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Abstract. We present a line search algorithm for large-scale equality constrained optimization
designed primarily for problems with (near) rank-deficient Jacobian matrices. The method is matrix-
free (i.e., it does not require explicit representations or factorizations of derivative matrices), allows
for inexact step computations, and does not require inertia information in order to solve nonconvex
problems. The main components of the approach are a trust region subproblem for handling ill-
conditioned or inconsistent linear models of the constraints and a process for attaining a sufficient
reduction in a local model of a penalty function for the complete primal-dual step. We show that the
algorithm is globally convergent to first-order optimal points or to stationary points of a feasibility
measure. Numerical results are presented.
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1. Introduction. A variety of sophisticated algorithms exist for the solution of
large-scale nonlinear optimization problems. They benefit from both global and fast
local convergence guarantees and have shown in practice to require few iterations and
function/derivative evaluations in order to locate a local solution point. Some of these
algorithms are also equipped to cope with rank-deficient or ill-conditioned Jacobian
matrices. In some cases this is done by regularizing the constraints via a penalty
function [6, 9, 10, 27], and in others it is accomplished by employing trust region
techniques [2, 7, 16, 21]. A major drawback of most of these approaches, however, is
that they require explicit representations and factorizations of large iteration matrices
throughout the solution process, which makes their use impractical for large classes
of problems.

In this paper, we develop and analyze an algorithm for equality constrained prob-
lems of the form

min
x∈Rn

f(x) s.t. c(x) = 0, (1.1)

where f : Rn → R and c : Rn → Rt are sufficiently smooth functions. We are inter-
ested in very large-scale applications for which contemporary methods cannot be em-
ployed, and in particular those where the constraint functions may be ill-conditioned
or even inconsistent. This includes many problems in which the constraint functions
are given as a discretized set of partial differential equations (PDEs). Our goal is
to extend tools from the wealth of optimization research in order to define a robust
matrix-free technique for the solution of these types of problems.

We categorize an optimization algorithm as matrix-free if the approach does not
require the explicit formation or factorization of any matrix. Fortunately, as can be

∗Courant Institute of Mathematical Sciences, New York University, New York, NY, USA. This
author was supported by National Science Foundation grant DMS 0602235.

†Department of Electrical Engineering and Computer Science, Northwestern University, Evanston,
IL, USA. This author was supported by National Science Foundation grant CCF-0514772 and by
Department of Energy grant DE-FG02-87ER25047-A004.

‡IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.

1



2 F. E. Curtis, J. Nocedal, and A. Wächter

seen in the algorithms proposed in [3, 4, 13, 22, 25], such computationally expensive
tasks can be avoided by considering iterative solution procedures for the step com-
putations of the algorithm. The storage requirements for these techniques are often
drastically less than that for direct factorization methods, while the computational
costs essentially reduce to matrix-vector products with the Jacobian of the constraint
functions, its transpose, and the (approximate) Hessian of the Lagrangian function

L(x, λ) , f(x) + λT c(x),

all of which are viable operations for many large-scale problems. The difficulty, how-
ever, is that traditional algorithmic challenges normally faced in nonlinear program-
ming, such as the efficient handling of nonconvexity of the problem functions, rank
deficiency of the constraint Jacobians, and the achievement of global and local con-
vergence guarantees, become greater when the algorithm is limited to these types of
operations.

The goal of this paper is thus to design and analyze an efficient matrix-free al-
gorithm for problem (1.1) with the following properties. First, given an instance of
problem (1.1) and an arbitrary starting point, we would like our method to be globally
convergent to first-order optimal points, or at least to infeasible stationary points of
the feasibility measure

ϕ(x) , ‖c(x)‖2.

If f and c are first-order differentiable, we can define g(x) as the gradient of f(x) and
A(x) as the Jacobian of c(x) to state the first-order optimality conditions of problem
(1.1) as

∇L(x, λ) =
[
g(x) + A(x)T λ

c(x)

]
= 0, (1.2)

for some vector of Lagrange multipliers λ ∈ Rt. An infeasible stationary point of ϕ,
on the other hand, can be classified as one satisfying

‖c(x)‖2 > 0 and ∇ϕ(x) =
A(x)T c(x)
‖c(x)‖2 = 0. (1.3)

If possible, we would also like our method to emulate the fast local convergence
behavior of Newton’s method applied to the optimality conditions (1.2). With ci(x)
and λi denoting the ith constraint function and its corresponding dual variable, re-
spectively, we define

W (x, λ) , ∇2
xxL(x, λ) = ∇2

xxf(x) +
t∑

i=1

λi∇2
xxci(x)

as the Hessian of the Lagrangian at (x, λ). Then, a Newton iteration from an iterate
(xk, λk) has the form of a linear system of equations (e.g., see [15]):

[
W (xk, λk) A(xk)T

A(xk) 0

] [
dk

δk

]
= −

[
g(xk) + A(xk)T λk

c(xk)

]
. (1.4)

When W (xk, λk) is positive definite on the null space of A(xk), the primal step compo-
nent dk corresponds to the unique solution to the sequential quadratic programming
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(SQP) subproblem

min
d∈Rn

f(xk) + g(xk)T d + 1
2dT W (xk, λk)d

s.t. c(xk) + A(xk)dk = 0.
(1.5)

Unfortunately, without explicit representations of W (xk, λk) and A(xk), an exact
solution to (1.4) is not easily attained, and when W (xk, λk) is not positive definite over
the null space of A(xk) we may no longer characterize solutions to (1.4) as those of
(1.5). Moreover, many of the safeguards implemented in contemporary optimization
software to cope with this latter difficulty are again unavailable or impractical in a
matrix-free environment.

The algorithm in this paper overcomes these obstacles by extending the inexact
Newton algorithms developed by Byrd, Curtis, and Nocedal for convex problems in
[4] and for nonconvex problems in [3]. The defining characteristic of these approaches
is that the primal-dual step computation is performed via an iterative procedure
for solving the primal-dual equations (1.4), where inexact solutions are accepted or
rejected based on the reductions they produce in a local model of the penalty function

φ(x; π) , f(x) + π‖c(x)‖2.

Here, π > 0 is a penalty parameter that is updated automatically during the solution
process. The model about xk has the form

mk(d; π) , f(xk) + g(xk)T d + π‖c(xk) + A(xk)d‖2

and the reductions obtained can be computed easily for any trial step dk as

∆mk(dk; π) , mk(0; π)−mk(dk; π)

= −g(xk)T dk − π(‖c(xk)‖2 − ‖c(xk) + A(xk)dk‖2). (1.6)

If a sufficiently accurate solution to the system (1.4) yields a sufficiently large value for
∆mk(dk; πk) for an appropriate value of πk, then the (inexact) solution (dk, δk) to (1.4)
can be considered an acceptable search direction and the iterative step computation
can be terminated.

The main challenge in this work, to extend the methods in [3, 4], is that we do not
assume that the constraint Jacobians {Ak} have full row rank throughout the solution
process. We also guarantee that the algorithm remains well-defined when applied to
an instance of problem (1.1) that is locally infeasible. The approach is still centered
on the achievement of sufficient reductions in mk during each iteration, though we
can now no longer rely exclusively on the Newton equations (1.4), since this system
may be ill-conditioned or even inconsistent during a particular iteration.

The organization of this paper is as follows. In §2 we motivate and present our
matrix-free approach for equality constrained optimization. The global behavior of
the approach is the topic of §3. Results from some preliminary numerical experiments
are presented in §4, and concluding remarks are provided in §5.

Notation. All norms are considered Euclidean (or `2) unless otherwise indicated.
We drop functional notation and use subscripts to denote iteration information for
functions as with variables; i.e., Ak , A(xk) and similarly for other quantities. We
use the expression M1 Â M2 to indicate that the matrix M1−M2 is positive definite.



4 F. E. Curtis, J. Nocedal, and A. Wächter

2. A Matrix-free Primal-Dual Method. We begin our motivation for the
particulars of our approach by briefly summarizing the methodology developed in [3]
for nonconvex optimization. The central tenet of this approach is that a sufficiently
accurate solution (dk, δk) to the primal-dual equations (1.4) is an acceptable search
direction provided that the reduction obtained in the model mk satisfies

∆mk(dk; πk) ≥ max{1
2dT

k Wkdk, θ‖dk‖2}+ σπk max{‖ck‖, ‖ck + Akdk‖− ‖ck‖} (2.1)

for given constants 0 < σ < 1 and θ > 0 and an appropriate πk. (We have simplied
(2.1) slightly from [3] for ease of exposition.) If Wk is sufficiently positive definite and
a reduction in linear infeasibility of the constraints is obtained, then (2.1) simplifies
(the first terms in the max expressions dominate) and only requires that the reduction
in mk is sufficiently large with respect to the constraint feasibility measure and a
quadratic term corresponding to the objective. However, since Wk may not be positive
definite and an inexact solution may not yield a constraint reduction, the expression
has been reinforced so that the right-hand-side of (2.1) remains sufficiently positive
for each potential step dk. We may increase the penalty parameter πk in order to
satisfy (2.1) for a given dk, but only under certain conditions including, naturally, a
condition that a sufficiently large constraint model decrease has been attained.

If the singular values of {Ak} are bounded away from zero over all k, then the
procedure in [3] yields global convergence guarantees under common conditions. If
this is not the case, however, then such an approach needs to be reinforced to be
well-defined and to guarantee progress toward worthwhile regions of the search space.

