# Some Theory Behind Algorithms for Stochastic Optimization

Zelda Zabinsky

University of Washington Industrial and Systems Engineering

May 24, 2010 NSF Workshop on Simulation Optimization

## Overview

- o Problem formulation
- Theoretical performance of stochastic adaptive search methods
- Algorithms based on Hit-and-Run to approximate theoretical performance
- Incorporate random sampling and noisy objective functions



# What is Stochastic Optimization?

- Randomness in algorithm AND/OR in function evaluation
- Related terms:
  - Simulation optimization
  - Optimization via simulation
  - Random search methods
  - Stochastic approximation
  - Stochastic programming
  - Design of experiments
  - Response surface optimization



## Problem Formulation

- Minimize f(x) subject to x in S
- o x: n variables, continuous and/or discrete
- *f(x)*: objective function, could be black-box, ill-structured, noisy
- S: feasible set, nonlinear constraints, or membership oracle
- Assume an optimum  $x^*$  exists, with  $y^* = f(x^*)$



# Example Problem Formulations

- Maximize expected value
  subject to standard deviation < b</li>
- Minimize standard deviation
  subject to expected value > t
- Minimize CVaR (conditional value at risk)
- Minimize sum of least squares from data
  Maximize probability of satisfying noisy constraints



# Approximate or Estimate f(x)?

- Approximate a complicated function:
  - Taylor series expansion
  - Finite element analysis
  - Computational fluid dynamics
- Estimate a noisy function with:
  - Replications
  - Length of discrete-event simulation run



# Noisy Objective Function





## Scenario-based Recourse Function





NDUSTRIA

ENGINEERING

# Local versus Global Optima

• "Local" optima are relative to the neighborhood and algorithm





# Local versus Global Optima

• "Local" optima are relative to the neighborhood and algorithm



NGINEERING

10

Research Question: What Do We Really Want?

- o Do we really just want the optimum?
- What about sensitivity?
- Do we want to approximate the entire surface?
- o Multi-criteria?
- o Role of objective function and constraints?
- Where does randomness appear?



## How can we solve...?

#### IDEAL Algorithm:

- Optimizes any function quickly and accurately
- Provides information on how "good" the solution is
- Handles black-box and/or noisy functions, with continuous and/or discrete variables
- o Is easy to implement and use



Theoretical Performance of Stochastic Adaptive Search

- What kind of performance can we hope for?
- Global optimization problems are NP-hard
- Tradeoff between accuracy and computation
- Sacrifice guarantee of optimality for speed in finding a "good" solution
- Three theoretical constructs:
  - Pure adaptive search (PAS)
  - Hesitant adaptive search (HAS)
  - Annealing adaptive search (AAS)



# Performance of Two Simple Methods

- **Grid Search**: Number of grid points is  $O((L/\varepsilon)^n)$ , where L is the Lipschitz constant, n is the dimension, and  $\varepsilon$  is distance to the optimum
- **Pure Random Search**: Expected number of points is  $O(1/p(y^*+\varepsilon))$ , where  $p(y^*+\varepsilon)$  is the probability of sampling within  $\varepsilon$  of the optimum  $y^*$
- Complexity of both is exponential in dimension





## Pure Adaptive Search (PAS)

 PAS: chooses points uniformly distributed in improving level sets





#### Bounds on Expected Number of Iterations

• PAS (continuous):

 $E[N(y^* + \varepsilon)] \le 1 + \ln(1/p(y^* + \varepsilon))$ where  $p(y^* + \varepsilon)$  is the probability of PRS sampling within  $\varepsilon$  of the global optimum  $y^*$ 

• PAS (finite):

```
E[N(y^*)] \le 1 + \ln(1/p_1)
```

where  $p_1$  is the probability of PRS sampling the global optimum

[Zabinsky and Smith, 1992] [Zabinsky, Wood, Steel and Baritompa, 1995]



# Pure Adaptive Search

o Theoretically, PAS is LINEAR in dimension

#### • Theorem:

For any global optimization problem in *n* dimensions, with Lipschitz constant at most *L*, and convex feasible region with diameter at most *D*, the expected number of PAS points to get within  $\varepsilon$  of the global optimum is:

$$E[N(y^* + \varepsilon)] \leq 1 + n \ln(LD / \varepsilon)$$

[Zabinsky and Smith, 1992]



# Finite PAS

#### • Analogous LINEARITY result

#### • Theorem:

For an *n* dimensional lattice  $\{1,...,k\}^n$ , with distinct objective function values, the expected number of points for PAS, sampling uniformly, to first reach the global optimum is:

#### $E[N(y^*)] < 2 + n \ln(k)$



[Zabinsky, Wood, Steel and Baritompa, 1995]



# Hesitant Adaptive Search (HAS)

 What if we sample improving level sets with "bettering" probability b(y) and "hesitate" with probability 1-b(y)?

$$E[N(y^{*}+\varepsilon)] = \int_{y^{*}+\varepsilon}^{\infty} \frac{d\rho(t)}{b(t)p(t)}$$

