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NUMERICAL EXPERIENCE WITH A REDUCED HESSIAN

METHOD FOR LARGE SCALE

CONSTRAINED OPTIMIZATION

by

Lorenz T� Biegler� Jorge Nocedal� Claudia Schmid and David Ternet

ABSTRACT

The reduced Hessian SQP algorithm presented in ��� is developed in this paper into
a practical method for large�scale optimization� The novelty of the algorithm lies in
the incorporation of a correction vector that approximates the cross term ZTWY pY�
This improves the stability and robustness of the algorithm without increasing its
computational cost� The paper studies how to implement the algorithm e�ciently�
and presents a set of tests illustrating its numerical performance� An analytic exam�
ple� showing the bene�ts of the correction term� is also presented�

Key words� Successive Quadratic Programming� reduced Hessian methods� constrained
optimization� Quasi�Newton method� large�scale optimization�

Abbreviated title� Numerical Experience with a Reduced Hessian Method

�� Introduction

This paper studies the implementation and numerical performance of the reduced
Hessian algorithm described in Biegler� Nocedal and Schmid ��	� The algorithm is de�
signed to solve large equality constrained optimization problems of the form

min
x�Rn

f
x� 
����

subject to c
x� � � 
����

where f � Rn � R and c � Rn � Rm are smooth functions� The convergence analysis
given in ��	 shows that the reduced Hessian method has a superlinear rate of conver�
gence and is globally convergent under certain assumptions� This paper completes the
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exploration of the new algorithm by addressing the important implementation issues that
make it e�ective in practice� We study how to balance the con�icting goals of robustness
of the iteration and economy of computation� in the context of large�scale optimization�
This paper also presents an analytic example illustrating the di�culties that the new
reduced Hessian method is designed to overcome�
We begin with a brief outline of the Successive Quadratic Programming 
SQP�

method upon which our algorithm is based� At every iterate xk� a search direction
dk is obtained by solving the quadratic subproblem

min
d�Rn

g
xk�
T d�

�

�
dTW 
xk�d 
����

subject to c
xk� �A
xk�
Td � � 
����

Here g denotes the gradient of f � W denotes the Hessian 
with respect to x� of the
Lagrangian function L
x� �� � f
x� � �T c
x�� and A stands for the n � m matrix of
constraint gradients�

A
x� � �rc�
x�� ����rcm
x�	� 
����

The new iterate is given by xk�� � xk � �kdk� where �k is a steplength parameter that
provides su�cient reduction in the �� merit function

��
x� � f
x� � �kc
x�k�� � � � 
����

To compute the search direction dk� we use the null�space approach 
see e�g� ���	��
We write the solution dk of 
�����
���� as

dk � YkpY � ZkpZ� 
����

where Zk is an n� 
n�m� matrix spanning the null space of AT
k � Yk is an n�m matrix

spanning the range of Ak� and pY and pZ are vectors in R
m and Rn�m� respectively�


We will assume throughout the paper that Ak has full column rank for all k�� Since
AT
kZk � � the linear constraints 
���� become

ck �AT
k YkpY � �

Therefore pY is given by
pY � ��AT

k Yk	
��ck� 
����

showing that dk has the form

dk � �Yk�AT
k Yk	

��ck � ZkpZ� 
����

To determine the component pZ� we substitute 
���� into 
����� giving rise to the uncon�
strained subproblem

min
pZ�Rn�m


ZT
k gk � ZT

k WkYkpY�
T pZ �

�

�
pZ

T 
ZT
k WkZk�pZ� 
����

�



where we have omitted constant terms involving pY� Assuming that Z
T
k WkZk is positive

de�nite� the solution of 
���� is

pZ � �
ZT
k WkZk�

���ZT
k gk � ZT

k WkYkpY	� 
�����

This determines the search direction dk�
The most expensive parts of this algorithm are� 
i� the computation of the null space

and range space matrices Z and Y � 
ii� the solution of the linear systems in 
���� and

������ 
iii� the evaluation of f� g� c� A and of the Hessian of the Lagrangian W � We now
discuss each of these computations�
There are many possible choices for the basis matrices Z and Y � By computing a

QR factorization of A� we can de�ne Z and Y so as to have orthonormal columns� This
gives a well conditioned representation of the null space and range space of A� but can be
very expensive when the number of variables is large� We therefore make use of a more
economical alternative in which Z and Y are de�ned by simple elimination of variables
���	� ���	� To do this we group the components of x into m basic or dependent variables

which without loss of generality are assumed to be the �rst m variables� and n � m
nonbasic or control variables� and group the columns of A accordingly�

A
x�T � �C
x�N
x�	� 
�����

The m�m basis matrix C
x� is assumed to be nonsingular� Then we de�ne

Z
x� �

�
�C
x���N
x�

I

�
� and Y 
x� �

�
I


�
� 
�����

we refer to this choice of Z and Y as coordinate bases�
Let us now consider the step computation 
����� 
���� and 
������ Due to our choice