We are now ready to describe our algorithm, which is composed of two main
stages. Let us briefly summarize the approach here before describing its details be-
low. First, a normal step is computed as a move toward the satisfaction of a linear
model of the constraint functions from the current iterate. The subproblem is formu-
lated within a trust region to implicitly regularize the model and ensure that the step
remains within a local region of the search space. Second, a tangential component
and a displacement for the Lagrange multipliers are computed via an adapted system
of primal-dual equations as moves toward optimality and dual feasibility, respectively.
The total step in the primal space is then the concatenation of the normal and tangen-
tial components. Under certain conditions, the full primal-dual step will correspond
to a good approximate solution of (1.4), and of the SQP subproblem (1.5) in convex
regions. Otherwise, the safeguards embedded in the step computation will at least
provide a sufficient reduction in mk in a manner similar to the steps computed in the
algorithms in [3, 4], or will yield progress in attaining dual feasibility.

We begin with the computation of a normal step component. Here, we consider
the trust region subproblem

min
v∈Rn

1
2‖ck + Akv‖2

s.t. ‖v‖ ≤ ω‖AT
k ck‖

(2.2)

for a given constant ω > 0. An efficient method for computing an approximate
solution to this problem in our context of matrix-free optimization is the conjugate
gradient (CG) method with Steihaug stop tests; see §4 and [24] for more information.
In general, however, we simply assume that vk lies in the range space of AT

k and that
the usual Cauchy decrease condition

‖ck‖ − ‖ck + Akvk‖ ≥ γ(‖ck‖ − ‖ck + αc
kAkvc

k‖) (2.3)
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holds for some γ ∈ (0, 1], where vc
k , −AT

k ck is the steepest descent direction for the
objective of problem (2.2) and αc

k solves

min
αc≥0

1
2‖ck + αcAkvc

k‖2

s.t. ‖αcAT
k ck‖ ≤ ω‖AT

k ck‖.
(2.4)

Since αc
k = 0 is a feasible solution to (2.4) it follows that

‖ck‖ − ‖ck + αc
kAkvc

k‖ ≥ 0, (2.5)

and it is clear that (2.3) is satisfied by an exact solution to problem (2.2).
Having computed a normal step vk, we modify the primal-dual system (1.4) to

[
Wk AT

k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

−Akvk

]
, (2.6)

so that with an exact solution to this system the tangential component

uk , dk − vk (2.7)

will lie in the null space of Ak (i.e., an exact solution will yield Akuk = 0) and the
reduction obtained by dk in the linear model of the constraints will be equivalent to
that obtained by vk. If Wk is positive definite in the null space of Ak, then an exact
solution of (2.6) yields a solution to a perturbed version of the SQP subproblem (1.5);
namely, dk and uk solve

{
min
d∈Rn

gT
k d + 1

2dT Wkd

s.t. Akd = Akvk

}
and

{
min
u∈Rn

(gk + Wkvk)T u + 1
2uT Wku

s.t. Akuk = 0

}
, (2.8)

respectively.
In an inexact environment, an iterative procedure is employed to solve (2.6),

which during each iteration yields (dk, δk) corresponding to the residual vector
[
ρk

rk

]
,

[
Wk AT

k

Ak 0

] [
dk

δk

]
+

[
gk + AT

k λk

−Akvk

]
. (2.9)

For each trial search direction (dk, δk) with (ρk, rk) 6= 0, we cannot be sure that uk

lies in the null space of the constraint Jacobian Ak or that it sufficiently approximates
a solution to problem (2.8). We are thus confronted with the challenge of determining
appropriate conditions that can be used to detect when a given inexact solution is an
acceptable search direction.

We begin to state our conditions for these purposes by describing some necessary
characteristics of the tangential component uk of the primal step dk.

Tangential component condition. A component uk must satisfy

‖uk‖ ≤ ψ‖vk‖ (2.10)

or

1
2uT

k Wkuk ≥ θ‖uk‖2 (2.11a)

and (gk + Wkvk)T uk + 1
2uT

k Wkuk ≤ ζ‖vk‖, (2.11b)
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where θ > 0 and ψ, ζ ≥ 0 are given constants.

The primary purpose of the tangential component condition (2.10)/(2.11) is to exert
sufficient control on the norm or on the optimality properties (with respect to (2.8)) of
the tangential component uk. Equation (2.10) states that the step may be acceptable
provided that it is contained in a region proportional in size to the length of the
normal component vk. Alternatively, the tangential component may be acceptable
provided it yields a low enough objective value to problem (2.8). Since uk = 0 is
feasible to problem (2.8), the optimal objective value is at most zero, and we note
that if Wk Â 2θI, then only (2.11b) need be enforced.

We also enforce the following condition for each nonzero step in the primal space,
which can be seen as an adapted version of (2.1).

Model reduction condition. A step (dk, δk) with dk 6= 0 must satisfy

∆mk(dk; πk) ≥ max{1
2uT

k Wkuk, θ‖uk‖2}+ σπk(‖ck‖ − ‖ck + Akvk‖) (2.12)

for some 0 < σ < 1, πk > 0, and θ defined in the tangential component condition.

There are two important differences between the model reduction condition (2.12)
and (2.1). First, we replace dk with uk in the first term on the right-hand-side. In
fact, the algorithm in [3] may benefit by this replacement, but in that method an
explicit tangential component is not computed. Second, the fact that we compute the
step components vk and uk explicitly and the fact that vk satisfies (2.3) allow us to
simplify the last term on the right-hand-side related to the deviation from linearized
feasibility.

We are now ready to define three termination tests for an iterative solver applied
to the primal-dual system (2.6). Once one of these tests is satisfied, we may terminate
the linear solver as we have computed an acceptable search direction. We refer to these
tests as sufficient merit function approximation reduction termination tests (SMART
tests for short) as in [3, 4]. Each requires that the tangential component condition
(2.10) or (2.11) is satisfied, ensures that the model reduction condition (2.12) is satis-
fied for an appropriate value of the penalty parameter π or that an appropriate step
in the dual space is obtained, and poses appropriate bounds on the residual vectors
ρk and rk. Motivation for most of the quantities expressed in these tests can be found
in [3, 4].

The first two termination tests enforce the following requirement on the residual
vector:

‖ρk‖ ≤ κ min
{∥∥∥∥

[
gk + AT

k λk

Akvk

]∥∥∥∥ ,

∥∥∥∥
[
gk−1 + AT

k−1λk

Ak−1vk−1

]∥∥∥∥
}

, (2.13)

for some κ ∈ (0, 1). The inequality (2.13) is similar to bounds commonly found in
inexact Newton techniques, with two notable differences. First, we disregard the resid-
ual rk as this quantity is controlled implicitly by the tangential component condition,
even though in practical implementations explicit control of rk may be beneficial to
promote fast local convergence. Second, the second term in the min expression on the
right-hand-side is necessary for ensuring the limits (3.8) and (3.10) corresponding to
convergence toward dual feasibility (see Lemma 3.19).

In addition to enforcing (2.13), steps satisfying the first test termination corre-
spond to a productive step in the primal space for the most recent value of the penalty
parameter.
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Termination test 1. A search direction (dk, δk) is acceptable if the tangential
component condition (2.10) or (2.11) is satisfied, the model reduction condition (2.12)
is satisfied for a given 0 < σ < 1 and πk = πk−1, and if for κ = κa ∈ (0, 1) the residual
bound (2.13) holds.

As steps satisfying this test satisfy the model reduction condition (2.12) for the most
recent value of the penalty parameter, we maintain πk ← πk−1 during any iteration
k when this test is satisfied.

Steps satisfying the second termination test correspond to productive perturba-
tions in the Lagrange multiplier estimates. Inclusion of this test is necessary for the
particular cases when xk is a feasible and optimal solution to problem (1.1), or is
an infeasible stationary point to the feasibility measure ϕ, but gk + AT

k λk 6= 0, as
in these situations we may otherwise require an exact (or near exact) solution to
the primal-dual system (2.6) to produce an acceptable step. The test may also save
computational expenses when xk is in the neighborhood of such points.

Termination test 2. If for a given constant εb > 0 we have

‖AT
k ck‖ ≤ εb‖gk + AT

k λk‖, (2.14)

then a step (dk, δk) ← (0, δk) is acceptable if for κ = κb ∈ (0, 1) the residual bound
(2.13) holds; i.e.,

∥∥gk + AT
k (λk + δk)

∥∥ ≤ κb min
{∥∥gk + AT

k λk

∥∥ ,

∥∥∥∥
[
gk−1 + AT

k−1λk

Ak−1vk−1

]∥∥∥∥
}

. (2.15)

We restrict consideration of this test to iterations where (2.14) is satisfied so that
the algorithm does not only reduce dual infeasibility. Moreover, it is important to
note that for accepted steps satisfying only this test we maintain πk ← πk−1 and set
xk+1 ← xk (i.e., we reset vk ← 0 and uk ← 0 to get dk ← 0), while only perturbing
the multiplier estimates.

The last termination test corresponds to a sufficient reduction in the linear model
of constraint infeasibility and enforces appropriate conditions under which we may
consider an increase in the penalty parameter value. For this test to be considered
during iteration k, we require that ‖ck‖ − ‖ck + Akvk‖ > 0.