NGINEERING

where  $\rho(t)$  is the underlying sampling distribution and p(t) is the probability of sampling *t* or better

[Bulger and Wood, 1998]

# General HAS

• For a mixed discrete and continuous global optimization problem, the expected value of  $N(y^* + \varepsilon)$ , the variance, and the complete distribution can be expressed using the sampling distribution  $\rho(t)$  and bettering probabilities b(y)

[Wood, Zabinsky and Kristinsdottir, 2001]



# Annealing Adaptive Search (AAS)

- What if we sample from the original feasible region each iteration, but change distributions?
- Generate points over the whole domain using a Boltzmann distribution parameterized by temperature T
  - Boltzmann distribution becomes more concentrated around the global optima as the temperature decreases
  - Temperature is determined by a cooling schedule
- The record values of AAS are dominated by PAS and thus LINEAR in dimension

[Romeijn and Smith, 1994]



## Performance of Annealing Adaptive Search

- The expected number of sample points of AAS is bounded by HAS with a specific b(y)
- Select the next temperature so that the probability of generating an improvement under that Boltzmann distribution is at least 1- $\alpha$ , i.e.,  $P\left(Y_{R(k)+1}^{AAS} < y \mid Y_{R(k)}^{AAS} = y\right) \ge 1 \alpha$
- Then the *expected number of AAS sample points* is LINEAR in dimension

[Shen, Kiatsupaibul, Zabinsky and Smith, 2007]



## AAS with Adaptive Cooling Schedule



# Research Areas

- Develop theoretical analysis of PAS, HAS, AAS for noisy or approximate functions
  - Model approximation or estimation error
  - Characterize impact of error on performance
- Use theory to develop algorithms
  - Approximate sampling from improving sets (as PAS) or Boltzmann distributions (as AAS)
  - Use HAS, with ρ(t) and b(y), to quantify and balance accuracy and efficiency



# Random Search Algorithms

- o Instance-based methods
  - Sequential random search
  - Multi-start and population-based algorithms
- o Model-based methods
  - Importance sampling
  - Cross-entropy [Rubinstein and Kroese, 2004]
  - Model reference adaptive search [Hu, Fu and Marcus, 2007]

[Zlochin, Birattari, Meuleau and Dorigo, 2004]



# Sequential Random Search

- o Stochastic approximation [Robbins and Monro, 1951]
- o Step-size algorithms [Rastrigin, 1960] [Solis and Wets, 1981]
- Simulated annealing [Romeijn and Smith, 1994], [Alrafaei and Andradottir, 1999]
- o Tabu search [Glover and Kochenberger, 2003]
- o Nested partition [Shi and Olafsson, 2000]
- o COMPASS [Hong and Nelson, 2006]
- View these algorithms as Markov chains with
  - Candidate point generators
  - Update procedures



## Use Hit-and-Run to Approximate AAS

- Hit-and-Run is a Markov chain Monte Carlo (MCMC) sampler
  - converges to a uniform distribution [Smith, 1984]
  - in polynomial time O(n<sup>3</sup>) [Lovász, 1999]
  - can approximate any arbitrary distribution by using a filter
- The difficulty of implementing AAS is to generate points directly from a family of Boltzmann distributions



## Hit-and-Run

 Hit-and-Run generates a random direction (uniformly distributed on a hypersphere) and a random point (uniformly distributed on the line)





# Improving Hit-and-Run

 IHR: choose a random direction and a random point, accept only improving points







# Improving Hit-and-Run

 IHR: choose a random direction and a random point, accept only improving points







# Improving Hit-and-Run

 IHR: choose a random direction and a random point, accept only improving points







# Is IHR Efficient in Dimension?

• Theorem:

For any elliptical program in *n* dimensions, the expected number of function evaluations for IHR is:  $O(n^{5/2})$ 

[Zabinsky, Smith, McDonald, Romeijn and Kaufman, 1993]





# Is IHR Efficient in Dimension?

• Theorem:

For any elliptical program in *n* dimensions, the expected number of function evaluations for IHR is:  $O(n^{5/2})$ 

[Zabinsky, Smith, McDonald, Romeijn and Kaufman, 1993]





Use Hit-and-Run to Approximate Annealing Adaptive Search

- Hide-and-Seek: add a probabilistic Metropolis acceptance-rejection criterion to Hit-and-Run to approximate the Boltzmann distribution [Romeijn and Smith, 1994]
- Converges in probability with almost any cooling schedule driving temperature to zero
- AAS Adaptive Cooling Schedule:
  - Temperature values according to AAS to maintain  $1-\alpha$  probability of improvement
  - Update temperature when record values are obtained [Shen, Kiatsupaibul, Zabinsky and Smith, 2007]



# Research Possibilities:

- How long should we execute Hit-and-Run at a fixed temperature?
- What is the benefit of sequential temperatures (warm starts) on convergence rate?
- Hit-and-Run has fast convergence on "well-rounded" sets; how can we modify transition kernel in general?
- Incorporate new Hit-and-Run on mixed integer/continuous sets
  - Discrete hit-and-run [Baumert, Ghate, Kiatsupaibul, Shen, Smith and Zabinsky, 2009]
  - Pattern hit-and-run [Mete, Shen, Zabinsky, Kiatsupaibul and Smith, 2010]



Simulated Annealing with Multi-start: When to Stop or Restart a Run?

