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Abstract

1. Observation: when using a larger batch (LB) methods there
is a degradation in the quality of the model, as measured by
its ability to generalize.

2. We investigate the cause for this generalization drop and
present numerical evidence that LB methods tend to con-
verge to sharp minimizers of the training and testing func-
tions.

3. SB methods converge to flat minimizers, and this is due to
the inherent noise in the gradient estimation.

1 Motivation - Why LB Methods ?

• Small Batch (SB) SGD — Simple, effective but limited scaling (100s of
nodes).
• Large Batch (LB) methods — Improved concurrency, potential to scale

to 1000+ nodes, faster time-to-train, larger problems.

Generalization Gap with LB methods

Training Accuracy Testing Accuracy
SB LB SB LB

F1 99.66%± 0.05% 99.92%± 0.01% 98.03%± 0.07% 97.81%± 0.07%
F2 99.99%± 0.03% 98.35%± 2.08% 64.02%± 0.2% 59.45%± 1.05%
C1 99.89%± 0.02% 99.66%± 0.2% 80.04%± 0.12% 77.26%± 0.42%
C2 99.99%± 0.04% 99.99± 0.01% 89.24%± 0.12% 87.26%± 0.07%
C3 99.56%± 0.44% 99.88%± 0.30% 49.58%± 0.39% 46.45%± 0.43%
C4 99.10%± 1.23% 99.57%± 1.84% 63.08%± 0.5% 57.81%± 0.17%

Conventional Wisdom
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forth the following as possible causes for this phenomenon: (i) LB methods over-fit the model; (ii)
LB methods are attracted to saddle points; (iii) LB methods lack the explorative properties of SB
methods and tend to zoom-in on the minimizer closest to the initial point; (iv) SB and LB methods
converge to qualitatively different minimizers with differing generalization properties. The data
presented in this paper supports the last two conjectures.

The main observation of this paper is as follows:

The lack of generalization ability is due to the fact that large-batch methods tend to converge
to sharp minimizers of the training function. These minimizers are characterized by a signif-
icant number of large positive eigenvalues in r2f(x), and tend to generalize less well. In
contrast, small-batch methods converge to flat minimizers characterized by having numerous
small eigenvalues of r2f(x). We have observed that the loss function landscape of deep neural
networks is such that large-batch methods are attracted to regions with sharp minimizers and
that, unlike small-batch methods, are unable to escape basins of attraction of these minimizers.

The concept of sharp and flat minimizers have been discussed in the statistics and machine learning
literature. (Hochreiter & Schmidhuber, 1997) (informally) define a flat minimizer x̄ as one for which
the function varies slowly in a relatively large neighborhood of x̄. In contrast, a sharp minimizer x̂
is such that the function increases rapidly in a small neighborhood of x̂. A flat minimum can be de-
scribed with low precision, whereas a sharp minimum requires high precision. The large sensitivity
of the training function at a sharp minimizer negatively impacts the ability of the trained model to
generalize on new data; see Figure 1 for a hypothetical illustration. This can be explained through
the lens of the minimum description length (MDL) theory, which states that statistical models that
require fewer bits to describe (i.e., are of low complexity) generalize better (Rissanen, 1983). Since
flat minimizers can be specified with lower precision than to sharp minimizers, they tend to have bet-
ter generalization performance. Alternative explanations are proffered through the Bayesian view
of learning (MacKay, 1992), and through the lens of free Gibbs energy; see e.g. Chaudhari et al.
(2016).

Flat Minimum Sharp Minimum

Training Function

Testing Function

f(x)

Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss
function and the X-axis the variables (parameters)

2.2 NUMERICAL EXPERIMENTS

In this section, we present numerical results to support the observations made above. To this end,
we make use of the visualization technique employed by (Goodfellow et al., 2014b) and a proposed
heuristic metric of sharpness (Equation (4)). We consider 6 multi-class classification network con-
figurations for our experiments; they are described in Table 1. The details about the data sets and
network configurations are presented in Appendices A and B respectively. As is common for such
problems, we use the mean cross entropy loss as the objective function f .

The networks were chosen to exemplify popular configurations used in practice like AlexNet
(Krizhevsky et al., 2012) and VGGNet (Simonyan & Zisserman, 2014). Results on other networks

3

• LB methods lack noise/explorative
properties.

“Why is this bad?”

•Minimum number of iterations are
required for convergence.

“Not true; gap exists even if run
for 1000s of epochs.”

• LB methods “overfit”.

“Once model is specified, unclear
what this means. Surely not

over-training.”

Our Observation

1. The lack of generalization ability is due to the fact that LB methods
tend to converge to sharp minimizers of the training function.

2. These minimizers are characterized by large positive eigenvalues in
∇2f (x).

3. SB methods converge to flat minimizers characterized by small posi-
tive eigenvalues of ∇2f (x).

2 Evidence for Sharpness

Parametric Plots

Plot for α ∈ [−1, 2]: f (αx?` + (1− α)x?s)
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Sharpness Metric

Let Cε defined as:

Cε = {z ∈ Rp : −ε(|(A+x)i| + 1) ≤ zi ≤ ε(|(A+x)i| + 1) ∀i ∈ {1, 2, · · · , p}}

where A+ denotes the pseudo-inverse of A.
Metric 2.1. Given a point x ∈ Rn, ε > 0 and A ∈ Rn×p, we define the
(Cε, A)-sharpness of x as:

φx,f (ε, A) :=

(
maxy∈Cε f (x + Ay)

)
− f (x)

1 + f (x)
× 100. (1)
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3 Success of SB Methods

Evolution
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Piggybacking Experiments

• After every epoch of SB method, run 100 epochs of an LB method and
plot the testing accuracies.

4 Attempts to Improve LB Methods

Data Augmentation
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Conservative Training

xk+1 = argmin
x
fBk

(x) +
λ

2
‖x− xk‖22
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5 Relationship to Recent Work

• Entropy-SGD: SGD variant designed to navigate towards flatter mini-
mizers.
• Sharp Minima can Generalize: (Insufficiency) theoretical analysis of

rectifier networks demonstrating weaknesses of sharpness metrics.
Decouples training algorithm from generalization argument.
•Rethinking Generalization: Classical statistical learning theory can-

not explain generalization in deep learning. Explicit regularization is
neither necessary nor sufficient; implicit generalization (of SGD) is key.

6 Conclusions
tl; dr

• LB methods → sharp minimizers and these minimizers correlate with
poorer generalization.
• SB methods avoid sharp minimizers due to noise.
•Our attempts at data augmentation, conservative training, robust opti-

mization, adversarial training etc. did not consistently close the gap.

7 Open Questions

•Rigorous relationship between training algorithm, minimizer properties
and generalization performance.
• Steering to flat minimizers; scalable LB method with SOTA perfor-

mance.
...
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