����� of Y � the component pY takes the simple form

pY � �C��k ck� 
�����

The computation 
����� of pZ requires careful consideration� When the number of vari�
ables n is large and the number n � m of degrees of freedom is small� it is attractive
to approximate the reduced Hessian ZT

k WkZk by means of a variable metric formula�
such as BFGS� because this eliminates the computational work required to evaluate Wk

and form ZT
k WkZk� For the same reason� it is appealing to avoid forming the matrix

ZT
k WkYk� and some reduced Hessian methods ��� ��� ��� ��� �� ��	 simply omit the
�cross term� ZT

k WkYkpY in 
������ Deleting this term often works well when Z and Y
are orthonormal ���� ��	� but can lead to poor search directions when Z and Y are the
coordinate basis 
����� ���	� An example illustrating this phenomenon is given in x��
To ensure that good search directions are always generated� the algorithm presented in
Biegler� Nocedal and Schmid ��	 approximates the cross term �ZT

k WkYk	pY by a vector
wk�

�ZT
k WkYk	pY � wk� 
�����
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without computing the matrix ZT
k WkYk� Two options are given for the correction vector

wk� the �rst computes a �nite�di�erence approximation of Z
T
k WkYk along pY� which

requires an extra evaluation of the gradient of the objective function f and constraints c�
the second option updates a quasi�Newton approximation Sk to Z

T
k Wk� and de�nes wk �

SkYkpY� The �nite�di�erence option provides more accurate information but is more
expensive than the quasi�Newton approximation� To obtain economy of computation� we
de�ne wk via the quasi�Newton approximation Sk as often as possible� and only resort
to �nite�di�erences when this is required to ensure a superlinear rate of convergence ��	�
To summarize� the algorithm does not require the computation of the Hessian of

the Lagrangian Wk� and only makes use of �rst derivatives of f and c� The reduced
Hessian matrix ZT

k WkZk is approximated by a positive de�nite quasi�Newton matrix Bk�
using the BFGS formula� and the cross term ZT

k WkYkpY is approximated by a vector
wk� which is computed either by means of a �nite�di�erence formula or via a quasi�
Newton approximation� The algorithm is therefore well�suited for large problems with
relatively few degrees of freedom� The novelty of the approach lies in the use of the
correction term wk� Because we wish to focus on the e�ects of this correction term� we
only consider in this paper the simpler case when all constraints are equalities� We should
note� however� that the ideas presented here can be used within an active set method for
inequality constrained optimization such as that implemented in the SNOPT code ���	�
For other work on reduced or full Hessian SQP methods for large�scale optimization see
��� �� �� ��� ��� ��� ��� ��	�

�� The Implemented Algorithm

The broad overview just given of the reduced Hessian algorithm does not include a
description of various devices introduced in ��	 to globalize the iteration and ensure a
fast rate of convergence� Other aspects of the algorithm that were not reviewed include
the de�nition of Lagrange multiplier estimates and quasi�Newton updating formulae�
The reader is advised to read xx��� of ��	 before proceeding� the starting point of our
discussion will be Algorithm II in that paper� We �rst describe some simpli�cations and
modi�cations to Algorithm II that are designed to improve its e�ciency in practice�
The computation of the Lagrange multiplier estimates 
see equation 
��� in ��	� takes

the following simple form due to our choice 
����� of Y �

�k � �C�Tk gck� 
����

where gc denotes the �rst m components of the vector g� Using coordinate bases also
allows one to simplify the quasi�Newton update formula given in ��	� which make use of
the vectors

yk � ZT
k �rL
xk��� �k����rL
xk� �k���	� �wk 
����

�yk � ZT
k �rL
xk��� �k����rL
xk� �k���	� 
����
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see 
��� and 
��� in ��	� As shown by Orozco ���	� the equations rL
x� �� � g
x��A
x���
A
x�TZ
x� � � 
����� and 
���� imply that for any points �x and �x for which C
�x� and
C
�x� are nonsingular�

Z
�x�TrL
�x� �
�x�� � Z
�x�T g
�x�� 
����

This and the equation ZT
k Ak �  allow us to rewrite 
�����
���� as

yk � ZT
k��gk�� � ZT

k gk � �wk� �yk � ZT
k��gk�� � ZT

k gk� 
����

Our next observation concerns the calculation of the correction term �wk via �nite
di�erences 
see 
��� in ��	�� This takes place after a new iterate xk�� has been computed�
and is given by

�wk � ZT
k �rL
xk � �kYkpY� �k����rL
xk� �k���	� 
����

where �k is the steplength used to ensure a su�cient reduction in the merit function�
The drawback of this formula is that it requires an additional evaluation of the gradient
of the Lagrangian if �k �� �� see x��� of ��	� To avoid this cost� we will rede�ne 
���� as

�wk � �kZ
T
k �rL
xk � YkpY� �k����rL
xk� �k���	� 
����

These two expressions are not equivalent� but one can show that in a neighborhood of a
solution point they have very similar e�ects on the algorithm� More speci�cally one can
show that the only part of the analysis given in ��	 that is a�ected by the new de�nition

���� is Lemma ��� of that paper� and that the proof of that lemma can easily be modi�ed
to accept the new de�nition� We should stress� however� that away from the solution