Termination test 3. A step (dk, δk) is acceptable if the tangential component
condition (2.10) or (2.11) is satisfied and if for given constants 0 < ε < 1 and β > 0
we have

‖ck‖ − ‖ck + Akdk‖ ≥ ε(‖ck‖ − ‖ck + Akvk‖) > 0, (2.16a)
and ‖ρk‖ ≤ β(‖ck‖ − ‖ck + Akvk‖). (2.16b)

Notice that (2.16a) requires the reduction in the constraint model to be at least a
proportion of that obtained by vk itself, but no more (since no more can be expected
based on the form of (2.6)). For steps satisfying termination test 3, we set

πk ≥
gT

k dk + max{1
2uT

k Wkuk, θ‖uk‖2}
(1− τ)(‖ck‖ − ‖ck + Akdk‖) , πtrial

k , (2.17)
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which implies (see (1.6))

∆mk(dk; πk) ≥ max{1
2uT

k Wkuk, θ‖uk‖2}+ τπk(‖ck‖ − ‖ck + Akdk‖)
≥ max{1

2uT
k Wkuk, θ‖uk‖2}+ τεπk(‖ck‖ − ‖ck + Akvk‖)

and so the model reduction condition (2.12) is satisfied for σ = τε. From now on we
assume the constants τ , σ, and ε are chosen to satisfy this relationship for consistency
between termination tests 1 and 3.

Now, as in [3], we note that the (approximate) Hessian of the Lagrangian Wk

may need to be modified during the solution process if the problem is not strictly
convex. During the step computation, we call for such a modification according to
the following rule.

Hessian modification strategy. Let Wk be the current Hessian approxima-
tion and let a trial step (dk, δk) be given. If dk does not satisfy (2.10) or (2.11a), then
modify Wk; otherwise, maintain the current Wk.

For the algorithm to be well-posed, we assume that after a finite number of modi-
fications the matrix Wk has Wk Â 2θI for the constant θ defined in the tangential
component condition.

Finally, once an acceptable step has been computed, we perform a backtracking
line search on the penalty function φ(x;πk). As shown in Lemma 3.9 below, the
expression −∆mk(dk; πk) is an upper bound for the directional derivative of φ(x; πk)
along dk from xk. Since this latter quantity, denoted as Dφ(dk;πk), is not easily
computed, we choose αk such that the Armijo condition

φ(xk + αkdk; πk) ≤ φ(xk; πk)− ηαk∆mk(dk;πk) (2.18)

holds for a given η ∈ (0, 1). For the step δk in the dual space we compute a steplength
coefficient αλ

k so that λk+1 = λk + αλ
kδk satisfies

‖gk + AT
k λk+1‖ ≤ ‖gk + AT

k (λk + δk)‖, (2.19)

which can be done, for example, by solving

min
α∈[0,1]

1
2‖gk + AT

k (λk + αδk)‖2,

as is done in our implementation described in §4.
The complete algorithm is the following.

Algorithm TRINS: Trust Region Inexact Newton with SMART Tests
Choose parameters 0 < κa, κb, ε, τ, η < 1 and 0 < ω,ψ, θ, ζ, εb, β, δπ, and set σ ← τε
Initialize x0, λ0, and π−1 > 0, and define v−1 ← 0, g−1 ← g0, and A−1 ← A0

for k = 0, 1, 2, . . . , until a termination test for (1.1) is satisfied
Compute fk, gk, ck, Ak, and Wk and initialize πk ← πk−1

Compute vk ∈ range(AT
k ) as an approximate solution to (2.2) satisfying (2.3)

Compute an approximate solution (dk, δk) to (2.6)
repeat

Set uk ← dk − vk

if (dk, δk) satisfies termination test 1 or 3, then break
if (dk, δk) satisfies termination test 2, then set dk ← 0 and break
Run the Hessian modification strategy to update Wk



A Matrix-free Algorithm for Equality Constrained Optimization 9

Compute an approximate solution (dk, δk) to (2.6) with the current Wk

endrepeat
if termination test 3 is satisfied and (2.17) does not hold, set πk ← πtrial

k + δπ

if dk 6= 0, compute the smallest l ∈ {0, 1, 2, . . .} so that αk = 2−l satisfies (2.18)
else set αk ← 1

Choose αλ
k yielding (2.19)

Set xk+1 ← xk + αkdk and λk+1 ← λk + αλ
kδk

endfor

A description of a particular implementation of Algorithm TRINS is given in §4. We
also provide guidelines for the selection of the many input parameters required by the
algorithm.

3. Algorithm Analysis. In this section we analyze the global behavior of Al-
gorithm TRINS in the following setting.

Assumption 3.1. The sequence {xk, λk} generated by Algorithm TRINS is con-
tained in a convex set over which the functions f and c and their first derivatives are
bounded. Moreover, the sequence {Wk} is bounded over all k and the iterative linear
system solver can solve (2.6) to an arbitrary accuracy for each original and modified
Wk produced in the algorithm.

We overload Wk to refer to the initial Hessian matrix used in iteration k and all
subsequent perturbations formed via the Hessian modification strategy. For much
of this section, however, Wk refers exclusively to the value for this matrix used to
compute an acceptable step; i.e., the value for Wk computed after all modifications
via the Hessian modification strategy have been performed.

There are a number of iterative linear solvers that have the properties required in
Assumption 3.1 when the primal-dual system (2.6) is consistent, even if the primal-
dual matrix is singular; see §4 and §5 for further discussion. Moreover, due to the
structure of (2.6), inconsistency can only be caused by singularity of Wk. In such
cases, the iterative solver will not converge, but further modifications of Wk as in the
Hessian modification strategy will eventually produce a consistent system.

For convenience, we define the index sets T1, T2, and T3 to denote iterations where
termination test 1, 2, and 3 are satisfied, respectively.

3.1. Well-posedness of Algorithm TRINS. Before analyzing the global behav-
ior of our approach, it is important to verify that each iteration of Algorithm TRINS
is well-defined under Assumption 3.1. If at iteration k we have

AT
k−1ck−1 = 0 and gk−1 + AT

k−1λk = 0, or (3.1a)

AT
k ck = 0 and gk + AT

k λk = 0, (3.1b)

then we assume that the algorithm terminates finitely and returns (xk−1, λk) or
(xk, λk), respectively. In such cases, the algorithm has arrived at a first-order op-
timal point (see (1.2)) or at least a stationary point of the feasibility measure ϕ (see
(1.3)). The following lemma formalizes our discussion dealing of the remaining cases;
i.e., iterations where neither (3.1a) nor (3.1b) hold.

Lemma 3.2. If at iteration k neither (3.1a) nor (3.1b) holds, then the repeat
loop of Algorithm TRINS is finite.

Proof. Let j denote the iteration counter for the repeat loop of Algorithm TRINS;
i.e., (dj

k, δj
k), j = 1, 2, . . . denote the trial steps generated during iteration k. By our
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assumption that after a finite number of Hessian modifications we have Wk Â 2θI,
there exists an iteration j′ such that Wk = W j′

k for all j ≥ j′. That is, for all j ≥ j′

either (2.10) or (2.11a) holds, which means

‖uj
k‖ ≤ ψ‖vk‖ or (3.2a)

1
2 (uj

k)T Wkuj
k ≥ θ‖uj

k‖2. (3.2b)

Further, under Assumption 3.1 we have

(ρj
k, rj

k) → 0. (3.3)

We consider a series of cases and show that in each either termination test 1, 2, or 3
is satisfied for j sufficiently large.

We begin by showing that the tangential component condition is satisfied for all
large j. First, if (3.2a) (or, equivalently, (2.10)) is satisfied for all large j, then the
tangential component condition is satisfied for all large j. Otherwise, there is an
infinite subsequence defined by j ∈ J having

‖uj
k‖ > ψ‖vk‖, (3.4)

where with (3.2) we have that the inequality (3.2b) holds for all large j ∈ J . Let Ãk

be the matrix obtained by removing all linearly dependent rows in Ak, and denote
by r̃j

k the subvector of rj
k with the corresponding entries removed. Since Ãk has the

same range space as Ak, there exists δ̃j
k for all j with

ÃT
k δ̃j

k = AT
k δj

k = −gk −AT
k λk −Wk(vk + uj

k) + ρj
k.

Thus, for some γa, γb > 0, we have

δ̃j
k =

[
ÃkÃT

k

]−1

Ãk

(
−gk −AT

k λk −Wk(vk + uj
k) + ρj

k

)
≤ γa + γb‖uj

k‖

for all large j ∈ J , and with (3.2b) we find

(gk + Wkvk)T uj
k + 1

2 (uj
k)T Wkuj

k

= − 1
2 (uj

k)T Wkuj
k − λT

k Akuj
k − (δ̃j

k)T Ãkuj
k + (ρj

k)T uj
k

= − 1
2 (uj

k)T Wkuj
k − λT

k rj
k − (δ̃j

k)T r̃j
k + (ρj

k)T uj
k

≤ −θ‖uj
k‖2 + ‖λk‖‖rj

k‖+ (γa + γb‖uj
k‖)‖r̃j

k‖+ ‖ρj
k‖‖uj

k‖. (3.5)

Let us view the right-hand-sides of (3.5) for j ∈ J as a sequence of concave quadratic
functions of ‖uj

k‖. Each function in this sequence has the form

hj(y) = −ay2 + bjy + cj (3.6)

with a > 0 and limk→∞{bj , cj} = 0, and has the maximizer bj/2a, which converges
to zero as j → ∞. Thus, for all large j ∈ J , the supremum of hj(y) subject to the
constraint (3.4) occurs at y∗ = ψ‖vk‖ and yields the value

hj(y∗) = −aψ2‖vk‖2 + bjψ‖vk‖+ cj < 0.

