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Learning and deciding

Many decision-making problems fit the following framework:

Collect data
Make 

decision
Estimate  

parameters

Collect more 
data

Update 
parameter 
estimates 

Make new 
decision

…
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Convergence

Does this process converge?

This is clearly the case when the observed data are i.i.d. observations
from a given distribution F .

In that case, F̂n is the empirical distribution corresponding to samples
from F , so under mild conditions x̂n → x∗.

But what if the demand depends on the decisions?

Many cases (e.g. some revenue management problems) fall into that
framework.

In that case, the true distribution is F = F (x , ⋅).

If the dependence is ignored, the forecast/decision process converges to
x∘ satisfying x∘ = argmin EF (x∘,⋅)[G (x ,Y )], which can be suboptimal.
(Cooper+HM+Kleywegt 2006, Lee+HM+Kleywegt 2009)
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Learning the dependence

Can we learn the structure of the dependence of F on x , and
simultaneously optimize the objective function?

For example, consider the simple case where

Yn = �0 + �1x + "n, where �0 and �1 are unknown constants and {"n}
is i.i.d.
G (x ,Y ) = xY .

At iteration n,

Estimate �0 and �1 from x̂1, . . . , x̂n using least-squares;

Compute x̂n+1 =
−�̂n

0

2�̂n
1

.

This kind of procedure is called certainty equivalent control in the
control and econometrics literature.

Very hard to show convergence!
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Can we use stochastic approximation?

We could apply an SA-type procedure to the function
g(x) = E [G (x ,Y )].

We cannot get derivatives estimators if we don’t know how Y
depends on x .

Even if we know the dependence form, it may be hard to prove
convergence.

Again, suppose Y = �0 + �1x + ", G (x ,Y ) = xY . Then,
g ′(x) = �0 + 2�1x .

We can estimate �0 and �1 from regression, but does it converge?

We could use finite differences, but convergence is slow.
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Comparing the methods

�0 = 5, �1 = 1, " =Normal(0,1)
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Issues

Is it better to first learn the dependence structure, and then optimize?
(e.g., Besbes and Zeevi 2010 in the context of demand functions)

Alternatively, we can view the problem as a “black-box” system where
we only observe outputs (in this case, revenues) in terms of the inputs
(the decisions).

We want to optimize — however, in the context we are interested in,
function evaluations are expensive.

We are looking at methods that choose decision points randomly
according to some distribution, which is updated from iteration to
iteration.
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