0 —u)?(u+v(0 —u)) +uv(v — 1)]
(v—=1)34+ (v —1)(0 —u)? —(0 —u)(v—1)%u— (v —1)3

_ 1 [(6 — u)2(u+ v(0 — u)) + uv(v — 1)] (75)
T w13+ -0 —-w?| O@—u)(v—1)[0—-uw—(v—1)u] | '

Now letting z] = [ug,vg] = [d, 8] we obtain

B 1 0 — 6)2(1 + 60— 6)0 + 62(5 — 1)2
LT 1B T (010 —0)2 | (6—0)2(5—1)5 — (0 —8)(6 —1)26

or

Tpy1 =0 [Zég;] ;

19

where a(d) and b(d) are rational functions of §. Using (7.5), and abbreviating a = a(J)
and b = b(d), we have at the next iteration

B 1 (0 — ad)?(ad + db(0 — ad)) + 6%ab(bs — 1)?
ThH2 = 5 —1)3 1 (00 — 1)(0 — ad)2 | (6 — ad)?(bs — 1)bs — (0 — ad) (b6 — 1)%ad |

Letting § — 0 and recalling that ¢ and b are functions of §, we obtain

‘ [—62(a(0) + 6b(0))] ‘

T
0(a(0) + 0b(0))

050 Jarll V(L +07)

Now since

—62(1+0)
0(1 + 0)

18]-[3] -
b(0) 50 | b(9) (1+62)
we have that

el
- 9’
5 ol

which is consistent with the property of 2-step Q-superlinear property demonstrated in
[5, 31]. In contrast
Mzl 601 +6)

lim = ,
>0 el V201 +62)

showing that the step from xy to xx1 is poor.

Finally, we now consider algorithm RHC with the coordinate range space basis matrix
17'(36) and with a correction term of the form wj = ZkTkafkpy. As with the uncorrected
method, we have:

pr = —(ALVi) e = 2L,

However, p; is now given by
Pz = —(Zs W Zi) " (Z gk + 2 WiYipy)
or

_ (0 — up) +vp (v — 1)
bz (v = 1)(0 — ug)? + (v, — 1)3

Evaluation of the step dj, = Zyp, + Yipy leads to the following equation for x4

- = 1 [upvg (v — 1)] (7.6)

ug)? + (vp — 1)? | ugok(ug — 0)

which, for this example, is identical to the result obtained for the reduced Hessian method
with orthogonal bases.

20

8. *

[1]

2]

3]

8]

[9]

[10]

[11]

References

J.T. BETTS AND P.D. FRANK, A sparse nonlinear optimization algorithm, JOTA, 82,
(1994), pp. 519-541.

L. T. BIEGLER, J. NOCEDAL, AND C. SCHMID, A reduced Hessian method for large-
scale constrained optimization, SIAM J. Optimization, 5, 2, (1995), pp. 314-347.

P.T. Bocas, J.W. ToLLE, AND A.J. WANG, A practical algorithm for general large

scale nonlinear optimization problems, Internal Report, National Institute of Stan-
dards, 1994.

I. BonGARTZ, A.R. ConN, N.ILM. GouLDp, AND Ph.L. Toint, CUTE: constrained and
unconstrained testing environment, Research Report, IBM T.J. Watson Research
Center, Yorktown Heights, NY, 1993.

R. H. BYRD, An example of irreqular convergence in some constrained optimization
methods that use the projected Hessian, Math. Programming, 32 (1985), pp. 232-237.

R. H. BYRD AND J. NOCEDAL, An analysis of reduced Hessian methods for constrained
optimization, Math. Programming, 49 (1991), pp. 285-323.

R. M. CHAMBERLAIN, C. LEMARECHAL, H. C. PEDERSEN, AND M. J. D. PowELL, The
watchdog technique for forcing convergence in algorithms for constrained optimiza-
tion, Math. Programming Studies, 16 (1982), pp. 1-17.

T. F. CoLEMAN AND A. R. ConN, On the local convergence of a quasi-Newton method

for the nonlinear programming problem, STAM J. Numer. Anal., 21 (1984), pp. 755
769.

