Some Theory Behind Algorithms for Stochastic Optimization

Zelda Zabinsky

University of Washington Industrial and Systems Engineering

May 24, 2010

NSF Workshop on Simulation Optimization

Overview

- Problem formulation
- Theoretical performance of stochastic adaptive search methods
- Algorithms based on Hit-and-Run to approximate theoretical performance
- Incorporate random sampling and noisy objective functions

What is Stochastic Optimization?

- Randomness in algorithm AND/OR in function evaluation
- Related terms:
- Simulation optimization
- Optimization via simulation
- Random search methods
- Stochastic approximation
- Stochastic programming
- Design of experiments
- Response surface optimization

Problem Formulation

- Minimize $f(x)$ subject to x in S
- x : n variables, continuous and/or discrete
- $f(x)$: objective function, could be black-box, ill-structured, noisy
- S: feasible set, nonlinear constraints, or membership oracle
- Assume an optimum x^{*} exists, with $y^{*}=f\left(x^{*}\right)$

Example Problem Formulations

- Maximize expected value subject to standard deviation $<b$
o Minimize standard deviation subject to expected value > t
o Minimize CVaR (conditional value at risk)
- Minimize sum of least squares from data
o Maximize probability of satisfying noisy constraints

Approximate or Estimate $f(x)$?

- Approximate a complicated function:
- Taylor series expansion
- Finite element analysis
- Computational fluid dynamics
o Estimate a noisy function with:
- Replications
- Length of discrete-event simulation run

Noisy Objective Function

$$
f(x)
$$

Scenario-based Recourse Function

Local versus Global Optima

- "Local" optima are relative to the neighborhood and algorithm

Local versus Global Optima

- "Local" optima are relative to the neighborhood and algorithm

Research Question:

What Do We Really Want?

o Do we really just want the optimum?
o What about sensitivity?
o Do we want to approximate the entire surface?
o Multi-criteria?
o Role of objective function and constraints?
o Where does randomness appear?

How can we solve...?

IDEAL Algorithm:

- Optimizes any function quickly and accurately
- Provides information on how "good" the solution is
o Handles black-box and/or noisy functions, with continuous and/or discrete variables
- Is easy to implement and use

Theoretical Performance of Stochastic Adaptive Search

- What kind of performance can we hope for?
- Global optimization problems are NP-hard
- Tradeoff between accuracy and computation
- Sacrifice guarantee of optimality for speed in finding a "good" solution
o Three theoretical constructs:
- Pure adaptive search (PAS)
- Hesitant adaptive search (HAS)
- Annealing adaptive search (AAS)

Performance of Two Simple Methods

- Grid Search: Number of grid points is $\mathrm{O}\left((\mathrm{L} / \varepsilon)^{\mathrm{n}}\right)$, where L is the Lipschitz constant, n is the dimension, and ε is distance to the optimum
- Pure Random Search: Expected number of points is $\mathrm{O}\left(1 / \mathrm{p}\left(\mathrm{y}^{*}+\varepsilon\right)\right)$, where $\mathrm{p}\left(\mathrm{y}^{*}+\varepsilon\right)$ is the probability of sampling within ε of the optimum y^{*}
- Complexity of both is exponential in dimension

Pure Adaptive Search (PAS)

- PAS: chooses points uniformly distributed in improving level sets

Bounds on Expected Number of Iterations

- PAS (continuous):

$$
\mathrm{E}\left[\mathrm{~N}\left(\mathrm{y}^{*}+\varepsilon\right)\right] \leq 1+\ln \left(1 / \mathrm{p}\left(\mathrm{y}^{*}+\varepsilon\right)\right)
$$

where $\mathrm{p}\left(\mathrm{y}^{*}+\varepsilon\right)$ is the probability of PRS sampling within ε of the global optimum y^{*}
o PAS (finite):

$$
E\left[N\left(y^{*}\right)\right] \leq 1+\ln \left(1 / p_{1}\right)
$$

where p_{1} is the probability of PRS sampling the global optimum
[Zabinsky and Smith, 1992]
[Zabinsky, Wood, Steel and Baritompa, 1995]

