Some Theory Behind Algorithms for Stochastic Optimization

Zelda Zabinsky

University of Washington Industrial and Systems Engineering

May 24, 2010 NSF Workshop on Simulation Optimization

Overview

- Problem formulation
- Theoretical performance of stochastic adaptive search methods
- Algorithms based on Hit-and-Run to approximate theoretical performance
- Incorporate random sampling and noisy objective functions

What is Stochastic Optimization?

- Randomness in algorithm AND/OR in function evaluation
- o Related terms:
 - Simulation optimization
 - Optimization via simulation
 - Random search methods
 - Stochastic approximation
 - Stochastic programming
 - Design of experiments
 - Response surface optimization

Problem Formulation

- Minimize f(x) subject to x in S
- o x: n variables, continuous and/or discrete
- f(x): objective function, could be black-box, ill-structured, noisy
- S: feasible set, nonlinear constraints, or membership oracle
- o Assume an optimum x^* exists, with $y^* = f(x^*)$

Example Problem Formulations

- Maximize expected value subject to standard deviation < b
- Minimize standard deviation subject to expected value > t
- Minimize CVaR (conditional value at risk)
- Minimize sum of least squares from data
- Maximize probability of satisfying noisy constraints

Approximate or Estimate f(x)?

- o Approximate a complicated function:
 - Taylor series expansion
 - Finite element analysis
 - Computational fluid dynamics
- Estimate a noisy function with:
 - Replications
 - Length of discrete-event simulation run

Noisy Objective Function

Scenario-based Recourse Function

Local versus Global Optima

 "Local" optima are relative to the neighborhood and algorithm

Local versus Global Optima

 "Local" optima are relative to the neighborhood and algorithm

Research Question: What Do We Really Want?

- o Do we really just want the optimum?
- What about sensitivity?
- o Do we want to approximate the entire surface?
- o Multi-criteria?
- o Role of objective function and constraints?
- Where does randomness appear?

How can we solve...?

IDEAL Algorithm:

- Optimizes any function quickly and accurately
- Provides information on how "good" the solution is
- Handles black-box and/or noisy functions, with continuous and/or discrete variables
- Is easy to implement and use

Theoretical Performance of Stochastic Adaptive Search

- What kind of performance can we hope for?
- Global optimization problems are NP-hard
- Tradeoff between accuracy and computation
- Sacrifice guarantee of optimality for speed in finding a "good" solution
- o Three theoretical constructs:
 - Pure adaptive search (PAS)
 - Hesitant adaptive search (HAS)
 - Annealing adaptive search (AAS)

Performance of Two Simple Methods

- o **Grid Search**: Number of grid points is $O((L/\varepsilon)^n)$, where L is the Lipschitz constant, n is the dimension, and ε is distance to the optimum
- o **Pure Random Search**: Expected number of points is $O(1/p(y^*+\varepsilon))$, where $p(y^*+\varepsilon)$ is the probability of sampling within ε of the optimum y^*
- Complexity of both is exponential in dimension

Pure Adaptive Search (PAS)

 PAS: chooses points uniformly distributed in improving level sets

Bounds on Expected Number of Iterations

o PAS (continuous):

$$E[N(y^*+\varepsilon)] \leq 1 + \ln(1/p(y^*+\varepsilon))$$

where $p(y^*+\varepsilon)$ is the probability of PRS sampling within ε of the global optimum y^*

o PAS (finite):

$$E[N(y^*)] \le 1 + ln(1/p_1)$$

where p_1 is the probability of PRS sampling the global optimum

[Zabinsky and Smith, 1992] [Zabinsky, Wood, Steel and Baritompa, 1995]

Pure Adaptive Search

- Theoretically, PAS is LINEAR in dimension
- o Theorem:

For any global optimization problem in n dimensions, with Lipschitz constant at most L, and convex feasible region with diameter at most D, the expected number of PAS points to get within ε of the global optimum is:

$$E[N(y^*+\varepsilon)] \leq 1 + n \ln(LD / \varepsilon)$$

[Zabinsky and Smith, 1992]

Finite PAS

Analogous LINEARITY result

o Theorem:

For an n dimensional lattice $\{1,...,k\}^n$, with distinct objective function values, the expected number of points for PAS, sampling uniformly, to first reach the global optimum is:

$$E[N(y^*)] < 2 + n ln(k)$$

[Zabinsky, Wood, Steel and Baritompa, 1995]

Hesitant Adaptive Search (HAS)

 What if we sample improving level sets with "bettering" probability b(y) and "hesitate" with probability 1-b(y)?

$$E[N(y^*+\varepsilon)] = \int_{y^*+\varepsilon}^{\infty} \frac{d\rho(t)}{b(t)p(t)}$$

where $\rho(t)$ is the underlying sampling distribution and p(t) is the probability of sampling t or better

General HAS

o For a mixed discrete and continuous global optimization problem, the expected value of $N(y^*+\varepsilon)$, the variance, and the complete distribution can be expressed using the sampling distribution $\rho(t)$ and bettering probabilities b(y)

[Wood, Zabinsky and Kristinsdottir, 2001]

