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Overview
o Problem formulation

o Theoretical performance of stochastic 
adaptive search methods

o Algorithms based on Hit-and-Run to 
approximate theoretical performance

o Incorporate random sampling and noisy 
objective functions
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What is Stochastic Optimization?
o Randomness in algorithm AND/OR in function 

evaluation

o Related terms:
• Simulation optimization
• Optimization via simulation 
• Random search methods
• Stochastic approximation
• Stochastic programming
• Design of experiments
• Response surface optimization



Problem Formulation
o Minimize f(x) subject to x in S
o x:  n variables, continuous and/or discrete
o f(x):  objective function, could be black-box,

ill-structured, noisy
o S: feasible set, nonlinear constraints, or

membership oracle
o Assume an optimum x* exists, with y*=f(x*)
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Example Problem Formulations
o Maximize expected value

subject to standard deviation < b
o Minimize standard deviation

subject to expected value > t
o Minimize CVaR (conditional value at risk)

o Minimize sum of least squares from data
o Maximize probability of satisfying noisy 

constraints
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Approximate or Estimate f(x) ?
o Approximate a complicated function:

• Taylor series expansion
• Finite element analysis
• Computational fluid dynamics

o Estimate a noisy function with: 
• Replications
• Length of discrete-event simulation run
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Noisy Objective Function
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Scenario-based Recourse Function
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Local versus Global Optima
o “Local” optima are relative to the 

neighborhood and algorithm
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Research Question:
What Do We Really Want?
o Do we really just want the optimum?
o What about sensitivity?
o Do we want to approximate the entire 

surface?
o Multi-criteria?
o Role of objective function and constraints?
o Where does randomness appear?
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How can we solve…?
IDEAL Algorithm:
o Optimizes any function quickly and 

accurately
o Provides information on how “good” the 

solution is
o Handles black-box and/or noisy functions, 

with continuous and/or discrete variables
o Is easy to implement and use
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Theoretical Performance of 
Stochastic Adaptive Search
o What kind of performance can we hope for?
o Global optimization problems are NP-hard
o Tradeoff between accuracy and computation
o Sacrifice guarantee of optimality for speed 

in finding a “good” solution
o Three theoretical constructs:

• Pure adaptive search (PAS)
• Hesitant adaptive search (HAS)
• Annealing adaptive search (AAS)
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Performance of Two Simple Methods

o Grid Search:  Number of grid points is O((L/ε)n),
where L is the Lipschitz constant, n is the 
dimension, and ε is distance to the optimum

o Pure Random Search:  Expected number of 
points is O(1/p(y*+ε)), where p(y*+ε) is the 
probability of sampling within ε of the optimum y*

o Complexity of both is exponential in dimension



15

Pure Adaptive Search (PAS)
o PAS:  chooses points uniformly distributed in 

improving level sets
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Bounds on Expected Number of Iterations

o PAS (continuous):
E[N(y*+ε)] < 1 + ln (1/p(y*+ε) )

where p(y*+ε)  is the probability of PRS sampling 
within ε of the global optimum y*

o PAS (finite):
E[N(y*)] < 1 + ln (1/p1 )

where p1 is the probability of PRS sampling the 
global optimum

[Zabinsky and Smith, 1992]
[Zabinsky, Wood, Steel and Baritompa, 1995]
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Pure Adaptive Search

o Theoretically, PAS is LINEAR in dimension
o Theorem:  

For any global optimization problem in n dimensions, with 
Lipschitz constant at most L, and convex feasible region 
with diameter at most D,  the expected number of PAS 
points to get within ε of the global optimum is:

E[N(y*+ε)] < 1 + n ln(LD / ε)

[Zabinsky and Smith, 1992]
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Finite PAS

o Analogous LINEARITY result
o Theorem:  

For an n dimensional lattice {1,…,k}n, with distinct 
objective function values, the expected number of points 
for PAS, sampling uniformly, to first reach the global 
optimum is:

E[N(y*)] < 2 + n ln(k)

[Zabinsky, Wood, Steel and Baritompa, 1995]
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Hesitant Adaptive Search (HAS)
o What if we sample improving level sets with 

“bettering” probability b(y) and “hesitate” 
with probability 1-b(y) ? 