���� may be a poor approximation to 
����� and to ensure good performance of the
algorithm we will only activate the �nite�di�erence option when the algorithm appears
to be approaching a solution point� This is a signi�cant departure from Algorithm II
in ��	 and is motivated by the desire to reduce the cost of the iteration� �nite�di�erence
corrections are not particularly valuable compared to quasi�Newton approximations away
from the solution � and are expensive in terms of gradient evaluations�
Next we should emphasize that the computation of the null space variable pZ will be

exactly as in ��	�
pZ � �B��

k �Z
T
k gk � 	kwk	� 
����

The damping parameter  
 	k � � is one of the devices mentioned earlier on� Its
purpose is to ensure that the search direction dk is always a descent direction for the
merit function� see x��� of ��	� It is shown in x� of ��	 that� as the algorithm approaches
the solution� 	k always takes the value �� so that 
���� reduces to 
����� asymptotically�
We are now ready to state the full algorithm� which is a modi�cation of Algorithm II

in ��	� Throughout the paper k � k denotes the Euclidean norm� we will also make use of
the in�nity norm k � k��
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Algorithm RHC� 
Reduced Hessian Algorithm with Cross Term�

�� Choose constants �� �fd�  and sequences �k and ��k� see Table � for suggested
values for these parameters� Set k �� �� choose a starting point x�� and initialize
the penalty parameter of the merit function 
���� as �� � �� Set the initial reduced
Hessian approximation to B� � I and initialize the Broyden approximation to
the cross term as S� � � I	� 
Postmultiplying this matrix by Z 
as in SZ �
ZTWZ � B� and recalling the de�nition 
����� of Z shows that this initialization
is in agreement with the choice B� � I��

�� Evaluate f�� g�� c� and A� at x�� and compute Y� and Z� as de�ned by 
������

�� Set �ndi� � false and compute pY by solving the system

CkpY � �ck� 
����

�� Calculate wk using Broyden!s method�

wk � SkYkpY� 
����

and then set

wk ��

�
wk if kwkk � �kpYk���

wk
�kpYk���
kwkk

otherwise

�����

�� Choose the damping parameter 	k from

	k �

��
�

� if gTk ZkB
��
k wk � 

min

�
����gTk ZkB

��

k
ZTk gk

gT
k
ZkB

��

k
wk

� �

�
otherwise�


�����

and compute pZ from
BkpZ � ��ZT

k gk � 	kwk	� 
�����

�� Calculate �k � kZT
k gkk� kckk� If �� � maxfkZT

k gkk�� kckk�g �  and if both

kpYk � �fdkpZk
�
���
k


�����

and
kpYk � ��kkpZk 
�����

are satis�ed� set �ndi� � true and recompute wk from

wk � ZT
k �rL
xk � YkpY� �k�� g
xk�	� 
�����


Unlike Algorithm II in ��	� the calculation of the �nite di�erence correction occurs
only after the KKT error has been decreased beyond a certain threshold  � in order
to avoid additional gradient evaluations far away from the solution� �
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�� If �ndi� � true use this new value of wk to choose the damping parameter 	k from
equation 
����� and recompute pZ from equation 
������

�� De�ne the search direction by

dk � YkpY � ZkpZ 
�����

and set �k � ��

�� Test the line search condition

��k
xk � �kdk� � ��k
xk� � ���kD��k
xk� dk�� 
�����

where
��k
xk� � fk � �kkckk�� 
�����

�� If 
����� is not satis�ed� choose a new �k from

�k � max

�
���D��k 
xk� dk��

�
k

��k
xk � �kdk�� ��k
xk�� �kD��k
xk� dk�
� ��

	

����

and go to �� otherwise set
xk�� � xk � �kdk� 
�����

��� Evaluate fk��� gk��� ck��� Ak�� at xk��� and compute Yk�� and Zk���

��� Compute the Lagrange multiplier estimate

�k�� � �C�Tk��g
c
k�� 
�����

and update �k by

�k�� � max
��� � k�k��k�� 
��k � k�k��k���� ���� 
�����

��� Update Sk�� using the Broyden update

Sk�� � Sk �

�yk � Sk�sk��s

T
k

�sTk �sk

�����

where
�yk � ZT

k��gk�� � ZT
k gk� �sk � zk�� � zk 
�����

If �ndi� � false calculate �wk by Broyden!s method through

�wk � �kSk��YkpY 
�����

and set

�wk ��

�
�wk if k �wkk � �kkpYk�k

�wk
�kkpYk
�kk �wkk

otherwise�

�����

�



If �ndi� � true calculate �wk by

�wk � �kZ
T
k �rL
xk � YkpY� �k���� g
xk�	 
�����

and

�wk ��

�
�wk if k �wkk � �kkpYk ��k

�wk
�kkpYk
��kk �wkk

otherwise�

�����


Another departure from Algorithm II in ��	 is the addition of the bound 
�����
on the correction term computed by �nite�di�erences� in our previous paper only
the Broyden correction was safeguarded by 
������ Since ��k 
 �k 
see Table ��
this bound is weaker than that imposed on the Broyden correction� but still gives
greater stability to the algorithm��

��� If sTk yk �  or if 
����� is not satis�ed� set Bk�� � Bk� Else� compute

sk � �kpZ

yk � ZT
k��gk�� � ZT

k gk � �wk

and update Bk�� by the BFGS formula

Bk�� � Bk � Bksks
T
kBk

sTkBksk
�
yky

T
k

yTk sk
� 
����

��� If ��k � maxfkZT
k gkk�� kckk�g � tol� STOP� else set k �� k � �� and go to ��

The convergence tolerance tol used to terminate the algorithm is set by the user� The
numerical values for the other parameters used to obtain the results in x � are given in
Table �� n �m is the number of independent 
or control� variables of the problem and
k is the iteration count� Our numerical testing suggests that the values in Table � give
good performance�
As in ��	 we retain �k in the decision rules for choosing the correction factor as this

leads to a smooth measure of the KKT error� However� in order to determine the region
in the neighborhood of the solution where we invoke the �nite di�erence correction 
and
later� the watchdog line search� we prefer to use ��k as this is independent of the problem
size�

Parameter Reference Suggested Value

� ���� �

�fd ���� �

�k ���� ��
n �m�����k����

��k ���� ��
n�m�����k����

 step � ��

Table �� Suggested value for parameters in Algorithm RHC�
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�� Further Details of Implementation

Even though our description of the new reduced Hessian method has been quite
extensive� it leaves out three important details of implementation� the choice of basic
or control variables� the adjustment to the quasi�Newton matrices when the basis has
changed� and the use of the watchdog technique to permit a fast rate of convergence� We
now discuss these algorithmic features which have an important e�ect on performance�

���� Selection of the Basis

The algorithm requires the partition of the variables into dependent and independent
variables� This determines the choice of basis Ck in 
����� and the de�nitions of Zk

and Yk� While many di�erent selections are often possible� it is necessary that the basis
matrix Ck be non�singular and not too ill�conditioned�
Let us begin by discussing the choice of initial basis� In some areas of application�

such as optimal control� the choice is straightforward since the control variables constitute
a suitable set of independent variables� But for most other optimization problems the
selection is not easy� and a procedure that does this automatically is required� Our
strategy is to supply the rectangular matrix A to the sparse linear equations solver
MA�� from the Harwell library ��	� and let this code select a nonsingular basis� 
MA���
the successor of MA�� could also be used�� MA�� computes also sparse LU factors of
the basis matrix Ck� thereby providing all the information needed to de�ne Zk and Yk�
We should note� however� that even though MA�� usually provides a good choice for the
basis matrix� there is no guarantee of this� As described below� our code includes a test
to determine if the basis is unsuitable� and a procedure for constructing a new one�
Once the initial basis has been determined� we attempt to keep the same choice of

basic variables during all subsequent iterations because the quasi�Newton formulae that
update Bk and Sk require that Z changes smoothly� It is necessary� however� to monitor
the conditioning of the basis matrices Ck� and make a di�erent selection if they are
considered too ill�conditioned� Ideally the monitoring should be done by computing the
condition number of Ck at every iteration� but this is too expensive when the number of
variables is large� Instead we use the following heuristic�
At the current iterate xk� compute

�k � max
i�j

fj
C��k Nk�i�j jg�

see 
����� to recall the de�nition of N � W request a new basis from the sparse linear
solver MA�� if

�k � �� �k��

or if
�k�� 
 �

�	 and �k � �k���

where �k�� is the steplength used at iteration k � ��

�



This heuristic attempts to determine whether the inverse of Ck is growing rapidly or
whether a poor choice of basis has produced an excessively large search direction that
forced the line search procedure to generate a very small steplength�
To request a new basis from MA�� we provide it with the rectangular matrix Ak

and invoke MA��!s analyze phase� which returns a nonsingular basis matrix� There is
no guarantee� however� that MA�� will return a di�erent basis� In this 
unlikely� case
our code continues the iteration with this choice of basis� in spite of the possibility of ill�
conditioning� Constructing a more exhaustive procedure that will force MA�� to consider
another basis is a re�nement that our code does not yet include�

���� Adjusting the Quasi�Newton Matrices

Suppose that at iterate xk�� we have decided to make a new selection of basic and
independent variables� The new partitioning a�ects the de�nitions 
����� of the null
space and range space basis Z and Y � which will therefore change abruptly from xk
to xk��� This will have a detrimental e�ect in the quasi�Newton updating formulae

������ 
���� which involve di�erences in Z� The simplest strategy to overcome this
di�culty would be to reinitialize the BFGS and Broyden matrices Bk�� and Sk�� as in
step � of Algorithm RHC� But this is not always desirable since it leads to a loss of the
curvature information gathered in these matrices � information that makes a rapid rate
of convergence possible� Therefore we have developed the following strategy� which is
similar to that used by Xie ��	� for modifying the previous matrices Bk and Sk 
so as to
re�ect the new choice of basis� before the update leading to Bk�� and Sk�� is performed�
To simplify the discussion that follows� we drop the iteration subscript k from all

matrices� The constraint Jacobian Ak� given the partition of the variables at xk� will be
written as A � �C N 	� Let �AT � � �C �N 	 be the matrix obtained by permuting some
of the columns of A so that the columns corresponding to the new set of basic variables
appear in the �rst m positions� We can therefore write

�AT � ATP 
����

where P is a permutation matrix� The null space bases for the old and new choice of
basis are given by