Applying this strict inequality to (3.5), we have shown that (2.11) holds for all large
j ∈ J . Thus, the tangential component condition is satisfied for all large j.
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Next we consider the cases ‖AT
k ck‖ > 0 and ‖AT

k ck‖ = 0 and show that in each
case the remaining conditions of termination test 1, 2, or 3 will eventually be satisfied.
First, if ‖Akck‖ > 0, then ‖ck‖ − ‖ck + Akvk‖ > 0 and ‖vk‖ > 0 by (2.3) and (2.4).
Therefore, the right-hand-side of (2.16b) is positive and it follows from (3.3) that
(2.16b) is satisfied for all large j. Similarly, by (2.7), (2.9), and (3.3),

‖ck‖ − ‖ck + Akdj
k‖

‖ck‖ − ‖ck + Akvk‖ ≥
‖ck‖ − ‖ck + Akvk‖ − ‖Akuj

k‖
‖ck‖ − ‖ck + Akvk‖

= 1− ‖rj
k‖

‖ck‖ − ‖ck + Akvk‖ ≥ ε

for all large j, where ε < 1 in (2.16a). Thus, (2.16a) holds for all large j, and so all
together we have shown that termination test 3 is eventually satisfied.

Now suppose ‖AT
k ck‖ = 0, which implies that vk = 0 by the formulation of

problem (2.2) and that ‖gk + AT
k λk‖ 6= 0 since (3.1b) does not hold. By (2.9) we

then have ‖gk + AT
k (λk + δj

k)‖ = ‖ρj
k −Wkuj

k‖. If lim inf ‖uj
k‖ = 0, then by (3.3) this

quantity is arbitrarily small for large j. This, along with the fact that the right-hand-
side of (2.15) is nonzero as (3.1a) does not hold, implies that termination test 2 will
eventually be satisfied. On the other hand, if ‖uj

k‖ ≥ γc for some γc > 0 for all large
j, then (3.2a) does not hold for all large j as vk = 0. Therefore, (3.2b) holds for all
large j and as before with the tangential component condition, we now find for the
model reduction condition that for vk = 0 with πk = πk−1 we have

−∆mk(dj
k;πk) + max{ 1

2 (uj
k)T Wkuj

k, θ‖uj
k‖2}+ σπk(‖ck‖ − ‖ck + Akvk‖)

= gT
k dj

k + max{1
2 (uj

k)T Wkuj
k, θ‖uj

k‖2}+ πk(‖ck‖ − ‖ck + Akdj
k‖)

= gT
k uj

k + 1
2 (uj

k)T Wkuj
k + πk(‖ck‖ − ‖ck + rj

k‖)
≤ −θ‖uj

k‖2 + ‖λk‖‖rj
k‖+ (γa + γb‖uj

k‖)‖r̃j
k‖+ ‖ρj

k‖‖uj
k‖+ πk‖rj

k‖. (3.7)

The right-hand-side of (3.7) differs from that of (3.5) only in the term πk‖rj
k‖. There-

fore, the right-hand-side of (3.7) can also be viewed as a concave quadratic function
of the form (3.6), and as argued above it is negative for all large j, which means that
the model reduction condition (2.12) is satisfied for all large j. Finally, by (3.3) and
the fact that the right-hand-side of (2.13) is positive, the inequality (2.13) is satisfied
for all large j, which implies that termination test 1 is eventually satisfied.

We have thus shown that the iterative solution of the primal-dual equations (2.6)
will produce a step (dk, δk) satisfying termination test 1, 2, or 3.

Finally, we argue that the backtracking line search in Algorithm TRINS is guar-
anteed to produce an acceptable steplength coefficient αk. By properties of the di-
rectional derivative Dφ(dk; πk), it is clear that there exists an ᾱk > 0 such that the
Armijo condition (2.18) with −∆mk(dk;πk) replaced by Dφ(dk; πk) is satisfied for all
αk ∈ [0, ᾱk]. Thus, since Dφ(dk; πk) ≤ −∆mk(dk; πk) (see Lemma 3.8), the original
condition (2.18) is also satisfied for all such αk.

3.2. Global Convergence Analysis. The theorem we prove is the following.
Theorem 3.3. If all limit points of {Ak} have full row rank, then {πk} is bounded

and

lim
k→∞

∥∥∥∥
[
gk + AT

k λk+1

ck

]∥∥∥∥ = 0. (3.8)
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Otherwise,

lim
k→∞

‖AT
k ck‖ = 0, (3.9)

and if {πk} is bounded then

lim
k→∞

‖gk + AT
k λk+1‖ = 0. (3.10)

We prove Theorem 3.3 with a series of observations and lemmas.
This first result, related to a one-dimensional problem, will be useful for providing

a tight bound on the reduction obtained in the constraint model by the normal step
vk. Its proof can be found in [5].

Lemma 3.4. The optimal value Φ∗ of the one-dimensional optimization problem

min
z∈R

Φ(z) , 1
2z2a− zb

s.t. z ≤ Ω,

where b ≥ 0 and Ω > 0, satisfies

Φ∗ ≤ − b
2 min

{
b
|a| ,Ω

}
.

Applying this result to problem (2.2) helps yield the following result.
Lemma 3.5. There exists γ1 > 0 such that, for all k /∈ T2,

‖ck‖ − ‖ck + Akvk‖ ≥ γ1
‖AT

k ck‖2
‖ck‖ min

{
1

‖AT
k Ak‖

, ω

}
, Ck. (3.11)

Proof. Inequality (3.11) clearly holds when ‖AT
k ck‖ = 0 since then Ck = 0 and

the left-hand-side is nonnegative by (2.3) and (2.5). Thus, let us now assume that
‖AT

k ck‖ 6= 0.
According to problem (2.4), the quantity αc

k solves

min
αc≥0

1
2 (αc)2 ‖AkAT

k ck‖2 − αc‖AT
k ck‖2

s.t. αc ≤ ω.

Applying Lemma 3.4 yields

1
2

(‖ck + αc
kAkvc

k‖2 − ‖ck‖2
)

= 1
2 (αc)2 ‖AkAT

k ck‖2 − αc‖AT
k ck‖2

≤ −1
2
‖AT

k ck‖2 min
{ ‖AT

k ck‖2
‖AkAT

k ck‖2
, ω

}

≤ −1
2
‖AT

k ck‖2 min
{

1
‖AT

k Ak‖
, ω

}
.

Thus, since vk satisfies the Cauchy decrease condition (2.3), we find with the relation
2a(a− b) ≥ a2 − b2 that

‖ck‖(‖ck‖ − ‖ck + Akvk‖) ≥ γ‖ck‖(‖ck‖ − ‖ck + αc
kAkvc

k‖)
≥ 1

2γ(‖ck‖2 − ‖ck + αc
kAkvc

k‖2)

≥ 1
2
γ‖AT

k ck‖2 min
{

1
‖AT

k Ak‖
, ω

}
,
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which proves (3.11) since ‖ck‖ 6= 0, as we are considering the case ‖AT
k ck‖ 6= 0.

We can now present the following result that creates an envelope around the norm
of the normal component vk.

Lemma 3.6. There exists γ2 > 0 such that, for all k /∈ T2, we have

γ2‖AT
k ck‖2 ≤ ‖vk‖ ≤ ω‖AT

k ck‖, (3.12)

and hence vk is bounded in norm over all k.
Proof. The inequality on the right-hand-side of (3.12) follows from the formulation

of problem (2.2). Thus, vk is bounded in norm over all k since, under Assumption 3.1,
the quantity ‖AT

k ck‖ is bounded. The first inequality of (3.12) follows first from the
triangle inequality, which yields

‖ck‖ − ‖ck + Akvk‖ ≤ ‖Akvk‖ ≤ ‖Ak‖‖vk‖.

If ‖Ak‖ = 0, then (3.12) follows trivially. Otherwise, the above and (3.11) yield

‖vk‖ ≥ ‖ck‖ − ‖ck + Akvk‖
‖Ak‖ ≥ γ1

‖AT
k ck‖2

‖Ak‖‖ck‖ min
{

1
‖AT

k Ak‖
, ω

}
,

and so (3.12) follows from the fact that, under Assumption 3.1, ‖Ak‖, ‖ck‖, and
‖AT

k Ak‖ are bounded over all k.
This last result and the tangential component condition can now be used to bound

the tangential components in norm.
Lemma 3.7. The tangential components uk are bounded in norm over all k.
Proof. First, if k ∈ T2, then uk = 0, and if (2.10) is satisfied, then uk is bounded

by Lemma 3.6. The remaining case is when (2.11) is satisfied, which implies

(gk + Wkvk)T uk + 1
2uT

k Wkuk ≤ ζ‖vk‖,

and by (2.11a) we then have

θ‖uk‖2 − ‖uk‖‖gk + Wkvk‖ − ζ‖vk‖ ≤ 0.

The expression on the left-hand-side of this inequality is a convex quadratic function
in ‖uk‖, and so the result follows from the fact that under Assumption 3.1 and by
Lemma 3.6, all of the coefficients of this quadratic are bounded.

We have thus shown that the entire primal step dk is bounded in norm over all k.
Next, we turn to a series of results related to the model reduction condition and

its connection to the directional derivative of the penalty function φ. The proof of
this first result can be found in [4].

Lemma 3.8. The directional derivative of the penalty function satisfies

Dφ(d; π) ≤ gT d− π(‖c‖ − ‖c + Ad‖) = −∆m(d;π).

By applying the results above, this last lemma can be used to provide a more
explicit bound for Dφ(dk;πk).