Pure Adaptive Search

- Theoretically, PAS is LINEAR in dimension o Theorem:

For any global optimization problem in n dimensions, with Lipschitz constant at most L , and convex feasible region with diameter at most D, the expected number of PAS points to get within ε of the global optimum is:

$$
\mathrm{E}\left[\mathrm{~N}\left(\mathrm{y}^{*}+\varepsilon\right)\right] \leq 1+\mathrm{n} \ln (\mathrm{LD} / \varepsilon)
$$

[Zabinsky and Smith, 1992]

Finite PAS

- Analogous LINEARITY result
o Theorem:
For an n dimensional lattice $\{1, \ldots, \mathrm{k}\}^{\mathrm{n}}$, with distinct objective function values, the expected number of points for PAS, sampling uniformly, to first reach the global optimum is:

$$
\mathrm{E}\left[\mathrm{~N}\left(\mathrm{y}^{*}\right)\right]<2+\mathrm{n} \ln (\mathrm{k})
$$

[Zabinsky, Wood, Steel and Baritompa, 1995]

Hesitant Adaptive Search (HAS)

- What if we sample improving level sets with "bettering" probability $b(y)$ and "hesitate" with probability 1-b(y) ?

$$
E\left[N\left(y^{*}+\varepsilon\right)\right]=\int_{y^{*}+\varepsilon}^{\infty} \frac{d \rho(t)}{b(t) p(t)}
$$

where $\rho(t)$ is the underlying sampling distribution and $p(t)$ is the probability of sampling t or better
[Bulger and Wood, 1998]

General HAS

- For a mixed discrete and continuous global optimization problem, the expected value of $\mathrm{N}\left(\mathrm{y}^{*}+\varepsilon\right)$, the variance, and the complete distribution can be expressed using the sampling distribution $\rho(\mathrm{t})$ and bettering probabilities $b(y)$
[Wood, Zabinsky and Kristinsdottir, 2001]

Annealing Adaptive Search (AAS)

- What if we sample from the original feasible region each iteration, but change distributions?
- Generate points over the whole domain using a Boltzmann distribution parameterized by temperature T
- Boltzmann distribution becomes more concentrated around the global optima as the temperature decreases
- Temperature is determined by a cooling schedule
- The record values of AAS are dominated by PAS and thus LINEAR in dimension
[Romeijn and Smith, 1994]

Performance of Annealing Adaptive Search

- The expected number of sample points of AAS is bounded by HAS with a specific b(y)
- Select the next temperature so that the probability of generating an improvement under that Boltzmann distribution is at least 1- α, i.e.,

$$
P\left(Y_{R(k)+1}^{A A S}<y \mid Y_{R(k)}^{A A S}=y\right) \geq 1-\alpha
$$

- Then the expected number of AAS sample points is LINEAR in dimension
[Shen, Kiatsupaibul, Zabinsky and Smith, 2007]

AAS with Adaptive Cooling Schedule

Research Areas

- Develop theoretical analysis of PAS, HAS, AAS for noisy or approximate functions
- Model approximation or estimation error
- Characterize impact of error on performance
- Use theory to develop algorithms
- Approximate sampling from improving sets (as PAS) or Boltzmann distributions (as AAS)
- Use HAS, with $\rho(\mathrm{t})$ and $\mathrm{b}(\mathrm{y})$, to quantify and balance accuracy and efficiency

Random Search Algorithms

- Instance-based methods
- Sequential random search
- Multi-start and population-based algorithms
- Model-based methods
- Importance sampling
- Cross-entropy [Rubinstein and Kroese, 2004]
- Model reference adaptive search [Hu, Fu and Marcus, 2007]
[Zlochin, Birattari, Meuleau and Dorigo, 2004]

Sequential Random Search

- Stochastic approximation [Robbins and Monro, 1951]
- Step-size algorithms [Rastrigin, 1960] [Solis and Wets, 1981]
- Simulated annealing
[Romeijn and Smith, 1994], [Alrafaei and Andradottir, 1999]
- Tabu search [Glover and Kochenberger, 2003]
- Nested partition [shi and Olafsson, 2000]
o COMPASS [Hong and Nelson, 2006]
- View these algorithms as Markov chains with
- Candidate point generators
- Update procedures

