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Problem Statement

minimize g(x)

subject to h(x) ≥ 0,

x ∈ D ⊂ IRq,

where

– g : D → IR can only be estimated using the “black box”
estimator Gm, where Gm(x) ⇒ g(x) for all x ∈ D and m is
some measure of simulation effort;

– h : D → IRn can only be estimated using the “black box”
estimator Hm, where Hm(x) ⇒ g(x) for all x ∈ D and m is
some measure of simulation effort;

– D ⊆ IRq is a known set, e.g., the non-negative orthant.
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Notes and Some Notation

– The case of known h has been studied far more.

– The feasible region resulting from the constraints h and the
region D are usually assumed to be closed and convex.

– Denote (π∗, v∗) as the set of global minima and the global
minimum value corresponding to the problem. Denote λ∗

as the set of local minima (appropriately defined) of the
problem.

– Usually an element of π∗ or an element of λ∗ is requested.
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Agenda

What do we cover?

1. Broad overview of SAA and its refinements.

2. Some intuition on where these methods might be
successfully applied.

3. Very basic but key theoretical results (relating to
convergence, speed of convergence, solution quality, and
choice of parameters) that apply in a simulation context.

What do we not cover?

1. SAA for problems where the constraint functions cannot be
observed exactly. Specifically, we do not cover chance
constrained problems.

2. “Sub-culture specific” results.

3. Results on complexity, epiconvergence, etc.
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Sample Average Approximation (SAA)

Logic:

1. “Generate” a sample-path problem with sample size m.

2. Use a procedure to “solve” the sample-path problem

minimize Gm(x)

subject to h(x) ≥ 0,

x ∈ D ⊂ IRq.

Algorithm Parameters:

(i) procedure for solving the sample-path problems;

(ii) sample size m;

(iii) if sample-path problem can only be solved numerically, the
error-tolerance ǫ to within which the sample-path problem
should be solved.
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SAA Refinement — Retrospective Approximation (RA)

Logic:

1. “Generate” kth sample-path problem with sample-size mk.

2. Use a procedure to solve the kth sample-path problem to
within error-tolerance ǫk. Obtain a retrospective solution
Xk.

3. Xk =
∑k

j=1 wjXj, wj ≥ 0,
∑k

j=1 wj = 1.

4. Update k = k + 1 and goto Step 1.

Algorithm Parameters:

(i) procedure for solving the sample-path problems;

(ii) sample-size sequence {mk};
(iii) error-tolerance sequence {ǫk}.
Notes: Framework and not an algorithm; “External” vs.
“Internal” sampling.
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Retrospective Approximation
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SAA and RA — When?

Advantages

1. Advances in deterministic math. programming at our
disposal, in principle.

2. When sample-path problems have structure so that generic
search procedures are guaranteed to work well.

3. When sample-path problems have special structure that is
known and can be utilized for efficiency. (Surprising
counterexample provided by Nemirovski et al. [15].)

Disadvantages

1. When the user cannot be expected to choose an
appropriate procedure to solve sample-path problems.

2. Sample-paths are poorly behaved or have no known
structure, and so choice of procedure is unclear.

Notes: See Kim and Henderson [10] for some nice relationships
between sample-paths and their limit.
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SAA and RA — Sample-Path Structure is Important
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An Outline of Key Results

1. Consistency

– Convergence of optimal value (SAA and RA).
– Convergence of optimal solution (SAA and RA).

2. Speed of Convergence

– CLT-type results for optimal value (SAA and RA).
– CLT-type results for optimal solutions (SAA and RA).
– Results under special conditions.

3. Algorithmic Results

– Minimum sample size results (SAA).
– Quality of solution/confidence interval type results (SAA).
– Parameter choice results (RA).
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Consistency (SAA and RA)

Theorem (Shapiro [21])

1. If limm→∞ supx∈D |g(x) − Gm(x)| = 0 wp1, then V∗
m → v∗

wp1.

2. If limm→∞ supx∈D |g(x) − Gm(x)| = 0 wp1, D is compact,
and g is continuous, then limm→∞ dist(Π∗

m, π∗) → 0 wp1.

– Uniform convergence verification on a case by case basis.
(e.g., if D is compact, Gm is an iid average that is
continuous and dominated by an integrable function,
uniform convergence is preserved.)

– Corresponding local results provided by Bastin et al. [1]

– Results on epiconvergence provided by Dupačová and
Wets [5], Rockafellar and Wets [19], and Robinson [18].

– Results carry over to RA context easily.
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Consistency — Optimal Value

g(x) = 1 + (1− x)2, 0 < x < 1

Gm(x) = 0.5I(0,1/m)(x) + g(x)I[1/m,1)(x), 0 < x < 1

1/m
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Consistency — Optimal Solution

g(x)

Gm(x) = g(x)I(0,m)(x)+ v
∗I[m,∞)(x), 0 < x <∞

m
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Speed of Convergence (SAA and RA) — Optimal Value

Theorem (Pflug [17], Shapiro [21])

Suppose β(m) is a function satisfying limm→∞ β(m) = ∞ such
that β(m)(Gm(x) − g(x)) ⇒ Y(x) ∈ C(D), where C(D) is the
linear space of continuous functions on D. Then,

β(m)(V∗
m − v∗) ⇒ minx∈π

∗Y(x).