[.S. Durr, A.M. ErisMAN, AND J.K. REID, Direct Methods for Sparse Matrices,
Clarendon Press, Oxford, 1986.

S.K. ELDERSVELD, Large-scale sequential quadratic programming algorithms, Ph.D.

thesis, Department of Operations Research, Stanford University, Stanford, CA.,
1991.

R. FLETCHER, An exact penalty for nonlinear programming with inequalities, Math.
Programming, 5 (1973), pp. 129-150.

R. FLETCHER, Practical Methods of Optimization, (second edition), John Wiley and
Sons, Chichester, 1987.

D. GaBAY, Reduced quasi-Newton methods with feasibility improvement for nonlin-
early constrained optimization, Math. Programming Studies, 16 (1982), pp. 18—44.

J. C. GILBERT, On the local and global convergence of a reduced quasi-Newton method,
Optimization, 20 (1989), pp. 421-450.

J. C. GILBERT, Maintaining the positive definiteness of the matrices in reduced Hes-

sian methods for equality constrained optimization, Math. Programming, 50 (1991),
pp- 1-28.

21

[16]
[17]
[18]
[19]
[20]

[21]

[22]

23]

[24]

P.E. GiLL, W. MURRAY, AND M. SAUNDERS, An SQP algorithm for large scale opti-
mization, working paper, EESOR Department, Stanford University, 1996.

P. E. G, W. MURRAY, AND M. H. WRIGHT, Practical Optimization, Academic
Press, London, 1981.

M. GULLIKSSON, Algorithms for nonlinear least squares with applications to orthog-
onal regression, UMINF-178.90, University of Umea, Sweden, 1990.

C. B. GurwiTz AND M. L. OVERTON, SQP methods based on approzimating a pro-
jected Hessian matriz, STAM. J. Sci. Stat. Comp., 10 (1989), pp. 631-653.

Harwell Subroutine Library. A catalogue of subroutines (release 12). AEA Technol-
ogy, Harwell, Oxfordshire, England, 1995.

W. Hock AND K. SCHITTKOWSKI, Test examples for nonlinear programming codes,

Lecture Notes in Economics and Mathematical Systems 187, Springer Verlag, Berlin,
1981.

M. LALEE, J. NOCEDAL, AND T. PLANTENGA, On the implementation of an algorithm

for large-scale equality constrained optimization, submitted to STAM J. Optimiza-
tion, December, 1993.

W. MURRAY AND F. J. PRIETO, A sequential quadratic programming algorithm using
an incomplete solution of the subproblem, Tech Report, Department of Operations
Research, Stanford University, 1992.

J. NOCEDAL AND M. L. OVERTON, Projected Hessian updating algorithms for nonlin-
early constrained optimization, SITAM J. Numer. Anal., 22 (1985), pp. 821-850.

E.O. OMOJOKUN, Trust region algorithms for optimization with nonlinear equality
and inequality constraints, PhD dissertation, University of Colorado, 1991.

C.E. Orozco, Large-scale shape optimization: numerical methods, parallel algo-

rithms and applications to aerodynamic design, Ph.D. Dissertation, Carnegie Mellon
University, 1993.

E.R. PANIER AND A.L. T1TS, On combining feasibility, descent and superlinear con-

vergence n inequality constrained optimization, Mathematical Programming, 59
(1993), 261-276.

Ph.L. ToiNT, An assessment of non-monotone line search techniques for uncon-
strained optimization. STAM Journal on Scientific and Statistical Computing, 17
(3), (1996) pp. 725-739.

S. VASANTHARAJAN AND , L. T. BIEGLER, Large-scale decomposition for successive
quadratic programming, Comp. Chem. Engr., 12, 11 (1988) p. 1087

Y. XiE, Reduced Hessian algorithms for solving large-scale equality constrained opti-

mization problems, Ph.D. dissertation, Department of Computer Science, University
of Colorado, Boulder, 1991.

Y. YUAN, An only 2-step Q-superlinear convergence example for some algorithms

that use reduced Hessian approzimations, Math. Programming, 32 (1985), pp. 224
231.

22