 Use HAS to model progress of a heuristic random search algorithm and estimate associated parameters

• Dynamic Multi-start Sequential Search

- If current run appears "stuck" according to HAS analysis, stop and restart
- Estimate probability of achieving y\*+ε based on observed values and estimated parameters
- If probability is high enough, terminate

[Zabinsky, Bulger and Khompatraporn, 2010]



# Meta-control of Interacting-Particle Algorithm

#### o Interacting-Particle Algorithm

- Combines simulated annealing and population based algorithms
- Uses statistical physics and Feynman-Kac formulas to develop selection probabilities

[Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, 2004]

 Meta-control approach to dynamically heat and cool temperature

[Kohn, Zabinsky and Brayman, 2006] [Molvalioglu, Zabinsky and Kohn, 2009]



# Meta-control Approach



#### Research Possibilities

- Combine theoretical analyses with MCMC and metacontrol to:
  - Control the exploration transition probabilities
  - Obtain stopping criterion and quality of solution
  - Relate interacting particles to cloning/splitting
- Combine theoretical analyses and meta-control with model-based approach



Another Research Area: Quantum Global Optimization

- Grover's Adaptive Search can implement
  PAS on a quantum computer
  [Baritompa, Bulger and Wood, 2005]
- Apply research on quantum control theory to global optimization
  - [Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2004]
  - [Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, 2004]



## Optimization of Noisy Functions

- Use random sampling to explore the feasible region and estimate the objective function with replications
- Recognize two sources of noise:
  - Randomness in the sampling distribution
  - Randomness in the objective function
- Adaptively adjust the number of samples and the number of replications



## Noisy Objective Function



#### Noisy Objective Function



## Probabilistic Branch-and-Bound (PBnB)



# Sample N<sup>\*</sup> Uniform Random Points with R<sup>\*</sup> Replications



45

# Use Order Statistics to Assess Range Distribution



## Prune, if Statistically Confident



# Subdivide & Sample Additional Points



48

## Reassess Range Distribution



## If No Pruning, Then Continue ...



# PBnB: Numerical Example





51

#### Research Areas

- Develop theory to tradeoff accuracy with computational effort
- Use theory to develop algorithms that give insight into original problem
  - Global optima and sensitivity
  - Shape of the function or range distribution
- Use interdisciplinary approaches to incorporate feedback



#### Summary

- Theoretical analysis of PAS, HAS, AAS motivates random search algorithms
- Hit-and-Run is a MCMC method to approximate theoretical performance
- Meta-control theory allows adaptation based on observations
- Probabilistic Branch-and-Bound incorporates noisy function evaluations and sampling noise into analysis



Additional Slides for Details on Interacting Particle Algorithm



#### Interacting-Particle Algorithm

 Simulated Annealing: Markov chain Monte Carlo method for approximating a sequence of Boltzmann distributions

$$\eta_t(dx) = \frac{e^{-f(x)/T_t}}{\int\limits_{S} e^{-f(y)/T_t} dy} dx$$

• Population-based Algorithms: simulate a distribution (e.g. Feynman-Kac annealing model) such that  $E_{\eta_t}(f) \rightarrow y^*$  as  $t \rightarrow \infty$ 



### Interacting-Particle Algorithm

- o Initialization: Sample the initial locations  $y_0^i$ for particle i=1,...,N from the distribution  $\eta_0^i$ For t=0,1,...,
- N-particle exploration: Move particle i=1,...,Nto location  $\hat{y}_t^i$  with probability distribution  $E(y_t^i, d\hat{y}_t^i)$
- **Temperature Parameter Update:**  $T_t = (1 + \varepsilon_t)T_{t-1}, \quad \varepsilon_t \ge -1$
- N-particle selection: Set the particles' locations  $y_{t+1}^k, i = 1, ..., N$

 $y_{t+1}^k = \hat{y}_t^i$  with probability

$$e^{-f(\hat{y}_t^i)/T_t}$$

$$\sum_{t=1}^{N} e^{-f(\hat{y}_t^j)/T_t}$$

j=1



Initialization: Sample N=10 points uniformly on S

#### **N-particle exploration:**









# Multi-start or Population-based Algorithms

- Multi-start and clustering algorithms [Rinnooy Kan and Timmer, 1987] [Locatelli and Schoen, 1999]
- o Genetic algorithms [Davis, 1991]
- o Evolutionary programming [Bäck, Fogel and Michalewicz, 1997]
- o Particle swarm optimization [Kennedy, Eberhart and Shi, 2001]
- o Interacting particle algorithm [del Moral, 2004]