Use Hit-and-Run to Approximate AAS

- Hit-and-Run is a Markov chain Monte Carlo (MCMC) sampler
- converges to a uniform distribution [Smith, 1984]
- in polynomial time $O\left(n^{3}\right)$
[Lovász, 1999]
- can approximate any arbitrary distribution by using a filter
- The difficulty of implementing AAS is to generate points directly from a family of Boltzmann distributions

Hit-and-Run

- Hit-and-Run generates a random direction (uniformly distributed on a hypersphere) and a random point (uniformly distributed on the line)

Improving Hit-and-Run

- IHR: choose a random direction and a random point, accept only improving points

Improving Hit-and-Run

- IHR: choose a random direction and a random point, accept only improving points

Improving Hit-and-Run

- IHR: choose a random direction and a random point, accept only improving points

Is IHR Efficient in Dimension?

o Theorem:
For any elliptical program in n dimensions, the expected number of function evaluations for IHR is: $\quad O\left(n^{5 / 2}\right)$
[Zabinsky, Smith, McDonald, Romeijn and Kaufman, 1993]

Is IHR Efficient in Dimension?

o Theorem:
For any elliptical program in n dimensions, the expected number of function evaluations for IHR is: $\quad O\left(n^{5 / 2}\right)$
[Zabinsky, Smith, McDonald, Romeijn and Kaufman, 1993]

Use Hit-and-Run to Approximate Annealing Adaptive Search

- Hide-and-Seek: add a probabilistic Metropolis acceptance-rejection criterion to Hit-and-Run to approximate the Boltzmann distribution
[Romeijn and Smith, 1994]
- Converges in probability with almost any cooling schedule driving temperature to zero
- AAS Adaptive Cooling Schedule:
- Temperature values according to AAS to maintain 1- α probability of improvement
- Update temperature when record values are obtained [Shen, Kiatsupaibul, Zabinsky and Smith, 2007]

Research Possibilities:

- How long should we execute Hit-and-Run at a fixed temperature?
- What is the benefit of sequential temperatures (warm starts) on convergence rate?
- Hit-and-Run has fast convergence on "well-rounded" sets; how can we modify transition kernel in general?
- Incorporate new Hit-and-Run on mixed integer/continuous sets
- Discrete hit-and-run
[Baumert, Ghate, Kiatsupaibul, Shen, Smith and Zabinsky, 2009]
- Pattern hit-and-run
[Mete, Shen, Zabinsky, Kiatsupaibul and Smith, 2010]

Simulated Annealing with Multi-start:

When to Stop or Restart a Run?

- Use HAS to model progress of a heuristic random search algorithm and estimate associated parameters
- Dynamic Multi-start Sequential Search
- If current run appears "stuck" according to HAS analysis, stop and restart
- Estimate probability of achieving $y^{*}+\varepsilon$ based on observed values and estimated parameters
- If probability is high enough, terminate
[Zabinsky, Bulger and Khompatraporn, 2010]

Meta-control of Interacting-Particle

 Algorithm- Interacting-Particle Algorithm
- Combines simulated annealing and population based algorithms
- Uses statistical physics and Feynman-Kac formulas to develop selection probabilities
[Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, 2004]
- Meta-control approach to dynamically heat and cool temperature
[Kohn, Zabinsky and Brayman, 2006]
[Molvalioglu, Zabinsky and Kohn, 2009]

Meta-control Approach

$f(x), S$
initial parameters

Research Possibilities

- Combine theoretical analyses with MCMC and metacontrol to:
- Control the exploration transition probabilities
- Obtain stopping criterion and quality of solution
- Relate interacting particles to cloning/splitting
- Combine theoretical analyses and meta-control with model-based approach

Another Research Area:

Quantum Global Optimization

- Grover's Adaptive Search can implement PAS on a quantum computer
[Baritompa, Bulger and Wood, 2005]
- Apply research on quantum control theory to global optimization
- [Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2004]
- [Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, 2004]

Optimization of Noisy Functions

- Use random sampling to explore the feasible region and estimate the objective function with replications
- Recognize two sources of noise:
- Randomness in the sampling distribution
- Randomness in the objective function
- Adaptively adjust the number of samples and the number of replications

Noisy Objective Function

Noisy Objective Function

Probabilistic Branch-and-Bound (PBnB)

Sample N^{*} Uniform Random Points

 with R^{*} Replications

Use Order Statistics to Assess Range Distribution

Prune, if Statistically Confident

Subdivide \& Sample Additional Points

Reassess Range Distribution

If No Pruning, Then Continue ...

