Stochastically Constrained Optimization via Simulation

Seong-Hee Kim

Georgia Institute of Technology

December 4, 2010

Seong-Hee Kim: Stochastically Constrained Optimization via Simulation

Georgia Institute of Technology

• 3 b

< □ > < 同 >

Problem

Notation

- **x**: a solution with discrete decision variables.
- Θ : the set of possible solutions **x**.

Want to find:

$$\begin{aligned} & \operatorname{argmin}_{\mathbf{x}\in\Theta} g(\mathbf{x}) = \mathsf{E}_{\mathbf{x}}[Y(\mathbf{x})] \\ & \operatorname{subject} \text{ to } h(\mathbf{x}) = \mathsf{E}_{\mathbf{x}}[C(\mathbf{x})] \geq q \end{aligned}$$

- $g(\mathbf{x})$ and $h(\mathbf{x})$ are estimated only through simulation.
- Existing OvS algorithms are designed without consideration for stochastic constraints.

< /₽ > < ∋ >

$\mathsf{Set}\ \mathsf{Up}$

- One replication generates one observation $Y(\mathbf{x})$ and $C(\mathbf{x})$.
- At search iteration k, a number of solutions are generated and a number of replications are made for each generated solution.
- Let $n_k(\mathbf{x})$ represent the total number of replications made up to search iteration k for \mathbf{x} .
- ► Let v_k(x) represent the number of visits to x made up to search iteration k.

▲ 伊 ▶ ▲ 三 ▶

- Define the penalty factor, $\lambda_{v_k}(\mathbf{x})$ as

$$\lambda_{v_k}(\mathbf{x}) = \left\{ egin{array}{ll} \lambda_{v_k-1}(\mathbf{x}) imes heta_1, & ext{if } \widehat{h}_{v_k}(\mathbf{x}) \geq q; \ \lambda_{v_k-1}(\mathbf{x}) imes heta_2, & ext{if } \widehat{h}_{v_k}(\mathbf{x}) < q, \end{array}
ight.$$

where $\lambda_0(\mathbf{x}) = 1$ for all $\mathbf{x} \in \Theta$, $0 < \theta_1 < 1$, and $\theta_2 > 1$.

< ロ > < 同 > < 三 >

Penalized Objective

The penalized objective at search iteration k is defined as

$$Z_{
u_k}(\mathbf{x}) = \widehat{g}_{
u_k}(\mathbf{x}) + \lambda_{
u_k}(\mathbf{x}) imes \max\{0, q - \widehat{h}_{k_{
u}}(\mathbf{x})\} imes P,$$

where P is a penalty constant and can be one.

Why does it work?

▶ If an OvS algorithms satisfy $v_k(\mathbf{x}) \to \infty$ and $n_k(\mathbf{x}) \to \infty$ as $k \to \infty$, then

$$Z_{v_k}(\mathbf{x}) \to g(\mathbf{x})$$
 w.p. 1, if \mathbf{x} is strictly feasible; and $Z_{k_k}(\mathbf{x}) \to \infty$ w.p. 1, otherwise.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constraint: Contaminant spill detection reliability $h(\mathbf{x}) \ge 0.8$. Consider a solution with $h(\mathbf{x}) = 0.65$ and set P = 1.

• Observe
$$\hat{h}_1(\mathbf{x}) = 0.75 \ (\theta_1 = 0.1 \text{ and } \theta_2 = 10).$$

$$\lambda_1(\mathbf{x}) = \lambda_0(\mathbf{x}) \times \theta_2 = 1 \times 10 = 10.$$

•
$$\lambda_1(\mathbf{x}) \times \max\{0, q - \hat{h}_1(\mathbf{x})\} = 10 \times \max\{0, 0.10\} = 1.$$

Seong-Hee Kim: Stochastically Constrained Optimization via Simulation

Constraint: Contaminant spill detection reliability $h(\mathbf{x}) \ge 0.8$. Consider a solution with $h(\mathbf{x}) = 0.65$ and set P = 1.

• Observe
$$\hat{h}_2(\mathbf{x}) = 0.70 \ (\theta_1 = 0.1 \text{ and } \theta_2 = 10).$$

$$\lambda_2(\mathbf{x}) = \lambda_1(\mathbf{x}) \times \theta_2 = 10 \times 10 = 100.$$

• $\lambda_2(\mathbf{x}) \times \max\{0, q - \hat{h}_2(\mathbf{x})\} = 100 \times \max\{0, 0.10\} = 10.$

Seong-Hee Kim: Stochastically Constrained Optimization via Simulation

Constraint: Contaminant spill detection reliability $h(\mathbf{x}) \ge 0.8$. Consider a solution with $h(\mathbf{x}) = 0.65$ and set P = 1.