Annealing Adaptive Search (AAS)

- What if we sample from the original feasible region each iteration, but change distributions?
- Generate points over the whole domain using a Boltzmann distribution parameterized by temperature T
 - Boltzmann distribution becomes more concentrated around the global optima as the temperature decreases
 - Temperature is determined by a cooling schedule
- The record values of AAS are dominated by PAS and thus LINEAR in dimension

[Romeijn and Smith, 1994]

Performance of Annealing Adaptive Search

- The expected number of sample points of AAS is bounded by HAS with a specific b(y)
- o Select the next temperature so that the probability of generating an improvement under that Boltzmann distribution is at least $1-\alpha$, i.e.,

$$P\left(Y_{R(k)+1}^{AAS} < y \mid Y_{R(k)}^{AAS} = y\right) \ge 1 - \alpha$$

 Then the expected number of AAS sample points is LINEAR in dimension

[Shen, Kiatsupaibul, Zabinsky and Smith, 2007]

AAS with Adaptive Cooling Schedule

Research Areas

- Develop theoretical analysis of PAS, HAS, AAS for noisy or approximate functions
 - Model approximation or estimation error
 - Characterize impact of error on performance

- Use theory to develop algorithms
 - Approximate sampling from improving sets (as PAS) or Boltzmann distributions (as AAS)
 - Use HAS, with $\rho(t)$ and b(y), to quantify and balance accuracy and efficiency

Random Search Algorithms

- Instance-based methods
 - Sequential random search
 - Multi-start and population-based algorithms
- Model-based methods
 - Importance sampling
 - Cross-entropy [Rubinstein and Kroese, 2004]
 - Model reference adaptive search [Hu, Fu and Marcus, 2007]

[Zlochin, Birattari, Meuleau and Dorigo, 2004]

Sequential Random Search

- Stochastic approximation [Robbins and Monro, 1951]
- o Step-size algorithms [Rastrigin, 1960] [Solis and Wets, 1981]
- Simulated annealing
 [Romeijn and Smith, 1994], [Alrafaei and Andradottir, 1999]
- o Tabu search [Glover and Kochenberger, 2003]
- Nested partition [Shi and Olafsson, 2000]
- o COMPASS [Hong and Nelson, 2006]
- View these algorithms as Markov chains with
 - Candidate point generators
 - Update procedures

Use Hit-and-Run to Approximate AAS

- Hit-and-Run is a Markov chain Monte Carlo (MCMC) sampler
 - converges to a uniform distribution
 [Smith, 1984]
 - in polynomial time O(n³)
 [Lovász, 1999]
 - can approximate any arbitrary distribution by using a filter
- The difficulty of implementing AAS is to generate points directly from a family of Boltzmann distributions

Hit-and-Run

 Hit-and-Run generates a random direction (uniformly distributed on a hypersphere) and a random point (uniformly distributed on the line)

Improving Hit-and-Run

 IHR: choose a random direction and a random point, accept only improving points

Improving Hit-and-Run

 IHR: choose a random direction and a random point, accept only improving points

Improving Hit-and-Run

 IHR: choose a random direction and a random point, accept only improving points

Is IHR Efficient in Dimension?

o Theorem:

For any elliptical program in n dimensions, the expected number of function evaluations for IHR is: $O(n^{5/2})$

[Zabinsky, Smith, McDonald, Romeijn and Kaufman, 1993]

Is IHR Efficient in Dimension?

o Theorem:

For any elliptical program in n dimensions, the expected number of function evaluations for IHR is: $O(n^{5/2})$

[Zabinsky, Smith, McDonald, Romeijn and Kaufman, 1993]

Use Hit-and-Run to Approximate Annealing Adaptive Search

- Hide-and-Seek: add a probabilistic Metropolis acceptance-rejection criterion to Hit-and-Run to approximate the Boltzmann distribution
 [Romeijn and Smith, 1994]
- Converges in probability with almost any cooling schedule driving temperature to zero
- o AAS Adaptive Cooling Schedule:
 - Temperature values according to AAS to maintain $1-\alpha$ probability of improvement
 - Update temperature when record values are obtained [Shen, Kiatsupaibul, Zabinsky and Smith, 2007]

Research Possibilities:

- o How long should we execute Hit-and-Run at a fixed temperature?
- What is the benefit of sequential temperatures (warm starts) on convergence rate?
- Hit-and-Run has fast convergence on "well-rounded" sets; how can we modify transition kernel in general?
- Incorporate new Hit-and-Run on mixed integer/continuous sets
 - Discrete hit-and-run
 [Baumert, Ghate, Kiatsupaibul, Shen, Smith and Zabinsky, 2009]
 - Pattern hit-and-run
 [Mete, Shen, Zabinsky, Kiatsupaibul and Smith, 2010]

Multi-start or Population-based Algorithms

- o Multi-start and clustering algorithms
 [Rinnooy Kan and Timmer, 1987] [Locatelli and Schoen, 1999]
- o Genetic algorithms [Davis, 1991]
- Evolutionary programming [Bäck, Fogel and Michalewicz, 1997]
- o Particle swarm optimization [Kennedy, Eberhart and Shi, 2001]
- o Interacting particle algorithm [del Moral, 2004]

Simulated Annealing with Multi-start: When to Stop or Restart a Run?

