

Metamodeling WHAT?

Jeffrey W. Herrmann, 2010 Simulation Optimization Workshop

- To avoid running expensive simulation models during prediction or optimization.
- To gain insight into and understanding of system response to drivers, variable interactions, and sensitivity.

- $X \rightarrow simulation \rightarrow Y \rightarrow function \rightarrow Z$
- Y = f(X) is an object.
- Z = g(Y) = g(f(X)) = h(X).
- Metamodel $Y \approx f^{(X)}$
- Metamodel $Z \approx h^{(X)}$
 - Metamodels depend upon model type, experiment design (samples), fitting technique

- Problem instance I
- I → optimal objective function value v*(I)
 Metamodel v* ≈ a^(I)
- I → optimal solution x*(I)
 Metamodel x* ≈ b^(I)
- Target T
- I, T → satisfactory solution x(I,T)
 Metamodel x ≈ c^(I,T)

- Determining when it is better to create metamodel of simulation output Y or better to create metamodel of objective (constraint) function Z.
- Ability to prescribe metamodeling technique based on problem characteristics.
- Better understanding of screening strategies that can identify most important design variables.
- Exploring link between sampling to create metamodels and sampling to generate next point in a search algorithm.
- Improving global fit of metamodels used to cover a range of scenarios f (X_1, X_2) , where X_1 is the design and X_2 is the scenario.

- Creating useful inverse metamodels to find good points quickly and to generate one or more good initial points for search algorithms.
- Creating universal approximators (metamodels with continuous, discrete/integer, and categorical variables).
 - Learning appropriate distance metrics.
- Developing good hybrids on global metamodels and local metamodels.
- Expand expected improvement to techniques beyond spatial correlation; improve theoretical and empirical understanding of expected improvement techniques.

- Defining and measuring robustness of metamodels for prediction, optimization, and sensitivity
 - For example, linear interpolation is robust ("fit for use") across many classes of responses.
- Developing metamodels for complex objects: schedules, networks, probability distributions, e.g.
 - How to parameterize an object (e.g., using the dimensions of an object instead of the thousands of nodes in a finite element model).
- Expand expected improvement to techniques beyond spatial correlation; improve theoretical and empirical understanding of expected improvement techniques.

Barriers to Practice

- Understanding metamodels
 - Managers' comprehension
 - Analysts' comprehension of assumptions of metamodeling procedure, avoid using metamodels outside of range of sample points.
 - When to use which type of metamodel
- High-dimensional problems require many sample points.
- Technology transfer
 - No software developers to build robust implementation of new methods to extend commercial software
 - Lack of good examples to show applicability to other problems

- Supply chain management, engineering design, transportation networks, health care operations, call centers, and others.
- WSC Berlin sessions that include papers on simulation optimization, machine learning, and evolutionary computation.

- Y = f(X), the response of a stochastic simulation model, is a random variable.
- Given X, we would like to have a metamodel : $X \rightarrow (f^{(X)}, \sum_{1}(X), \sum_{2}(X))$
 - $f^{(X)} = estimated response$
 - $-\sum_{1} (X) = estimate of noise (aleatory uncertainty)$
 - $-\sum_{2} (X) = estimate of ignorance (epistemic uncertainty)$
- Such a metamodel would provide a better understanding of how to pick the next point to sample.

- Problem instance I, target performance T
- Want X : $f(X) \ge T$ (for maximization)
- I, T \rightarrow satisfactory solution X(I,T)
 - Metamodel $X \approx c(I,T)$
- Example
- Challenges
 - Design of experiments over problem instances and targets
 - Metamodels that output values for discrete variables depend upon structure; cf. nonlinear discriminant analysis
 - Metamodels that output complicated structures: schedules, network designs, e.g.

- Problem min c^T : x: Ax $\leq b$, x ≥ 0
- instance I = (A, b, c)

- Challenges
 - Under certain conditions, the samples used to generate
 f^(X) can be used to fit c^(I,T) (Barton, 2006).
 - Design of experiments over problem instances and targets
 - Metamodels that output values for discrete variables depend upon structure; cf. nonlinear discriminant analysis
 - Metamodels that output complicated structures: schedules, network designs, e.g.