Lemma 3.9. There exists γ3 > 0 such that, for all k /∈ T2, we have

∆mk(dk; πk) ≥ γ3

(‖uk‖2 + πk‖AT
k ck‖2

)
.
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Proof. First note that, for all k, there exists γ4 > 0 such that

‖AT
k ck‖2 =


 ‖ck‖

γ1 min
{

1
‖AT

k Ak‖ , ω
}


 Ck

=
‖ck‖
γ1

max
{
‖AT

k Ak‖, 1
ω

}
Ck

≤ γ4Ck,

since ‖ck‖ and ‖AT
k Ak‖ are bounded under Assumption 3.1. Then, for k /∈ T2, the

model reduction condition (2.12) yields

∆mk(dk; πk) ≥ max{ 1
2uT

k Wkuk, θ‖uk‖2}+ σπk(‖ck‖ − ‖ck + Akvk‖)
≥ θ‖uk‖2 + σπk(‖ck‖ − ‖ck + Akvk‖)

and so by Lemma 3.5 we have

∆mk(dk;πk) ≥ θ‖uk‖2 + σπkCk

≥ θ‖uk‖2 + 1
γ4

σπk‖AT
k ck‖2.

Thus, the result holds for γ3 = min{θ, 1
γ4

σ} > 0.
The length of the total primal step dk can be bounded above by a similar quantity.
Lemma 3.10. There exists γ5 > 0 such that, for all k, we have

‖dk‖2 ≤ γ5

(‖uk‖2 + max{1, πk}‖AT
k ck‖2

)
, (3.13)

and hence

‖dk‖2 + ‖AT
k ck‖2 ≤ 2γ5

(‖uk‖2 + max{1, πk}‖AT
k ck‖2

)
. (3.14)

Proof. From (2.7) and (3.12) it follows that

‖dk‖2 = ‖uk‖2 + 2uT
k vk + ‖vk‖2

≤ 2
(‖uk‖2 + ‖vk‖2

)

≤ 2
(‖uk‖2 + ω2‖AT

k ck‖2
)
,

so (3.13) holds for γ5 = 2max{1, ω2}. The inequality (3.14) follows trivially from
(3.13).

We are now ready to prove the limit (3.9). Here, it will be convenient to work
with the scaled and shifted penalty function

φ̃(x; π) , 1
π (f(x)− fmin) + ‖c(x)‖, (3.15)

where fmin is the infimum of f over the convex set containing the iterates of the
algorithm. This function has an interesting property that we first describe with the
following lemma.

Lemma 3.11. For all k,

φ̃(xk+1; πk+1) ≤ φ̃(xk;πk)− 1
πk

ηαk∆mk(dk;πk),

and so φ̃ is monotonically decreasing.
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Proof. First, if k ∈ T2, then dk = 0, ∆mk(dk;πk) = 0, and φ̃(xk+1; πk+1) =
φ̃(xk; πk), and so the result follows trivially. Otherwise, by (2.18) it follows that

φ̃(xk+1;πk) ≤ φ̃(xk; πk)− 1
πk

ηαk∆mk(dk; πk),

and so

φ̃(xk+1; πk+1) ≤ φ̃(xk;πk)+
(

1
πk+1

− 1
πk

)
(fk+1 − fmin)− 1

πk
ηαk∆mk(dk; πk). (3.16)

The fact that πk is monotonically increasing, the nonnegativity of (fk+1 − fmin), and
Lemma 3.9 then yields the result.

The limit (3.9) now follows from the above results.
Lemma 3.12. The sequence {xk} yields the limit (3.9).
Proof. Consider an arbitrary value γ6 > 0 and define the set

S = {x : γ6 ≤ ‖A(x)T c(x)‖}.

Suppose that there exists k′ ≥ 0 such that xk′ ∈ S and for all k ≥ k′ we have
k ∈ T2. Then, xk = xk′ for all k ≥ k′ and (2.15) and (2.19) yield

‖gk+1 + AT
k+1λk+1‖ ≤ ‖gk + AT

k (λk + δk) ‖ ≤ κb‖gk + AT
k λk‖.

Hence, ‖gk + AT
k λk‖ → 0 as κb < 1. On the other hand, by the conditions of

termination test 2 and the fact that xk′ ∈ S we have

0 < γ6 ≤ ‖AT
k′ck′‖ = ‖AT

k ck‖ ≤ ελ‖gk + AT
k λk‖.

This contradiction shows that if xk ∈ S, then there exists k′′ ≥ k such that xk′′ ∈ S
and k′′ /∈ T2.

Now consider xk ∈ S with k /∈ T2. Then, Lemma 3.6 yields

‖vk‖ ≥ γ2‖AT
k ck‖2 ≥ γ2γ

2
6 .

Similarly, by Lemma 3.7 we may define

uS
sup , sup{‖ul‖ : xl ∈ S} < ∞,

where it follows that

‖uk‖ ≤
(
uS

sup/(γ2γ
2
6)

) ‖vk‖. (3.17)

By Lemmas 3.6 and 3.9, there then exists a constant γ7 > 0 such that

∆mk(dk; πk) ≥ γ3πk‖AT
k ck‖2

≥ γ3πk
1
ω2
‖vk‖2

≥ γ7πk‖dk‖2. (3.18)

Next, we note that if the line search condition (2.18) does not hold for some ᾱ > 0
during iteration k, then

φ(xk + ᾱdk;πk)− φ(xk;πk) > −ηᾱ∆mk(dk; πk). (3.19)
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However, with Lemma 3.8, a Taylor expansion of φ(x;πk) at xk along dk yields for
some γ8 > 0 independent of xk

φ(xk + ᾱdk;πk)− φ(xk; πk) ≤ ᾱDφ(dk; πk) + γ8ᾱ
2πk‖dk‖2

≤ −ᾱ∆mk(dk; πk) + γ8ᾱ
2πk‖dk‖2, (3.20)

and so with (3.19) we have

(1− η)∆mk(dk;πk) < γ8ᾱπk‖dk‖2. (3.21)

From (3.18) we then find

(1− η)γ7πk‖dk‖2 < γ8ᾱπk‖dk‖2,

which implies αk ≥ αS
min , (1 − η)γ7/(2γ8). Thus, along with Lemma 3.9 and

Lemma 3.11, we have

φ̃(xk+1;πk+1) ≤ φ̃(xk; πk)− 1
πk

ηαk∆mk(dk; πk)

≤ φ̃(xk; πk)− ηαS
minγ3‖AT

k ck‖2
≤ φ̃(xk; πk)− 1

4ηαS
minγ3γ

2
6 . (3.22)

We can now prove the result by showing that there can only be a finite number of
iterates with xk ∈ S. For the purpose of deriving a contradiction, suppose there is an
infinite number of iterations with xk ∈ S. In this case, we have shown that there are
an infinite number of iterations with xk ∈ S and k /∈ T2 during which (3.22) implies
a reduction in φ̃ by a constant amount. This contradicts the fact that φ̃ is bounded
below under Assumption 3.1, and so there can only be a finite number of iterates with
xk ∈ S. Therefore, since γ6 was chosen arbitrarily, this implies (3.9).

We have the following corollary when this result is combined with Lemma 3.6.
Corollary 3.13. Algorithm TRINS yields

lim
k→∞

‖vk‖ = 0.

We now begin our analysis for particular cases when all limit points of the sequence
{Ak} produced by Algorithm TRINS have full row rank. That is, we now focus on cases
where the singular values of the constraint Jacobians {Ak} remain bounded below and
away from zero for all k sufficiently large. We prove that the penalty parameter will
remain bounded in such situations and that the sequence {xk, λk} will satisfy the
limit (3.8).

We begin this analysis by providing a second corollary to Lemma 3.12.
Corollary 3.14. Suppose that there exists kA ≥ 0 such that the smallest sin-

gular values of {Ak}k≥kA
are bounded below and away from zero. Then, Algorithm

TRINS yields

lim
k→∞

‖ck‖ = 0. (3.23)

Proof. As the singular values of {Ak}k≥kA
are bounded away from zero, there

exists γ9 > 0 such that

‖AT
k ck‖ ≥ γ9‖ck‖ (3.24)
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for all k ≥ kA. Thus, the result follows from Lemma 3.12.
We now show that the reductions attained in the linear model of the constraints

will eventually remain large in proportion to the norm of the normal component vk

over all iterations when the step satisfies termination test 3. This result is important
as the penalty parameter will be increased if and only if this test is satisfied.

Lemma 3.15. Suppose that there exists kA ≥ 0 such that the smallest singular
values of {Ak}k≥kA are bounded below and away from zero. Then, for all k ≥ kA such
that k ∈ T3, there exists γ10 > 0 such that

‖vk‖ ≤ γ10(‖ck‖ − ‖ck + Akdk‖). (3.25)

Proof. As the singular values of {Ak}k≥kA
are bounded away from zero, (3.24)

holds for all k ≥ kA. Then, from (3.11) and the fact that ‖AT
k Ak‖ is bounded above

under Assumption 3.1, we have that for some 0 < γ11 < 1

Ck = γ1
‖AT

k ck‖2
‖ck‖ min

{
1

‖AT
k Ak‖

, ω

}

≥ γ1γ
2
9‖ck‖min

{
1

‖AT
k Ak‖

, ω

}

≥ γ11‖ck‖. (3.26)

Since vk lies in the range space of AT
k , we may express vk = AT

k v̂k satisfying
AkAT

k v̂k = −ck + qk for some residual vector qk ∈ Rt. Since the singular values of
{Ak}k≥kA

are bounded away from zero we have for k ≥ kA that

v̂k = (AkAT
k )−1(−ck + qk).

Moreover, from (3.11) and (3.26), it follows that

‖qk‖ ≤ ‖ck‖ − Ck ≤ (1− γ11)‖ck‖.