Z �

�
�C��N

I

�
and �Z �

�
� �C�� �N

I

�
� 
����

thus ATZ �  and �AT �Z � � Using 
���� we have

�AT �Z � AT 
P �Z� � � 
����

showing that the columns of the matrix P �Z also lie in the null space of AT � Therefore
there exists a square nonsingular matrix R of dimension n�m such that

P �Z � ZR� 
����

�



Now� the Hessian of the Lagrangian with respect to the current ordering of the variables
has been denoted by W � When the selection of basic and nonbasic variables changes� the
Hessian of the Lagrangian must re�ect this new ordering of the variables� If we denote
this new Hessian by �W � we have that

�W � P TWP�

Since the current reduced Hessian matrix B approximates ZTWZ� our goal is to �nd a
new matrix �B that approximates �ZT �W �Z� Using 
���� we have

�B 	 �ZT �W �Z � �ZTP TWP �Z

� RTZTWZR� 
����

This suggests that �B be de�ned by �B � RTBR� Nevertheless computing R is in general
very expensive� and we therefore eliminate it by means of the following operations� Let
T � � I	 be an 
n�m� � n matrix partitioned so that TZ � I� Using 
���� and 
����
we obtain

�ZT �W �Z � RTZTT TZTWZTZR 
����

� 
ZR�TT T 
ZTWZ�T 
ZR� 
����

� �ZTP TT T 
ZTWZ�TP �Z� 
����

This suggests the formula
�B � �ZTP TT TBTP �Z 
����

for computing the reduced Hessian approximation using the new null space basis �Z�
A similar derivation shows that a good choice of the Broyden matrix at xk� for the

the new selection of basis variables� is given by

�S � �ZTP TT TSP� 
����

Having rede�ned Bk and Sk as �Bk and �Sk we can now safely apply the updating
formula 
������ 
���� to obtain Bk�� and Sk��� Our numerical experience indicates that
this strategy for adjusting the quasi�Newton matrices after a change of basis is bene�cial
compared to the simple alternative of resetting the matrices to their default values�

���� The Watchdog Technique

One of the requirements for ��step superlinear convergence of Algorithm RHC is that
the line search technique must allow full steps 
�k � �� close to the solution ��	� When
a smooth merit function such as Fletcher!s di�erentiable function ���	 is used� it is not
di�cult to show that near the solution unit steplengths give a su�cient reduction in
the merit function and will be accepted� However� the nondi�erentiable exact penalty
function 
����� used in our algorithm may reject unit steplengths as the iterates approach

��



the solution� this is commonly referred to as the Maratos e�ect� To circumvent this
problem we use the non�monotone line search 
or watchdog technique� of Chamberlain
et al ��	� as described in Byrd and Nocedal ��	�
Even though the idea behind the watchdog technique is conceptually simple� a full

description can be complicated� Therefore we will now only outline the main steps and
refer the reader to ��	 for a more details�
At the current iterate xk we compute the search direction dk 
step � of Algorithm RHC��

If xk � dk gives su�cient reduction in the merit function� as measured by 
������ we set
xk�� � xk�dk and go to step �� of Algorithm RHC� Otherwise we initiate the watchdog
procedure� At "x � xk � dk we compute a new search direction "d and the new point
x� � "x � "� "d� where "� is a steplength giving a su�cient reduction of the merit function
along "d� If x� gives su�cient reduction with respect to xk� then we set xk�� � x� and
terminate the watchdog procedure� Otherwise we compare the merit function values at
x� and xk� If x

� has a lower merit function value� we compute yet another search direction
from x�� perform a line search along it enforcing the su�cient decrease condition 
������
and de�ne the new iterate as xk��� On the other hand� if the merit function value at xk
is smaller than at x�� we fall back to xk and perform a line search along dk to obtain the
new iterate xk�� giving a su�cient reduction in the merit function� This terminates the
watchdog procedure�
As other authors have observed 
see ���	 and the references therein� it is not advan�

tageous to use a non�monotone line search in the �rst few iterations of an algorithm�
before the correct scale of the problem has been determined� In the tests reported in x��
we activate the watchdog technique only after the KKT error ��k is below a user�speci�ed
tolerance�

�� An Analytic Example

We present a simple example that shows that for a practical choice of basis Z� Y � the
reduced Hessian algorithm can produce very poor steps if the cross term ZTWY pY is
omitted� The example also shows that this undesirable behavior disappears if the term
ZTWY pY is included�
Let us write xT � �u� v	 and consider the problem

min f
x� �
�

�

u� � v�� 
����

subject to c
x� � u
v � ��� �v � � 
����

where � is an adjustable parameter� It is easy to see that u� � v� � �� �  is a solution�
and that

r�
xxL
x�� ��� � I� 
����

To simplify the calculations� we will not update Bk by the BFGS formula� and instead
de�ne it as Bk � ZT

k Zk� due to 
����� this is a very good approximation of the true
reduced Hessian ZT

k WkZk near the solution�

��



Let us �rst apply Algorithm RHC� with no correction terms wk and wk� but using
orthogonal bases satisfying ZT

