Warren B. Powell

Department of Operations Research and Financial Engineering Princeton University http://www.castlelab.princeton.edu/

Optimal learning

- Optimal learning refers broadly to the challenge of efficiently collecting information when observations are "expensive" (depends on the context) and noisy.
- Optimal learning arises in different communities motivated by different problem settings (discrete event simulation, laboratory experiments, field experiments), in both off-line and on-line settings.
- We have been pursuing the generality of a simple idea called the *knowledge gradient* which makes measurements based on the marginal value of an observation. For an early tutorial, see W. B. Powell, P. I. Frazier, "Optimal Learning: A Tutorial"

The Knowledge Gradient

• The knowledge gradient (the value of measuring *x*) is given by

$$V_x^{KG,n} = E\left\{\max_y F(y, K^{n+1}(x))\right\} - \max_y F(y, K^n)$$

where

y = Implementation decision

 K^n = Our state of knowledge after *n* measurements.

 $F(y, K^n)$ = Value of making decision y given knowledge K^n .

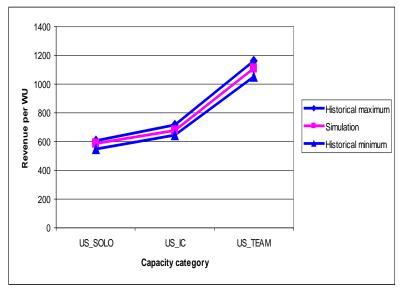
 x^n = Measurement decision after *n* measurements.

 W_x^n = Observation resulting from observing $x^n = x$

 $K^{n+1}(x)$ = Updated distribution of belief about costs after observing W_x^{n+1}

- For offline problems, it is the only stationary policy that is myopically and asymptotically optimal.
- Value of information can be nonconcave. KG(*) algorithm provides a simple strategy to adapt to this situation.

The Knowledge Gradient


- We have been exploring a range of problems:
 - Offline and online problems
 - Increasing complexity of types of measurements
 - Discrete, scalar continuous, multidimensional continuous, subset selection, categorical
 - Increasing generality in the representation of the belief
 - Independent beliefs
 - Correlated beliefs (known covariance function)
 - Parametric models (linear regression)
 - Nonparametric models
 - Learning on graphs, learning parameters of linear programs, value functions for MDP's, dosage strategies,
- For more information, see

http://www.castlelab.princeton.edu/optimallearning.htm

Other challenges

- How do we simulate intelligence?
 - Often we need to make intelligent decisions within a simulator (optimization).
 - Simulation community tends to focus on tuning myopic policies.
 - Approximate dynamic programming offers a simulation-friendly strategy for optimizing over time, but can introduce difficult machine learning challenges.
 - Recent chapter lists nine types of policies (<u>click here</u>).
 - Does every problem need to be customized? What is the hope of general purpose modeling and algorithmic strategies?