PBnB:
 Numerical Example

Research Areas

- Develop theory to tradeoff accuracy with computational effort
- Use theory to develop algorithms that give insight into original problem
- Global optima and sensitivity
- Shape of the function or range distribution
- Use interdisciplinary approaches to incorporate feedback

Summary

o Theoretical analysis of PAS, HAS, AAS motivates random search algorithms
o Hit-and-Run is a MCMC method to approximate theoretical performance
o Meta-control theory allows adaptation based on observations

- Probabilistic Branch-and-Bound incorporates noisy function evaluations and sampling noise into analysis

Additional Slides for Details on Interacting Particle Algorithm

Interacting-Particle Algorithm

- Simulated Annealing: Markov chain Monte Carlo method for approximating a sequence of Boltzmann distributions

$$
\eta_{t}(d x)=\frac{e^{-f(x) / T_{t}}}{\int_{S} e^{-f(y) / T_{t}} d y} d x
$$

- Population-based Algorithms: simulate a distribution (e.g. Feynman-Kac annealing model) such that

$$
E_{\eta_{t}}(f) \rightarrow y^{*} \text { as } t \rightarrow \infty
$$

Interacting-Particle Algorithm

- In nitialization: Sample the initial locations y_{0}^{i} for particle $\mathrm{i}=1, \ldots, \mathrm{~N}$ from the distribution η_{0}
For $t=0,1, \ldots$,
o \mathbb{N}-particle exploration: Move particle $\mathrm{i}=1, \ldots, \mathrm{~N}$ to location \hat{y}_{t}^{i} with probability distribution $E\left(y_{t}^{i}, d \hat{y}_{t}^{i}\right)$
o Temperature Parameter Update:

$$
T_{t}=\left(1+\varepsilon_{t}\right) T_{t-1}, \quad \varepsilon_{t} \geq-1
$$

- \mathbb{N}-particle selection: Set the particles' locations $y_{t+1}^{k}, i=1, \ldots, N$
$y_{t+1}^{k}=\hat{y}_{t}^{i}$ with probability

$$
\frac{e^{-f\left(\hat{y}_{t}^{i}\right) / T_{t}}}{\sum_{j=1}^{N} e^{-f\left(\hat{y}_{t}^{j}\right) / T_{t}}}
$$

Illustration of Interacting-Particle Algorithm

II nitialization: Sample
$\mathrm{N}=10$ points uniformly on
S
N-particle exploration:
Move particles from \bigcirc to Hzing Markov kernel E

Illustration of Interacting-Particle Algorithm

Illustration of Interacting-Particle Algorithm

|l nitialization: Sample $\mathrm{N}=10$ points uniformly on S

N-particle exploration:

Move particles from \bigcirc to H using Markov kernel E Evaluate $f($.

Lower $f(.) \longleftrightarrow$ Higher $f($.
) N -particle selection:
Move particles from to
according to their objective function values

Illustration of Interacting-Particle Algorithm

|l nitialization: Sample

 $\mathrm{N}=10$ points uniformly on S
N-particle exploration:

Move particles from \bigcirc to
T using Markov kernel E Evaluate $f($.

Lower $f(.) \longleftarrow$ Higher $f($.

N-particle selection:

Move particles from to
according to their objective function values

S

Multi-start or Population-based

Algorithms

- Multi-start and clustering algorithms
[Rinnooy Kan and Timmer, 1987] [Locatelli and Schoen, 1999]
o Genetic algorithms [Davis, 1991]
- Evolutionary programming [Bäck, Fogel and Michalewicz, 1997]
- Particle swarm optimization [kennedy, Eberhart and Shi, 2001]
o Interacting particle algorithm [del Moral, 2004]

