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Why metamodel?

• To avoid running expensive simulation models 
during prediction or optimization.

• To gain insight into and understanding of 
system response to drivers, variable 
interactions, and sensitivity.
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Forward Metamodels

• X →  simulation →  Y →  function → Z
• Y = f(X) is an object.
• Z = g(Y) = g(f(X)) = h(X).
• Metamodel Y ≈  f ˆ(X)
• Metamodel Z ≈  hˆ(X)

– Metamodels depend upon model type, experiment 
design (samples), fitting technique
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Inverse Metamodels

• Problem instance I
• I → optimal objective function value v*(I)

– Metamodel v* ≈ aˆ(I)
• I → optimal solution x*(I)

– Metamodel x* ≈ bˆ(I)
• Target T
• I, T →  satisfactory solution x(I,T)

– Metamodel x ≈ cˆ(I,T)
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Research priorities
• Determining when it is better to create metamodel of 

simulation output Y or better to create metamodel of objective 
(constraint) function Z.

• Ability to prescribe metamodeling technique based on problem 
characteristics.

• Better understanding of screening strategies that can identify 
most important design variables.

• Exploring link between sampling to create metamodels and 
sampling to generate next point in a search algorithm.

• Improving global fit of metamodels used to cover a range of 
scenarios f ˆ(X1, X2), where X1  is the design and X2  is the 
scenario.
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Research priorities
• Creating useful inverse metamodels to find good points 

quickly and to generate one or more good initial points for 
search algorithms.

• Creating universal approximators (metamodels with 
continuous, discrete/integer, and categorical variables).
– Learning appropriate distance metrics.

• Developing good hybrids on global metamodels and local 
metamodels.

• Expand expected improvement to techniques beyond spatial 
correlation; improve theoretical and empirical understanding 
of expected improvement techniques.
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Research priorities
• Defining and measuring robustness of metamodels for 

prediction, optimization, and sensitivity
– For example, linear interpolation is robust (“fit for use”) across many 

classes of responses.

• Developing metamodels for complex objects: schedules, 
networks, probability distributions, e.g.
– How to parameterize an object (e.g., using the dimensions of an object 

instead of the thousands of nodes in a finite element model).

• Expand expected improvement to techniques beyond spatial 
correlation; improve theoretical and empirical understanding 
of expected improvement techniques.
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Barriers to Practice
• Understanding metamodels

– Managers’ comprehension
– Analysts’ comprehension of assumptions of metamodeling 

procedure, avoid using metamodels outside of range of 
sample points.

– When to use which type of metamodel
• High-dimensional problems require many sample points.
• Technology transfer

– No software developers to build robust implementation of 
new methods to extend commercial software

– Lack of good examples to show applicability to other 
problems
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Next steps
• Create examples of creating and using metamodels for a 

variety of problem/model types
– Supply chain management, engineering design, transportation 

networks, health care operations, call centers, and others.

• WSC Berlin sessions that include papers on simulation 
optimization, machine learning, and evolutionary computation.
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Metamodeling Uncertainty

• Y = f(X), the response of a stochastic simulation model, is a 
random variable.

• Given X, we would like to have a 
metamodel : X → (f ˆ(X), ∑1ˆ(X), ∑2ˆ(X))
– f ˆ(X) = estimated response
– ∑1ˆ(X) = estimate of noise (aleatory uncertainty)
– ∑2ˆ (X) = estimate of ignorance (epistemic uncertainty)

• Such a metamodel would provide a better understanding of 
how to pick the next point to sample.
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Inverse Metamodels

• Problem instance I, target performance T
• Want X : f(X) ≥ T (for maximization)
• I, T →  satisfactory solution X(I,T)

– Metamodel X ≈ cˆ(I,T)
• Example 
• Challenges

– Design of experiments over problem instances and targets 
– Metamodels that output values for discrete variables 

depend upon structure; cf. nonlinear discriminant analysis
– Metamodels that output complicated structures: schedules, 

network designs, e.g.
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Inverse Metamodels

• Problem min cT: x: Ax ≤ b, x ≥ 0
• instance I = (A, b, c)
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Inverse Metamodels

• Challenges
– Under certain conditions, the samples used to generate 

f ˆ(X)  can be used to fit cˆ(I,T) (Barton, 2006).
– Design of experiments over problem instances and targets 
– Metamodels that output values for discrete variables 

depend upon structure; cf. nonlinear discriminant analysis
– Metamodels that output complicated structures: schedules, 

network designs, e.g.
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