Thus, by (2.16a), (3.11), and (3.26), we find

‖vk‖ ≤ ‖AT
k ‖‖v̂k‖

≤ ‖AT
k ‖‖(AkAT

k )−1‖(‖ck‖+ ‖qk‖)
≤ ‖AT

k ‖‖(AkAT
k )−1‖(2− γ11)‖ck‖

≤ ‖AT
k ‖‖(AkAT

k )−1‖ 1
γ11

(2− γ11)Ck

≤ ‖AT
k ‖‖(AkAT

k )−1‖ 1
γ11

(2− γ11)(‖ck‖ − ‖ck + Akvk‖)
≤ ‖AT

k ‖‖(AkAT
k )−1‖ 1

γ11ε (2− γ11)(‖ck‖ − ‖ck + Akdk‖),

so (3.25) holds for some γ10 > 0 since ‖AT
k ‖ is bounded under Assumption 3.1 and

‖(AkAT
k )−1‖ is bounded as the singular values of {Ak}k≥kA

are bounded below and
away from zero.

The sequence of penalty parameter values can now be bounded under the condi-
tions of Lemma 3.15.

Lemma 3.16. Suppose that there exists kA ≥ 0 such that the smallest singular
values of {Ak}k≥kA are bounded below and away from zero. Then, πk = π̄ for all
k ≥ k̄ for some k̄ ≥ kA and π̄ < ∞.
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Proof. We need only consider here iterations where k ∈ T3 since πk remains
unchanged otherwise. That is, we may assume the inequalities (2.16) and that the
tangential component condition (2.10) or (2.11) are satisfied. We show below that
there exists γ12 > 0 such that

gT
k dk + max{1

2uT
k Wkuk, θ‖uk‖2} ≤ γ12 (‖ck‖ − ‖ck + Akdk‖) , (3.27)

and so from (2.17) we have that {πtrial
k } is bounded. This, along with the fact that

when Algorithm TRINS increases π it does so by at least a positive finite amount,
proves the result.

To prove (3.27), we first consider the case where ‖uk‖ ≤ ψ‖vk‖, so

‖dk‖2 ≤ 2(‖uk‖2 + ‖vk‖2) ≤ 2(ψ2 + 1)‖vk‖2.
Then, by Lemma 3.15 and since ‖Wk‖ is bounded under Assumption 3.1, there exist
γ13, γ

′
13, γ

′′
13 > 0 such that

gT
k dk + max{1

2uT
k Wkuk, θ‖uk‖2} ≤ gT

k dk + γ13‖uk‖2
≤ ‖gk‖‖dk‖+ γ13ψ

2‖vk‖2

≤ ‖gk‖
√

2(ψ2 + 1)‖vk‖+ γ13ψ
2‖vk‖2

≤ γ′13‖vk‖
≤ γ′′13(‖ck‖ − ‖ck + Akdk‖).

Similarly, if ‖uk‖ > ψ‖vk‖, then by Assumption 3.1, Lemmas 3.7 and 3.15, and the
tangential component condition (2.11) there exist γ14, γ

′
14 > 0 such that

gT
k dk + max{ 1

2uT
k Wkuk, θ‖uk‖2} = gT

k vk + gT
k uk + 1

2uT
k Wkuk

≤ ‖gk‖‖vk‖ − vT
k Wkuk + ζ‖vk‖

≤ γ14‖vk‖
≤ γ′14(‖ck‖ − ‖ck + Akdk‖).

Thus, (3.27) follows with γ12 = max{γ′′13, γ′14}.
We have thus completed our presentation of results specifically for cases when all

limit points of {Ak} produced by Algorithm TRINS have full row rank. In contrast,
the next three lemmas simply require that the penalty parameter eventually remains
constant, which may occur in situations beyond these.

Lemma 3.17. If πk = π̄ for all k ≥ k̄ for some k̄ ≥ 0 and π̄ < ∞, then the
sequence {αk} is bounded below and away from zero.

Proof. First, if dk = 0, then αk = 1, so from now on we consider k /∈ T2.
As in the proof of Lemma 3.12 (see (3.19)-(3.21)), we have for k /∈ T2 that if

(2.18) fails for ᾱ > 0, then

(1− η)∆mk(dk;πk) < ᾱγ8πk‖dk‖2.
Lemma 3.9 and (3.13) then yield

(1− η)γ3

(‖uk‖2 + πk‖AT
k ck‖2

)
< ᾱγ5γ8πk

(‖uk‖2 + max{1, πk}‖AT
k ck‖2

)
,

so

ᾱ >
(1− η)γ3

(‖uk‖2 + πk‖AT
k ck‖2

)

γ5γ8πk

(‖uk‖2 + max{1, πk}‖AT
k ck‖2

) , αmin,
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where αmin > 0 is bounded away from zero for all k /∈ T2 as 0 < π−1 ≤ πk ≤ π̄. Thus,
if πk = π̄ for all k ≥ k̄ for some k̄ ≥ 0 and π̄ < ∞, then αk for k /∈ T2 need never be
set below αmin/2 for (2.18) to be satisfied.

We now show that the primal steps vanish in the limit under the same conditions.
Lemma 3.18. If πk = π̄ for all k ≥ k̄ for some k̄ ≥ 0 and π̄ < ∞, then

lim
k→∞

‖dk‖ = 0.

Proof. From Lemma 3.17, there exists γ15 > 0 such that

φ(xk; πk)− φ(xk + αkdk; πk) ≥ γ15∆mk(dk;πk)

for all k. Thus, for all k > k̄, Lemma 3.9 yields

φ(xk̄; π̄)− φ(xk; π̄) =
k−1∑

j=k̄

(φ(xj ; π̄)− φ(xj+1; π̄))

≥ γ15

k−1∑

j=k̄

∆mj(dj ; π̄)

≥ γ15γ3

k−1∑

j=k̄,j /∈T2

(‖uj‖2 + π̄‖AT
j cj‖2

)

Thus, since uk = 0 for k ∈ T2 and φ(x; π̄) is bounded below under Assumption 3.1,
we have

lim
k→∞

‖uk‖ = 0.

The result follows from this limit and Corollary 3.13.
The above results now allow us to show that in cases where the penalty parameter

eventually remains constant, dual feasibility is attained in the limit.
Lemma 3.19. If πk = π̄ for all k ≥ k̄ for some k̄ ≥ 0 and π̄ < ∞, then

lim
k→∞

‖gk + AT
k λk+1‖ = 0.

Proof. From (2.19) and the first block equation of (2.9), we find with κ′ =
max{κa, κb} ∈ (0, 1) that from Assumption 3.1, (2.13), (2.15), and (2.16) that there
exist γ16, γ

′
16 > 0 such that

‖gk + AT
k λk+1‖ ≤ ‖gk + AT

k (λk + δk)‖
= ‖ρk −Wkdk‖
≤ ‖ρk‖+ γ16‖dk‖

≤ max
{

κ′
∥∥∥∥
[
gk−1 + AT

k−1λk

Ak−1vk−1

]∥∥∥∥ , β(‖ck‖ − ‖ck + Akvk‖)
}

+ γ16‖dk‖

≤ κ′‖gk−1 + AT
k−1λk‖+ γ′16 max{‖vk−1‖, ‖vk‖, ‖dk‖}.

Consider an arbitrary γ17 > 0. Corollary 3.13 and Lemma 3.18 imply that there exists
k′ > 0 such that for all k ≥ k′ we have γ′16 max{‖vk−1‖, ‖vk‖, ‖dk‖} ≤ (1− κ′)γ17/2.
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Suppose k ≥ k′ and ‖gk−1 + AT
k−1λk‖ > γ17. Then the above yields

‖gk + AT
k λk+1‖ ≤ κ′‖gk−1 + AT

k−1λk‖+ 1−κ′
2 γ17

= ‖gk−1 + AT
k−1λk‖ − (1− κ′)‖gk−1 + AT

k−1λk‖+ 1−κ′
2 γ17

< ‖gk−1 + AT
k−1λk‖ − 1−κ′

2 γ17.

Therefore, {‖gk + AT
k λk+1‖} decreases monotonically by at least a constant amount

for k ≥ k′ while {‖gk + AT
k λk+1‖} > γ17, so we eventually find ‖gk + AT

k λk+1‖ ≤ γ17

for some k = k′′ > k′. Then, for k ≥ k′′ we find

‖gk + AT
k λk+1‖ ≤ κ′γ17 + 1−κ′

2 γ17 ≤ γ17

and so by induction ‖gk + AT
k λk+1‖ ≤ γ17 for all k ≥ k′′. Since γ17 > 0 was chosen

arbitrarily, the result follows.
We are now ready to prove the main result stated at the beginning of this section.
Proof. (Theorem 3.3) If all limit points of {Ak} have full row rank, then there ex-

ists kA ≥ 0 such that the smallest singular values of {Ak}k≥kA
are bounded below and

away from zero. By Lemma 3.16 we then have that the penalty parameter is constant
for all k sufficiently large, which means {πk} is bounded, and so by Corollary 3.14
and Lemma 3.19 we have the limit (3.8).

If a limit point of {Ak} does not have full row rank, then we have the limit (3.9) by
Lemma 3.12. Moreover, if {πk} is bounded, then the fact if Algorithm TRINS increases
πk is does so by at least a positive finite amount implies that the penalty parameter
is in fact constant for all k sufficiently large, which implies with Lemma 3.19 that we
have the limit (3.10).