[Bulger and Wood, 1998]

where ρ(t) is the underlying sampling distribution 
and p(t) is the probability of sampling t or better

dρ( t)
b(t) p(t)

E[N(y*+ε)] = ∫
y*+ε

∞
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General HAS

o For a mixed discrete and continuous 
global optimization problem, the expected 
value of N(y*+ε) , the variance, and the 
complete distribution can be expressed 
using the sampling distribution ρ(t) and 
bettering probabilities b(y)

[Wood, Zabinsky and Kristinsdottir, 2001]
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Annealing Adaptive Search (AAS)
o What if we sample from the original feasible 

region each iteration, but change distributions?

o Generate points over the whole domain using a 
Boltzmann distribution parameterized by 
temperature T
• Boltzmann distribution becomes more concentrated 

around the global optima as the temperature decreases
• Temperature is determined by a cooling schedule 

o The record values of AAS are dominated by PAS 
and thus LINEAR in dimension

[Romeijn and Smith, 1994]
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Performance of Annealing Adaptive Search
o The expected number of sample points of AAS is 

bounded by HAS with a specific b(y)

o Select the next temperature so that the 
probability of generating an improvement under 
that Boltzmann distribution is at least 1-α , i.e.,

o Then the expected number of AAS sample points
is LINEAR in dimension
[Shen, Kiatsupaibul, Zabinsky and Smith, 2007]

 

P YR k( )+1
AAS < y |YR (k )

AAS = y( )≥ 1− α
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Research Areas
o Develop theoretical analysis of PAS, HAS, 

AAS for noisy or approximate functions
• Model approximation or estimation error
• Characterize impact of error on performance

o Use theory to develop algorithms
• Approximate sampling from improving sets (as 

PAS) or Boltzmann distributions (as AAS)
• Use HAS, with ρ(t) and b(y), to quantify and 

balance accuracy and efficiency
24



Random Search Algorithms
o Instance-based methods

• Sequential random search
• Multi-start and population-based algorithms

o Model-based methods
• Importance sampling 
• Cross-entropy    [Rubinstein and Kroese, 2004]

• Model reference adaptive search [Hu, Fu and Marcus, 2007]
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Sequential Random Search
o Stochastic approximation [Robbins and Monro, 1951]

o Step-size algorithms [Rastrigin, 1960] [Solis and Wets, 1981]

o Simulated annealing 
[Romeijn and Smith, 1994],  [Alrafaei and Andradottir, 1999]

o Tabu search [Glover and Kochenberger, 2003]

o Nested partition [Shi and Olafsson, 2000]

o COMPASS [Hong and Nelson, 2006]

o View these algorithms as Markov chains with
• Candidate point generators
• Update procedures
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Use Hit-and-Run to Approximate AAS
o Hit-and-Run is a Markov chain Monte Carlo 

(MCMC) sampler
• converges to a uniform distribution 

[Smith, 1984]

• in polynomial time O(n3) 
[Lovász, 1999]

• can approximate any arbitrary distribution by 
using a filter 

o The difficulty of implementing AAS is to generate 
points directly from a family of Boltzmann 
distributions
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Hit-and-Run
o Hit-and-Run generates a random direction 

(uniformly distributed on a hypersphere) and a 
random point (uniformly distributed on the line)

X1
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Improving Hit-and-Run
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o IHR:  choose a random direction and a random point,
accept only improving points
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Improving Hit-and-Run
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Is IHR Efficient in Dimension?
o Theorem:  

For any elliptical program in n dimensions, the 
expected number of function evaluations for 
IHR is:  O(n5/2)
[Zabinsky, Smith, McDonald, Romeijn and Kaufman, 1993]
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Use Hit-and-Run to Approximate 
Annealing Adaptive Search
o Hide-and-Seek: add a probabilistic Metropolis 

acceptance-rejection criterion to Hit-and-Run to 
approximate the Boltzmann distribution 
[Romeijn and Smith, 1994]

o Converges in probability with almost any cooling 
schedule driving temperature to zero

o AAS Adaptive Cooling Schedule:
• Temperature values according to AAS to maintain 

1-α probability of improvement 
• Update temperature when record values are 

obtained   [Shen, Kiatsupaibul, Zabinsky and Smith, 2007]



Research Possibilities:
o How long should we execute Hit-and-Run at a fixed 

temperature?
o What is the benefit of sequential temperatures (warm 

starts) on convergence rate?
o Hit-and-Run has fast convergence on “well-rounded” 

sets; how can we modify transition kernel in general?
o Incorporate new Hit-and-Run on mixed 

integer/continuous sets
• Discrete hit-and-run 

[Baumert, Ghate, Kiatsupaibul, Shen, Smith and Zabinsky, 2009]

