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From design to control
Design problems
– Where do I locate fire houses?
– How large should my buffers be in my job shop?
– What is the best mix of aircraft for my fleet?
– What is the cost of new driver/pilot work rules?

Control problems
– Which driver should be assigned to move a load of freight?
– How many spare parts should I order?  Where should they be 

stored?
– Which power generating plants should I turn on, and when, in 

the presence of variable wind, solar, rainfall, prices and weather.

What is the difference?
– When is the design of a physical system different from finding a 

policy to manage a system?



Stochastic optimization
Optimal design
– Find the best design

Optimal control
– Find the best policy
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Uncertainty in:
Economy
Mix of jobs
Demand for a product

Design variables
Size of manufacturing plant
Fleet size/mix
Work rules
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Stochastic process:
Wind, solar, rainfall
Arrival of customers
Failure of equipment

Policies
When to replenish inventory
Choosing the best pilot/driver
When to generate energy



Algorithms
How do we solve stochastic design problems?
– Stochastic search 

• Stochastic approximation methods (with and without gradients) 
– Metaheuristics

• Simulated annealing, genetic algorithms
– Simulation optimization

• OCBA, LL(B), Compass, response surface methods, knowledge 
gradient, …

How do we solve stochastic control problems
– Dynamic programming via Bellman’s equation

– Approximate dynamic programming, reinforcement learning
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Algorithms
Classical approximate dynamic programming
– We can estimate the value of being in a state using

or

where

– Now we might use recursive least squares to update      .

But what if we simply view     as a static design 
parameter?
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Policies
Policies come in four fundamental flavors:
– Myopic policies

– Look-ahead policies (tree search, rolling horizon procedures)

– Policy function approximations 

– Policies based on value function approximations:
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Thoughts
Differences between simulation-optimization (and 
stochastic search) and approximate dynamic 
programming (sequential optimization) are primarily 
cosmetic:
– ADP may use bootstrapping, where value of being in state      

depends on approximation             of the downstream state (also 
known as TD(0) or TD(λ)).

– Simulation-optimization/stochastic search does not approximate 
the value of being in a state. 

– Simulation-optimization may use response surface methods to 
approximate                         , which is similar to a value function 
approximation.

– Policy search (using policy function approximations) is 
equivalent to stochastic search.

– Simulation-optimization often assumes discrete alternatives, and 
expensive, noisy measurements.  
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