4. An Implementation. Algorithm TRINS was implemented in Matlab for the
purposes of numerical experimentation. In this section we describe the particular
aspects of our code.

First, we present appropriate stopping conditions for the for loop of the algo-
rithm. We terminate if one of the following conditions is satisfied:

‖gk + AT
k λk‖∞

max{‖g0‖∞, 1} ≤ εdual and
‖ck‖∞

max{‖c0‖∞, 1} ≤ εprim, (4.1a)

‖gk + AT
k λk‖∞

max{‖g0‖∞, 1} ≤ εdual and
‖AT

k ck‖∞
max{‖Ak‖∞‖ck‖∞, 1} ≤ εinf,1, (4.1b)

π > πmax and
‖AT

k ck‖∞
max{‖Ak‖∞‖ck‖∞, 1} ≤ εinf,2, (4.1c)

or k > kmax, (4.1d)

where

εdual ← 10−6, εprim ← 10−6, εinf,1 ← 10−7,

εinf,2 ← 10−4, πmax ← 1010, and kmax ← 103.

If condition (4.1a) is satisfied, then we return that a feasible and optimal solution has
been found. Otherwise, if (4.1b) or (4.1c) is satisfied, then the problem is deemed
locally infeasible. We use εinf,2 > εinf,1 as the algorithm may become numerically
unstable as π becomes very large. Finally, if (4.1d) is satisfied, then we terminate due
to a limit on the number of outer iterations.
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Notice that the conditions in (4.1) may return a “false infeasible”, i.e., a message
that the problem is locally infeasible when further iterations may produce a sufficiently
feasible iterate. In practice one may, for example, utilize a smaller value for εinf,1

and/or a larger value for πmax to ensure that such a result is not returned, but in our
tests the ratio εprim/εinf,1 = 10 is justified by the fact that prior to the employment
of our approach we prescale the objective and constraint functions so that the first
derivative of each has a `∞-norm less than or equal to 10; see [26]. As a result, no
“false” declaration of infeasibility was reported in the tests described below.

In terms of the input parameters required in our approach, we direct the reader
to [3, 4] for general guidelines for the selection of these values. In particular, the
inexactness parameters κa, κb, εb, ε, and β are vitally important and should ideally
be tuned for each application. In our experiments here, they are simply set to default
values along with the parameters τ , η, and δπ. The parameter ψ should generally be
set to a positive value less than one as this quantity determines the maximum value
of ‖uk‖/‖vk‖ for which we consider the complete primal step dk to be sufficiently
normal. Here we set this value to 0.1. In our experiments we found the parameter
ζ to be inconsequential for our given values of the remaining parameters, so here we
pick ζ ← 0.1.

The parameter ω should be chosen to reflect the conditioning of the constraint
Jacobian during each iteration. Thus, one may set it as a constant, or one may consider
setting the value dynamically using traditional ideas from trust region methods, with
the added restriction that the value does not stray from a prescribed interval. To
emulate the latter approach in our code, we initialize ω0 ← 103 and update this value
at the end of iteration k according to the rule

ωk+1 ←
{

min{2ωk, 1020} if ‖vk‖ = ωk‖AT
k ck‖ and αk = 1

ωk otherwise.

Finally, we set θ ← 10−12 as a relatively low tolerance for the curvature condition
(2.11a) to avoid unnecessary modifications of the Hessian close to a solution that
might interfere with fast local convergence.

A complete listing of all the parameters used in our code is given in Table 4.1.

Parameter Value Parameter Value
κa 10−4 θ 10−12

ε 1− 10−4 ζ 10−1

τ 10−1 β 10
κb 10−2 εb 10−2

η 10−8 δπ 10−4

ω0 103 σ τε
ψ 10−1 π−1 10−1

Table 4.1
Parameter values used for Algorithm TRINS

As mentioned in §2, an efficient method for the normal step computation, i.e., a
method for the approximate solution of problem (2.2), is the conjugate gradient (CG)
algorithm with Steihaug stop tests [24]. A direct implementation of this approach,
however, can become numerically unstable if Ak is ill-conditioned or rank deficient,
and so the normal step in our implementation was performed with an adapted version
of the LSQR algorithm of Paige and Saunders [18]. This approach is mathematically
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equivalent to CG, but has better numerical properties when applied to (near) singular
systems. We extended the implementation in [19] so that the iteration was terminated
if a direction of zero curvature was found (at which point the current LSQR iterate was
returned), the trust region constraint was violated (at which point the point at which
the boundary was crossed was returned as the solution), or a solution vk satisfying
‖ck + Akvk‖ ≤ 10−4‖ck‖ was computed.

The primal-dual step computation of Algorithm TRINS was performed with an
adapted version of the implementation in [20] of the Minimum Residual (MINRES)
method [17]. For most runs of Algorithm TRINS performed in our experiments, this
code was sufficient for computing acceptable search directions (i.e., steps satisfying
termination test 1, 2, or 3) despite the fact that a preconditioner was not implemented
in our code. Occasionally, however, unpreconditioned MINRES was not able to provide a
step satisfying one of our termination criteria before the limit of 2(n+t) iterations was
reached, so in such cases we employed an adapted version of Kelley’s implementation
[14] of the Generalized Minimum Residual (GMRES) method [23] to attempt to compute
an acceptable step. This latter approach is not used initially as it does not take
advantage of the symmetry of the primal-dual equations (2.6), but we have found it
to be more numerically stable than MINRES on (near) singular systems.

A few comments are necessary to describe our method for perturbing Wk within
a run of the primal-dual step computation. We begin the process by setting Wk

to the exact Hessian of the Lagrangian and the initial guess set as the zero vector.
If this initial vector does not satisfy a termination test, then MINRES iterations are
performed until either an acceptable step is found or a modification to Wk is deemed
appropriate. If a modification to Wk is made, we restart the MINRES solver with the
solution initialized to the last solution computed for the previous Wk. Overall, for
any Wk we perform at most 2(n + t) MINRES iterations. In order to avoid having our
modification strategy perturb the matrix prematurely, we only allow a modification to
the current Wk once (2.13) is satisfied with κ set to 1/2, or once (n + t)/2 iterations
have been performed. Finally, as for the specific form of the modification, we set
Wk ← Wk + µI with µ set according to the rules outlined in [26].

The primal-dual step computation is summarized in the following algorithm,
which covers the repeat loop in the description given in §2. Note that for termination
test 1 we use the norm of the entire primal-dual residual (ρk, rk) on the left-hand-side
of (2.13) with the hope that this choice will yield fast local convergence.

Algorithm TRINS-step: Step Computation for Algorithm TRINS
Set j ← 0, (d0, δ0) ← (vk, 0), Wk ← ∇2

xxLk, and choose µ > 0
if termination test 1, 2, or 3 is satisfied, return (dk, δk) ← (dj , δj)
while j < 2(n + t)

Increment j ← j + 1
Perform a MINRES iteration on (2.6) to compute (dj , δj)
if j ≥ (n + t)/2 and (2.13) holds for κ = 1/2

if termination test 1 or 3 is satisfied, then break
if termination test 2 is satisfied, then set dj ← 0 and break
if (dj , δj) does not satisfy (2.10) or (2.11a)

Set j ← 0, (d0, δ0) ← (dj , δj), Wk ← Wk + µI, and choose µ > 0
endif

endif
endwhile
return (dk, δk) ← (dj , δj)
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The algorithm does not change when GMRES replaces MINRES as the iterative solver.

4.1. Numerical Experiments. Algorithm TRINS is designed for very large ap-
plications, but its effectiveness can be illustrated on problems of any size. Thus, we
chose to test our Matlab implementation on a variety of problems in the CUTEr
[1, 12] collection. From this set, we selected all of the equality constrained problems
for which AMPL [11] models were available that have at least one degree of freedom.
This latter requirement was enforced to allow us to create a complete set of perturbed
models, as described below, but we note that the 2 problems available that did not
satisfy this condition (bt10 and hs008) were solved with no issue by our code. The
selected set is composed of 73 problems. We found that all problems in this set have
sufficiently feasible and optimal solutions according to (4.1a), so the goal here is to
illustrate the robustness of the approach without a fine-tuning of the parameters and
algorithmic components for each problem instance.

We performed three related sets of numerical experiments to illustrate the ver-
satility of Algorithm TRINS. In the first we applied our implementation of Algorithm
TRINS with the fixed set of input parameters given in Table 4.1 to the problems just
described. The second set of experiments was performed with the same set of prob-
lems and the same inputs, but with a perturbation to the constraint functions in
the problem formulations. In particular, in each model we split the first constraint
c1(x) = 0 into the pair of constraints

c1(x) = 0 and (4.2a)

c1(x)− c2
1(x) = 0. (4.2b)

Each problem in this set therefore also has a sufficiently feasible and optimal solution,
but the constraint Jacobians will be rank deficient everywhere and the linearized
constraint functions will be inconsistent at all points with c1(x) 6= 0. The third set of
experiments is similar to the second set, except that the right-hand-side of the added
constraint (4.2b) is set to 1, thus creating an infeasible instance of each model.

We compare the results of Algorithm TRINS to the results of the method described
in [3], which has no features for dealing with Jacobian singularity, on all three sets of
problems to illustrate that Algorithm TRINS can both perform well on well-conditioned
problems and overcome the obstacles posed by rank deficient constraint formulations.