• Pattern hit-and-run
[Mete, Shen, Zabinsky, Kiatsupaibul and Smith, 2010]
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Simulated Annealing with Multi-start:
When to Stop or Restart a Run?
o Use HAS to model progress of a heuristic 

random search algorithm and estimate 
associated parameters 

o Dynamic Multi-start Sequential Search 
• If current run appears “stuck” according to HAS 

analysis, stop and restart
• Estimate probability of achieving y*+ε based on 

observed values and estimated parameters
• If probability is high enough, terminate
[Zabinsky, Bulger and Khompatraporn, 2010]
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Meta-control of Interacting-Particle 
Algorithm

o Interacting-Particle Algorithm
• Combines simulated annealing and population 

based algorithms
• Uses statistical physics and Feynman-Kac 

formulas to develop selection probabilities

o Meta-control approach to dynamically 
heat and cool temperature 
[Kohn, Zabinsky and Brayman, 2006]
[Molvalioglu, Zabinsky and Kohn, 2009]

[Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, 2004]
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Meta-control Approach
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Research Possibilities
o Combine theoretical analyses with MCMC and meta-

control to:
• Control the exploration transition probabilities
• Obtain stopping criterion and quality of solution
• Relate interacting particles to cloning/splitting

o Combine theoretical analyses and meta-control with 
model-based approach 

39



Another Research Area: 
Quantum Global Optimization
o Grover’s Adaptive Search can implement 

PAS on a quantum computer
[Baritompa, Bulger and Wood, 2005]

o Apply research on quantum control theory 
to global optimization
• [Gardiner, Handbook of Stochastic Methods for Physics, 

Chemistry and the Natural Sciences, 2004]
• [Del Moral, Feynman-Kac Formulae: Genealogical and 

Interacting Particle Systems with Applications, 2004]
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Optimization of Noisy Functions
o Use random sampling to explore the 

feasible region and estimate the objective 
function with replications

o Recognize two sources of noise:
• Randomness in the sampling distribution
• Randomness in the objective function

o Adaptively adjust the number of samples 
and the number of replications
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Noisy Objective Function
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Probabilistic Branch-and-Bound (PBnB)
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Sample N* Uniform Random Points 
with R* Replications 
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Use Order Statistics to Assess Range 
Distribution
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Prune, if Statistically Confident
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Subdivide & Sample Additional Points
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Reassess Range Distribution
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If No Pruning, Then Continue …
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PBnB: 
Numerical Example
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Research Areas
o Develop theory to tradeoff accuracy with 

computational effort
o Use theory to develop algorithms that give 

insight into original problem
• Global optima and sensitivity
• Shape of the function or range distribution

o Use interdisciplinary approaches to 
incorporate feedback

52



53

Summary
o Theoretical analysis of PAS, HAS, AAS 

motivates random search algorithms
o Hit-and-Run is a MCMC method to 

approximate theoretical performance
o Meta-control theory allows adaptation 

based on observations
o Probabilistic Branch-and-Bound 

incorporates noisy function evaluations and 
sampling noise into analysis



Additional Slides for Details on 
Interacting Particle Algorithm
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Interacting-Particle Algorithm
o Simulated Annealing: Markov chain Monte Carlo 

method for approximating a sequence of 
Boltzmann distributions 

o Population-based Algorithms: simulate a 
distribution (e.g. Feynman-Kac annealing 
model)such that

 

Eη t
( f ) → y*  as  t → ∞

 

ηt (dx) =
e− f (x ) /Tt

e− f (y ) /Tt dy
S
∫

dx
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Interacting-Particle Algorithm
o Initialization: Sample the initial locations       

for  particle i=1,…,N from the distribution 
For t=0,1,…., 
o N-particle exploration: Move particle i=1,…,N

to location       with probability distribution 
o Temperature Parameter Update: 

o N-particle selection: Set the particles’ 
locations 

0η

 

yt +1
k = ˆ y t
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Illustration of Interacting-Particle Algorithm
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Illustration of Interacting-Particle Algorithm
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0ŷ

2
0ŷ
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0ŷ

7
0ŷ
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Illustration of Interacting-Particle Algorithm
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0ŷ

(.)Higher f

(.)f

S

5
0ŷ
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Illustration of Interacting-Particle Algorithm
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Multi-start or Population-based 
Algorithms
o Multi-start and clustering algorithms 

[Rinnooy Kan and Timmer, 1987]  [Locatelli and Schoen, 1999]

o Genetic algorithms [Davis, 1991]

o Evolutionary programming [Bäck, Fogel and Michalewicz, 1997]

o Particle swarm optimization [Kennedy, Eberhart and Shi, 2001]

o Interacting particle algorithm [del Moral, 2004]
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