- Use HAS to model progress of a heuristic random search algorithm and estimate associated parameters
- Dynamic Multi-start Sequential Search
 - If current run appears "stuck" according to HAS analysis, stop and restart
 - Estimate probability of achieving $y^* + \varepsilon$ based on observed values and estimated parameters
 - If probability is high enough, terminate

[Zabinsky, Bulger and Khompatraporn, 2010]

Another Approach: Meta-control of Interacting-Particle Algorithm

- Interacting-Particle Algorithm
 - Combines simulated annealing and population based algorithms
 - Uses statistical physics and Feynman-Kac formulas to develop selection probabilities

[Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, 2004]

 Meta-control approach to dynamically heat and cool temperature

[Kohn, Zabinsky and Brayman, 2006] [Molvalioglu, Zabinsky and Kohn, 2009]

Interacting-Particle Algorithm

 Simulated Annealing: Markov chain Monte Carlo method for approximating a sequence of Boltzmann distributions

$$\eta_t(dx) = \frac{e^{-f(x)/T_t}}{\int_{S} e^{-f(y)/T_t} dy} dx$$

 Population-based Algorithms: simulate a distribution (e.g. Feynman-Kac annealing model)such that

$$E_{\eta_t}(f) \to y^* \text{ as } t \to \infty$$

Interacting-Particle Algorithm

- o Initialization: Sample the initial locations y_0^i for particle i=1,...,N from the distribution η_0 For t=0,1,...,
- o N-particle exploration: Move particle i=1,...,N to location \hat{y}_t^i with probability distribution $E(y_t^i,d\hat{y}_t^i)$
- o Temperature Parameter Update:

$$T_t = (1 + \varepsilon_t) T_{t-1}, \qquad \varepsilon_t \ge -1$$

o N-particle selection: Set the particles' locations y_{t+1}^k , i = 1,...,N

$$y_{t+1}^k = \hat{y}_t^i$$
 with probability

$$\frac{e^{-f(\hat{\mathbf{y}}_t^i)/T_t}}{\sum_{j=1}^N e^{-f(\hat{\mathbf{y}}_t^j)/T_t}}$$

Initialization: Sample N=10 points uniformly on S

N-particle exploration:

Move particles from ____ to

using Markov kernel E

Initialization: Sample N=10 points uniformly on S

N-particle exploration:

Move particles from _ to

 \bigstar using Markov kernel E Evaluate f(.)

Lower $f(.) \leftarrow \rightarrow$ Higher f(.)

Initialization: Sample N=10 points uniformly on S

N-particle exploration:

Move particles from _ to

 \bigstar using Markov kernel E Evaluate f(.)

Lower f(.) \longleftarrow Higher f(.)

N-particle selection:

Move particles from \uparrow to

according to their objective function values

Initialization: Sample N=10 points uniformly on S

N-particle exploration:

Move particles from _ to

 \bigstar using Markov kernel E Evaluate f(.)

Lower $f(.) \leftarrow \rightarrow$ Higher f(.)

N-particle selection:

Move particles from \uparrow to

according to their objective function values

Meta-control Approach

Research Possibilities

- Combine theoretical analyses with MCMC and metacontrol to:
 - Control the exploration transition probabilities
 - Obtain stopping criterion and quality of solution
 - Relate interacting particles to cloning/splitting
- Combine theoretical analyses and meta-control with model-based approach

Another Research Area: Quantum Global Optimization

- Grover's Adaptive Search can implement PAS on a quantum computer [Baritompa, Bulger and Wood, 2005]
- Apply research on quantum control theory to global optimization
 - Butkovskiy and Samoilenko, Control of Quantum-Mechanical Processes and Systems, 1990
 - Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2004
 - Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, 2004

Optimization of Noisy Functions

- Use random sampling to explore the feasible region and estimate the objective function with replications
- o Recognize two sources of noise:
 - Randomness in the sampling distribution
 - Randomness in the objective function
- Adaptively adjust the number of samples and the number of replications

Noisy Objective Function

49

Noisy Objective Function

Probabilistic Branch-and-Bound (PBnB)

Sample N* Uniform Random Points with R* Replications

Use Order Statistics to Assess Range Distribution

Prune, if Statistically Confident

Subdivide & Sample Additional Points

Reassess Range Distribution

If No Pruning, Then Continue ...

PBnB:

Numerical Example

Research Areas

- Develop theory to tradeoff accuracy with computational effort
- Use theory to develop algorithms that give insight into original problem
 - Global optima and sensitivity
 - Shape of the function or range distribution
- Use interdisciplinary approaches to incorporate feedback

Summary

- Theoretical analysis of PAS, HAS, AAS motivates random search algorithms
- Hit-and-Run is a MCMC method to approximate theoretical performance
- Meta-control theory allows adaptation based on observations
- Probabilistic Branch-and-Bound incorporates noisy function evaluations and sampling noise into analysis