Problem data and results for each run are given in Tables 4.2 and 4.3. Here, n
represents the number of variables and t represents the number of constraints; i.e.,
the number of constraints in each perturbed constraint set is t + 1. We provide
both a termination message and outer iteration counts for Algorithm TRINS and the
algorithm described in [3], which we refer to as Algorithm INS. The Original columns
correspond to results for the original models, the Perturbed columns corresponds to
results for the second set of experiments, and the Infeasible column corresponds to
results for the third set of experiments. We do not provide an Infeasible column for
Algorithm INS as the algorithm was not able to satisfy (4.1a), (4.1b), or (4.1c) for more
than a few problem instances. This is not surprising, however, as that method will
stall when feasibility is not attained. Notice that we would ideally have the algorithms
return that an optimal solution was found, denoted by opt, in all instances in columns
Original and Perturbed, and that we would ideally have Algorithm TRINS return
that (4.1b) or (4.1c) was satisfied, denoted by inf and π, respectively, in all instances
in column Infeasible. In a few instances, however, the results are not ideal, and
occasionally we find that the iteration limit (4.1d) was reached, which we denote by
---.
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Algorithm TRINS Algorithm INS

Original Perturbed Infeasible Original Perturbed

Name n t Res Itr Res Itr Res Itr Res Itr Res Itr

aug2d 20192 9996 opt 28 opt 6 π 12 opt 6 opt 6

aug3dc 3873 1000 opt 4 opt 5 π 9 opt 4 opt 6

aug3d 3873 1000 opt 4 opt 5 π 8 opt 4 opt 8

bt11 5 3 opt 8 opt 9 π 7 opt 8 --- ---

bt12 5 3 opt 3 opt 7 π 13 opt 4 --- ---

bt1 2 1 opt 50 opt 25 inf 58 --- --- --- ---

bt2 3 1 opt 11 opt 12 opt 12 opt 11 --- ---

bt3 5 3 opt 2 opt 6 π 6 opt 2 --- ---

bt4 3 2 opt 14 opt 44 --- --- opt 10 --- ---

bt5 3 2 opt 7 opt 9 π 9 opt 7 --- ---

bt6 5 2 opt 9 opt 17 π 17 opt 9 --- ---

bt7 5 3 opt 32 opt 34 π 48 opt 21 --- ---

bt8 5 2 opt 10 opt 7 inf 98 opt 10 --- ---

bt9 4 2 opt 23 opt 156 π 25 opt 67 --- ---

byrdsphr 3 2 opt 19 --- --- π 24 opt 30 --- ---

catena 32 11 opt 18 --- --- --- --- opt 31 --- ---

dixchlng 10 5 opt 10 opt 9 inf 23 opt 10 --- ---

dtoc1l 14985 9990 opt 8 opt 8 π 9 opt 8 opt 8

dtoc1na 1485 990 opt 7 opt 7 π 7 opt 7 opt 7

dtoc1nb 1485 990 opt 6 opt 6 π 9 opt 6 opt 6

dtoc1nc 1485 990 opt 12 opt 12 π 10 opt 9 opt 9

dtoc1nd 735 490 opt 61 opt 44 π 18 --- --- --- ---

dtoc2 5994 3996 opt 37 opt 29 π 14 opt 16 opt 31

dtoc3 14996 9997 opt 20 opt 12 inf 26 opt 3

dtoc4 14996 9997 opt 32 opt 32 inf 15 opt 3

dtoc5 9998 4999 opt 21 opt 10 inf 22 opt 4

dtoc6 10000 5000 opt 63 opt 17 π 13 opt 20

eigena2 110 55 opt 23 opt 24 π 42 opt 18 opt 19

eigenaco 110 55 opt 4 opt 4 inf 16 opt 4 opt 4

eigenb2 110 55 opt 13 opt 17 π 528 opt 28 opt 15

eigenbco 110 55 opt 521 --- --- π 152 --- --- opt 65

eigenc2 462 231 opt 18 opt 23 π 21 opt 20 --- ---

eigencco 30 15 opt 14 opt 16 π 59 opt 16 --- ---

fccu 19 8 opt 3 opt 5 inf 12 opt 3 --- ---

genhs28 10 8 opt 3 opt 3 inf 13 opt 3 opt 3

gilbert 1000 1 opt 38 opt 20 opt 20 opt 20 --- ---

Table 4.2
Termination results for Algorithm TRINS and Algorithm INS (described in [3]) for problems

from the CUTEr collection. The original problems are solved along with related models where the
constraint set has been perturbed.

The results suggest that Algorithm TRINS is versatile and robust and can suc-
cessfully be applied to nonconvex problems with (near) rank deficient constraint Ja-
cobians. Moreover, the differences between the success rates for the two methods
illustrate the need for the algorithmic extensions described in this work. Algorithm
TRINS failed to satisfy (4.1a), (4.1b), or (4.1c) before the iteration limit was reached
for a few problems instances, but we conjecture that many of these unsuccessful runs
could be remedied by a more sophisticated implementation.

5. Conclusion. In this paper we have proposed and analyzed a matrix-free
primal-dual algorithm for large-scale equality constrained optimization. The method
extends the application of the sufficient merit function approximation reduction termi-
nation (SMART) Tests developed in [3, 4] to problems where the constraint Jacobians
may lose rank during the solution process. A crucial aspect of the approach is the
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Algorithm TRINS Algorithm INS

Original Perturbed Infeasible Original Perturbed

Name n t Res Itr Res Itr Res Itr Res Itr Res Itr

gridnetb 13284 6724 opt 10 opt 8 π 10 opt 4

hager1 10000 5000 opt 4 opt 7 --- --- opt 3

hager2 10000 5000 opt 2 opt 4 opt 4 opt 2

hager3 10000 5000 opt 2 opt 5 opt 5 opt 2

hs006 2 1 opt 2 opt 21 π 20 opt 2 --- ---

hs007 2 1 opt 23 opt 21 inf 25 opt 287 --- ---

hs009 2 1 opt 3 opt 3 inf 11 opt 4 opt 4

hs026 3 1 opt 14 opt 32 π 17 opt 14 --- ---

hs027 3 1 opt 39 opt 566 π 14 opt 79 --- ---

hs028 3 1 opt 1 opt 1 inf 10 opt 1 opt 1

hs039 4 2 opt 23 opt 156 π 25 opt 67 --- ---

hs040 4 3 opt 4 opt 4 π 8 opt 4 --- ---

hs046 5 2 opt 14 opt 17 π 21 opt 14 --- ---

hs047 5 3 opt 16 opt 16 --- --- --- --- --- ---

hs048 5 2 opt 1 opt 1 inf 10 opt 1 opt 1

hs049 5 2 opt 12 opt 12 π 9 opt 12 opt 12

hs050 5 3 opt 8 opt 8 π 9 opt 8 opt 8

hs051 5 3 opt 2 opt 2 inf 11 opt 2 opt 2

hs052 5 3 opt 2 opt 6 π 7 opt 2 --- ---

hs061 3 2 opt 8 opt 10 π 10 opt 29 --- ---

hs077 5 2 opt 9 opt 36 π 77 opt 9 --- ---

hs078 5 3 opt 5 opt 6 π 263 opt 4 opt 244

hs079 5 3 opt 4 opt 7 π 5 opt 4 --- ---

hs100lnp 7 2 opt 7 opt 7 inf 8 opt 8 --- ---

hs111lnp 10 3 opt 135 π 28 opt 766 --- ---

lch 600 1 opt 27 opt 57 --- --- opt 29 opt 6

maratos 2 1 opt 5 opt 7 π 8 opt 5 --- ---

mwright 5 3 opt 7 opt 7 π 11 opt 8 --- ---

orthrdm2 4003 2000 opt 12 opt 6 inf 7 opt 7 opt 7

orthrds2 203 100 opt 119 opt 53 π 42 opt 78 --- ---

orthrega 517 256 opt 70 opt 55 π 81 opt 51 opt 50

orthregb 27 6 opt 2 opt 4 inf 6 opt 2 --- ---

orthregc 10005 5000 opt 205 opt 16 π 11 opt 15

orthregd 10003 5000 opt 20 opt 7 π 7 opt 9

orthrgdm 10003 5000 opt 28 opt 8 π 8 opt 10

orthrgds 10003 5000 opt 73 --- --- --- --- opt 32

robot 14 9 opt 40 --- --- π 14 opt 6 opt 10

Table 4.3
Termination results for Algorithm TRINS and Algorithm INS (described in [3]) for problems

from the CUTEr collection. The original problems are solved along with related models where the
constraint set has been perturbed.

introduction of a trust region subproblem for the calculation of a normal step com-
ponent, after which the (approximate) solution of a carefully constructed primal-dual
system can be used to make the algorithm well-defined and globally convergent to
first-order optimal points, or at least to stationary points of a feasibility measure. We
close by discussing further some practical issues related to the implementation of our
approach.

A drawback of the algorithm described in this paper is that the trust region
constraint may block the approach from nearly satisfying ck +Akdk = 0 in cases when
doing so is possible. This phenomenon may obstruct the algorithm from acting like an
inexact Newton approach, and so may hinder the possibility for fast local convergence
to a solution point. Thus, a more efficient implementation may first attempt to
compute a step via the Newton system (1.4) using the termination criteria described in
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[3], and only revert to the approach described in this paper if the calculations indicate
that the linear model of the constraints may be ill-conditioned or inconsistent.

A further enhancement that may improve the practical performance of our ap-
proach is the inclusion of a watchdog strategy to avoid the Maratos effect. Moreover,
our and other implementations would benefit from effective preconditioners for the
iterative solution of (2.2) and (2.6), and an alternative to the iterative linear solvers
MINRES and GMRES is the recently developed MINRESQLP method, which is a more
numerically stable version of the MINRES algorithm described by Choi in [8].
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