• Observe
$$\hat{h}_3(\mathbf{x}) = 0.84$$
 ($\theta_1 = 0.1$ and $\theta_2 = 10$).

$$\lambda_3(\mathbf{x}) = \lambda_2(\mathbf{x}) \times \theta_1 = 100 \times 0.1 = 10.$$

•
$$\lambda_3(\mathbf{x}) \times \max\{0, q - h_3(\mathbf{x})\} = 10 \times \max\{0, -0.04\} = 0.$$

Seong-Hee Kim: Stochastically Constrained Optimization via Simulation

Constraint: Contaminant spill detection reliability $h(\mathbf{x}) \ge 0.8$. Consider a solution with $h(\mathbf{x}) = 0.65$ and set P = 1.

• Observe
$$\hat{h}_4(\mathbf{x}) = 0.65 \ (\theta_1 = 0.1 \text{ and } \theta_2 = 10).$$

$$\lambda_4(\mathbf{x}) = \lambda_3(\mathbf{x}) \times \theta_2 = 10 \times 10 = 100.$$

•
$$\lambda_4(\mathbf{x}) \times \max\{0, q - \hat{h}_4(\mathbf{x})\} = 100 \times \max\{0, 0.15\} = 15.$$

Seong-Hee Kim: Stochastically Constrained Optimization via Simulation

Constraint: Contaminant spill detection reliability $h(\mathbf{x}) \ge 0.8$. Consider a solution with $h(\mathbf{x}) = 0.65$ and set P = 1.

- Observe $\hat{h}_5(\mathbf{x}) = 0.60 \ (\theta_1 = 0.1 \text{ and } \theta_2 = 10).$
- $\lambda_5(\mathbf{x}) = \lambda_4(\mathbf{x}) \times \theta_2 = 100 \times 10 = 1000.$
- ► $\lambda_5(\mathbf{x}) \times \max\{0, q \hat{h}_5(\mathbf{x})\} = 1000 \times \max\{0, 0.20\} = 200.$

Seong-Hee Kim: Stochastically Constrained Optimization via Simulation

Constraint: Contaminant spill detection reliability $h(\mathbf{x}) \ge 0.8$. Consider a solution with $h(\mathbf{x}) = 0.65$ and set P = 1.

- Observe $\hat{h}_6(\mathbf{x}) = 0.65$ ($\theta_1 = 0.1$ and $\theta_2 = 10$).
- $\lambda_6(\mathbf{x}) = \lambda_5(\mathbf{x}) \times \theta_2 = 1000 \times 10 = 10000.$
- ► $\lambda_6(\mathbf{x}) \times \max\{0, q \hat{h}_6(\mathbf{x})\} = 10000 \times \max\{0, 0.15\} = 1500.$

Seong-Hee Kim: Stochastically Constrained Optimization via Simulation

Multiple Constraints

$$egin{argmin} {}_{\mathbf{x}\in\Theta} g(\mathbf{x}) = \mathsf{E}_{\mathbf{x}}[Y(\mathbf{x})], \ {}_{\mathrm{subject to }} h^i(\mathbf{x}) = \mathsf{E}_{\mathbf{x}}[C_i(\mathbf{x})] \geq q_i \quad i=1,2,\ldots,s \end{split}$$

$$\lambda_{\nu_k}^i(\mathbf{x}) = \left\{ egin{array}{ll} \lambda_{
u_k-1}^i(\mathbf{x}) imes heta_1, & ext{if } \widehat{h}_{
u_k}^i(\mathbf{x}) \geq q^i; \ \lambda_{
u_k-1}^i(\mathbf{x}) imes heta_2, & ext{if } \widehat{h}_{
u_k}^i(\mathbf{x}) > q^i, \end{array}
ight.$$

where $\lambda_0^i(\mathbf{x}) = 1$ for all $\mathbf{x} \in \Theta$, $0 < \theta_1 < 1$, and $\theta_2 > 1$.

$$Z_{m{v}_k}(\mathbf{x}) = \widehat{g}_{m{v}_k}(\mathbf{x}) + \sum_{i=1}^s \lambda^i_{m{v}_k}(\mathbf{x}) imes \max\{0, q - \widehat{h}^i_{m{v}_k}(\mathbf{x})\} imes P^i.$$

Seong-Hee Kim: Stochastically Constrained Optimization via Simulation

Georgia Institute of Technology

< ロ > < 同 > < 回 > < 回 >

Issues

- What if $h^i(\mathbf{x}) = q_i$?
- Choice of θ_1 and θ_2 : Make it as a function of *n*?
 - ▶ 0 < θ₁ < 1: Start with a large number then decrease it as n increases.</p>
 - θ₂ > 1: Start with a small number and increase it as n increases.
- Give some tolerance for feasibility decision?
 - feasible if $\widehat{h}_{v_k}(\mathbf{x}) \geq q \epsilon$; and
 - infeasible if $\hat{h}_{v_k}(\mathbf{x}) \leq q + \epsilon$.
- Incorporate constrained ranking and selection?
- Other issues?

▲ 同 ▶ → 三 ▶