k Yk � � Z
T
k Zk � In�m� Y

T
k Yk � Im� If the current iterate

is of the form xTk � �uk� vk	 � ��� �	� we �nd 
see Appendix� that

lim
���

kxk � dkk
kxkk�

�
�

�
�� � �����
� 
����

Thus we obtain a quadratic contraction in the error� if xk is near the solution 
note that
since x� �  the error xk � x� is given by xk��
In contrast� if we apply Algorithm RHC using the coordinate basis 
������ we �nd

that for the same iterate xk

lim
���

kxk � dkk
kxkk �

�
� � ��p
�
� � ���

�

This ratio will be large when � is large� showing that the step from xk to xk � dk can be
very poor� The algorithm may not accept this point� since for at least some values of �
the merit function increases at xk � dk� and the line search will be forced to compute a
small steplength � at the cost of several function evaluations� Now� if the point xk � dk
were to be accepted� then at the next iterate we would have 
see Appendix�

lim
���

kxk��k
kxkk

� �

which is consistent with the property of ��step Q�superlinear convergence of this method
demonstrated by Byrd ��	 and Yuan ���	� But it would be too risky to enforce descent
in the merit function only every two iterations because� as the example shows� the �rst
step can be arbitrarily bad�
Finally� let us consider Algorithm RHC with a coordinate basis and using the cor�

rection term wk� 
The term wk is not needed since BFGS updating is not used�� Using
the same starting point one can show 
see Appendix� that the behavior of the algorithm
is very similar to that obtained with an orthogonal basis� and that quadratic contraction

���� takes place� Thus the correction term has a dramatic e�ect on the method in this
case�

�� Numerical Results

As noted in the introduction� the novelty of Algorithm RHC lies in the use of the
correction term� whose goal is to give stability to the iteration when the bases Y and
Z do not provide a well conditioned representation of Rn� The correction term cannot
be expected to improve the performance of the algorithm when the basis matrices are
adequate� but should prevent poor performance from taking place� We will begin with
some experiments that test the algorithm under rather unfavorable circumstances� Then
we will observe its overall behavior on some problems from the well known CUTE and
Hock�Schittkowski collections�

��



We tested Algorithm RHC and two variants of it� The standard implementation of
Algorithm RHC computes the correction vector by the Broyden or �nite�di�erence ap�
proaches� In the �rst variation� labeled �No Correction�� the correction term was com�
pletely eliminated from the algorithm� which then resembles a classical reduced Hessian
method� In the version labeled �Broyden Correction�� the correction vector was always
computed via Broyden!s method� These variants were introduced to better understand
the practical behavior of the algorithm� The convergence tolerance in Step �� was set to
tol � ���� The watchdog and �nite di�erence corrections were activated when ��k 
 ���
All tests were performed on a DEC�ALPHA ���� in double precision FORTRAN�
The �rst two test problems are generalizations of problem 
�����
���� of x�� in Exam�

ple � we increase the problem size but maintain the number of degrees of freedom at ��
and in Example � both the number of variables and the number of degrees of freedom are
increased� The starting point and solution points are denoted by x� and x�� respectively�
and in the following description subscripts refer to components of a vector�

Example � 
� degree of freedom�

min�
�

Pn
i
� x

�
i

s�t� x�
xj�� � ��� �xj�� �  j � �� ���� n� �
x�j � �� x�j � �

Example � 
Number of degrees of freedom � n��

min�
�

Pn
i
� x

�
i

s�t� xj
xn���j � ��� �xn���j � � j � �� ���� n�

x�j � �� x�j � �

For these two test problems we dictated the choice of basis� and the algorithm was
not allowed to change this choice� The analysis in the previous section indicates how to
choose good and bad bases�

��



Number of No Broyden Algorithm
variables Correction Correction RHC

Ind� variable � x� 
Good choice�

� � 
 �# �� � 
 �# �� � 
 �#���
� �� 
��#��� � 
��#�� � 
�#���

Independent variable � x� 
Poor choice�

� �� 
��#��� � 
��# �� � 
��#��
� �� 
��#��� � 
��# �� � 
��# ��

Table �� Results for Example ��
No� of iterations 
No� function eval�#No� of gradient eval��

Number of No Broyden Algorithm
variables Correction Correction RHC

Ind� variable � x� 
Good choice�

� � 
�#�� � 
�#�� � 
�#��
� � 
�#�� � 
�#�� � 
�#��

Independent variable � x� 
Poor choice�

� �� 
��#��� �� 
��#��� �� 
��#���
� �� 
��#��� �� 
��#��� �� 
��#���

Table �� Results for Example �
No� of iterations 
No� function eval�#No� of gradient eval��

For the good choice of basis� inclusion of the correction term has little e�ect on
performance in both examples� but for the poor choice of basis the correction is highly
bene�cial� These results are consistent with the analysis given in ��	 which shows that
the correction term improves the local convergence rate only when the path followed by
the iterates is not tangential to the constraints�
In the next set of tests� given in Table �� we report the performance of Algorithm RHC

on some of the problems from the Hock�Schittkowski collection ���	� Since these problems
are of small dimension� we do not report execution times� In these and the rest of
experiments reported in this paper� the algorithm chooses the basis freely� as described
in x��

��



Problem N#M No Broyden Algorithm
Correction Correction RHC

HS � �#� ��
 ��# ��� ��
 ��# ��� �
 �# ���
HS �� �#� ��
 ��# ��� ��
 ��# ��� �
 �# ���
HS �� �#� ��
 ��# ��� ��
 ��# ��� ��
 ��# ���
HS� �#� ��
 ��# ��� �
 ��# �� �
 ��# ���
HS�� �#� ��
 ��# ��� ��
 ��# ��� ��
 ��# ���
HS�� �#� ��
���#��� ��
���#��� ��
���#���
HS�� �#� ��
��# ��� ���
���#���� ���
���#����
HS�� �#� ��
 ��# ��� ��
 �# ��� ��
 �# ���
HS��� �#� ��
 ��# ��� ��
 ��# ��� ��
 ��# ���
HS��� �#� ��
 ��# ��� ��
 �# ��� ��
 �# ���
HS��� �#� ��
 ��# ��� ��
 ��# ��� ��
 ��# ���

Table �� Results on several problems from Hock and Schittkowski ���	�
No� of iterations 
No� function eval�#No� of gradient eval��

In these problems the standard implementation of Algorithm RHC outperforms the
option that does not make use of the correction term� in terms of iterations and function
evaluations� But taking into account the number of gradient evaluations� the option that
always computes the correction by Broyden!s method� appears to be quite e�cient�
We now consider some challenging test problems from the CUTE collection ��	� They

were selected for their di�culty and variety 
see ���	�� and allow us to test most of the
devices of Algorithm RHC� The results are given in Table ��
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Problem N#M No Broyden Algorithm
Correction Correction RHC

�#�� ��
 ��#��#��� ��
 ��#��#��� ��
 ��#��#���
EIGENC� ��#�� ��
 ��#��#���� ��
���#��#���� ��
���#��#�����

�#�� �
���#��#���� ��
���#��#���� ��
���#��#����

�#�� ��
 ��#��#��� ��
 ��#��#��� ��
 ��#��#����
EIGENCCO ��#�� ��
���#��#���� ��
 �#��#��� ��
 ��#��#����

�#�� ��
���#�#���� ��
���#��#���� ��
���#��#����

��#�� ��
���#���# ���� ��
���# ��# ���� ��
���#��# ����
ORTHREGA ���#�� ���
���#���# ���� ��
��#���# ����� ��
��#���# �����

���#��� ���
���#���#������� ���
���#���#������ ���
���#���#�������

��#� ���
���#���# ���� ��
 ��# ��# ����� ��
 ��# ��# �����
ORTHREGC ��#�� ��
���# ��# ���� �
���# ��# ����� ��
���#���# �����

��#� ��
��# ��# ���� ���
���#���#������ ���
���#���#�����
��#�� ���
���#���#������ ��
���#��#����� ��
���#��#�����

��#� ��
��#��# ��� �
��#�# ��� ��
�#�# ����
ORTHREGD ��#� ��
��#��# ���� ��
�#��# ��� ��
��#��# ����

��#� ��
��#��# ���� ��
��#��#���� ��
��#��#����
��#�� ��
�#��#���� ��
��#��#����� ��
��#��#�����

Table �� Results on several problems from the CUTE collection ��	�
No� of iterations 
No� function eval�#No� of gradient eval�#CPU secs�

Problems EIGENC� and EIGENCCO� have a quadratic objective function and quadratic
constraints� they are reformulations of symmetric eigenvalue problems as a systems of
nonlinear equations� These runs require a change of basis to avoid poorly conditioned
bases� and our strategy for handling bases changes performed e�ectively� The initial
point in these problems satis�es the equality constraints� hence the correction terms are
relatively small and the performance of all options of the algorithm is similar�
ORTHREGA� ORTHREGC and ORTHREGD are orthogonal regressions problems

���	 where the objective is to �t orthogonally a cardioid to a set of points in the plane�
Frequent basis changes were necessary to avoid ill�conditioned Jacobian matrices� Here
the correction vectors are not small relative to the step� and larger di�erences in perfor�
mance are observed among the three options� In these problems� the number of degrees
of freedom is large relative to the size of the problem 
about half the variables are inde�
pendent variables�� Even though this leads to large Broyden matrices we observe that
computing time is not greatly increased by the Broyden approximations� Note that the
number of gradient evaluations is the least for the pure Broyden option�
Taken as a whole these numerical tests indicate� �rst of all� that Algorithm RHC

is robust and e�cient� and capable of dealing well with ill�conditioned problems� The
results also indicate that the inclusion of the correction term provides stability to the

��



iteration� and does not give rise to a signi�cant increase in function evaluations� or in
CPU time� The results also suggest that if the evaluation of gradients is expensive� it
may be advantageous to compute the correction term always by Broyden!s method� We
conclude that a correction term developed in this paper may be a very useful feature in
any reduced Hessian SQP method for constrained optimization�

�� Conclusions

This research was motivated by numerical tests on chemical process control problems
performed� a few years ago� by the �rst author� The algorithm was of the reduced
Hessian SQP type and used non�orthogonal bases� He observed that the algorithm was
sometimes very ine�cient� and an examination of the results revealed that poor search
directions were being generated� This suggested that an approximation to the cross
term ZTWY pY might resolve the di�culties� and the result of this investigation was
the algorithm analyzed in ��	 and developed here into a practical method for large�scale
equality constrained optimization� We have introduced various features in the algorithm
that ensure its robustness and speed� while at the same time keeping the computational
cost and evaluations of gradients at the same level as that of a standard SQP method�

�� Appendix	 Derivation of the Results of x�

We have already noted that u� � v� � �� �  is a solution of 
�����
���� for any ��
and that r�

xxL
x�� ��� � I� We also have that

A
x� �

�
v � �
u� �

�
� A� �

�
��
��

�
�

Let us �rst choose

Z
x� �

�
� � u
v � �

�
Y 
x� �

�
�


u� ��
v � ��

�
� 
����

Note that Z is a smooth function� and that Y and Z are mutually orthogonal 
i�e�
Y 
x�TZ
x� � �� but the the columns of Y and Z are not of norm ��
Since near the solutionWk � I� we have that ZT

k WkYk � � it is appropriate to de�ne
the correction term wk to be zero for all k� The matrix Bk will not updated by the BFGS
formula� but will be given instead by Bk � ZT

k Zk� therefore the correction �wk need not
be de�ned� From 
���� and 
���� we have

pY �

vk � ��
�vk � uk
vk � ���

� � uk�� � 
vk � ���

pZ � �
� � uk�uk � 
vk � ��vk

� � uk�� � 
vk � ���

� 
����

��



and therefore 
���� gives

dk �
�


� � uk�� � 
vk � ���
� 


vk � ��� 
� � uk�

�
�
uk


�
uk � ��� 
vk � ���
�
vk

�
�

Let xk be of the form xTk � �uk� vk	 � ��� �	� Then

xk�� � xk � dk �
�


� � ��� � 
� � ���
�
��
� � ��
��
� � ��

�
�

and we see that for any � �� ��

lim
���

kxk � dkk
kxkk� �

�

�
�� � �����
� 
����

Thus� near the solution� and when Y and Z are mutually orthogonal we obtain a quadratic
contraction in the error�
Let us now suppose that Z is de�ned by 
����� but that Y is given by

Y 
x�T � ��� 	�

We no longer have that Y 
x�TZ
x� � � and in fact� for large values of �� this vector Y is
almost orthogonal to the one de�ned in 
����� The null�space component pZ is still given
by 
����� but now

pY �
�v � u
v � ��

v � � � 
����

Substituting into 
���� gives

dk �

�
�u


�
�

�


v � ��	 � 
v � ��
� � u��

�

� � u��
u� v
� � u�� � uv
v � ���
�
� � u�
v � ���u� 
v � ��	v

�

so that xk�� � xk � dk is given by

xk�� �
�


v � ��	 � 
v � ��
� � u��

�

� � u��
u� v
� � u�� � uv
v � ���

� � u�
v � ���
� � u�v � 
v � ��u	

�
� 
����

Now letting xTk � �uk� vk	 � ��� �	 we obtain

xk�� �
�


� � ��	 � 
� � ��
� � ���

�

� � ���
� � � � ��� � ��
� � ���

� � ���
� � ��� � 
� � ��
� � ����

�

or

xk�� 
 �

�
a
��
b
��

�
�

��



where a
�� and b
�� are rational functions of �� Using 
����� and abbreviating a � a
��
and b � b
��� we have at the next iteration

xk�� �
�


b� � ��	 � 
b� � ��
� � a���

�

� � a���
a� � �b
� � a��� � ��ab
b� � ���

� � a���
b� � ��b� � 
� � a��
b� � ���a�

�
�

Letting � �  and recalling that a and b are functions of �� we obtain

lim
���

kxk��k
kxkk

�
�p

�
� � ���

�����
�
���
a
� � �b
��
�
a
� � �b
��

������
Now since �

a
�
b
�

�
� lim

���

�
a
��
b
��

�
�

�


� � ���

�
���
� � ��
�
� � ��

�

we have that

lim
���

kxk��k
kxkk

� �

which is consistent with the property of ��step Q�superlinear property demonstrated in
��� ��	� In contrast

lim
���

kxk��k
kxkk �

�
� � ��p
�
� � ���

�

showing that the step from xk to xk�� is poor�
Finally� we now consider algorithm RHC with the coordinate range space basis matrix

�Y 
x� and with a correction term of the form wk � ZT
k Wk

�YkpY� As with the uncorrected
method� we have�

pY � �
AT
k
�Yk�

��ck �
�v � u
v � ��

v � � �

However� pZ is now given by

pZ � �
ZT
k
�WkZk�

��
ZT
k gk � ZT

k
�Wk
�YkpY�

or

pZ � � �vk
� � uk� � vk
vk � ���

vk � ��
� � uk�� � 
vk � ��	 �

Evaluation of the step dk � ZkpZ � �YkpY leads to the following equation for xk��

xk�� �
�


� � uk�� � 
vk � ���
�
ukvk
vk � ��
ukvk
uk � ��

�

����

which� for this example� is identical to the result obtained for the reduced Hessian method
with orthogonal bases�
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