– Rate of convergence of “black box” estimator transferred
over to optimal value.

– When g is an expectation, the functional CLT condition is
satisfied with a Lipschitz condition on Gm, where the
Lipschitz constant has finite second moment.

– Corresponding CLT on optimal solution can be found in
King and Rockefellar [11], and Shapiro [20].
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Speed of Convergence (SAA and RA) — Optimal Value
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Speed of Convergence (SAA and RA) — Optimal Value
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Speed of Convergence — Important Special Cases

Theorem (Kleywegt et al. [12])

Let D be finite and g(x) = E[G(x)], Gm(x) =
∑m

i=1 Yi(x) where
Y1, Y2, . . . are iid copies of a random variable Y(x). Then,

1. Π∗
m(ǫ) ⊂ π∗ for large enough m wp1;

2. Pr{Π∗
m(δ) * π∗(ǫ)} ≤ |D \ π∗(ǫ)| exp{−mγ(δ, ǫ)} for

0 ≤ δ ≤ ǫ, where γ(δ, ǫ) = minx∈π
∗\π∗(ǫ)Ix(−δ), Ix(·) being

the rate function associated with the sequence {Gm(x)}.

– For large-enough sample size, a true solution will be
obtained wp1.

– The probability of not obtaining a true solution (at a
specific sample size) drops exponentially in sample size.

– The result in 2. forms the essence of most minimum sample
size results [13, 21].
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Speed of Convergence — Important Special Cases

Theorem (Shapiro and Homem-de-Mello [22])

Let g be a finite-valued function having a sharp minimum, i.e.,
g satisfies g(x) ≥ g(x∗) + c‖x − x∗‖ for x ∈ D, where c is a
positive constant and x∗ is the unique minimum. Let
g(x) = E[G(x)] for Gm(x) =

∑m
i=1 Yi(x), where Y1(x), Y2(x), . . .

are iid copies of a random variable Y(x) having fixed finite
support. Then, if G is convex, and the set D is closed and
convex, Π∗

m = {x∗} for large enough m wp1.

– The result is easily extended to contexts where π∗ is not a
singleton.

– The earlier result on exponential convergence holds in this
special case as well.
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Results for Solution Quality

Theorem (Mak et al. [14])

Let g(x) = E[Gm(x)] for Gm(x) =
∑m

i=1 Yi(x), where
Y1(x), Y2(x), . . . are iid copies of a random variable Y(x). Then,

1. E[V∗
m] ≤ v∗; E[V∗

m+1] ≥ E[V∗
m];

2. If x ∈ D, 0 ≤ g(x) − v∗ ≤ g(x) − E[V∗
m].

– These results are very general, e.g., D need not be convex.
(See Birge [3], Broadie and Glasserman [4], Higle and
Sen [7, 9, 6, 8] for similar results.)

– Mak et al. [14] use the above result to construct confidence
intervals on the optimality gap of a candidate solution.

– Bayraksan and Morton [2] extend this to a sequential
procedure for constructing confidence intervals.
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Parameter Choice in RA

How to choose the sequence of sample sizes {mk}, and the
sequence of error tolerances {ǫk} in RA? Consider the following
three conditions.

C.1. When the numerical procedure used to solve sample-path
problems exhibits

(a) linear convergence: lim infk→∞ ǫk
√

mk−1 > 0;

(b) polynomial convergence: lim infk→∞
log(1/

√
mk−1)

log(ǫk) > 0.

C.2. lim supk→∞

(

∑k
j=1 mj

)

ǫ2k < ∞.

C.3. lim supk→∞

(

∑k
j=1 mj

)

m−1
k < ∞.
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Parameter Choice in RA

Theorem (Pasupathy [16])

If the sequences {ǫk}, {mk} satisfy conditions C.1, C.2, and C.3,
and π∗ = {x∗}, then Wk‖Xk − x∗‖2 = Op(1).

Theorem (Pasupathy [16])

If even one of the conditions C.1, C.2, or C.3 is violated, and
π∗ = {x∗}, Wk‖Xk − x∗‖2 p→∞.

Exp. Growth Pol. Growth Lin. Growth
(mk = e1.1mk−1) (mk = m1.1

k−1) (mk = 1.1mk−1)

Pol. Conv. N Y Y

Lin. Conv. N N Y

S-Lin. Conv. N N NA
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What Are Some “Burning” Questions in SAA/RA?

1. A general theory of optimal sample size increase?
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What Are Some “Burning” Questions in SAA/RA?
(contd.)

2. In Polyak-Juditsky type averaging, how should we trade-off
variance and bias?

3. How to deduce solution quality on global SAA/RA
contexts where sample-path problems cannot be solved to
optimality easily, i.e., when the methods by Mak et al. [14]
are not applicable?

4. Optimal sampling laws in contexts where both the
objective function and constraints need to be sampled.
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PART II
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Introducing ... an SO Testbed
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Recall Objectives

– Fill the stated and yet unfulfilled need for a
carefully designed testbed of SO problems.

(The stochastic programming community has a few of its
own libraries, e.g., SIPLIB for stochastic integer programs,
POSTS for linear recourse problems.)

– Actively draw attention to finite-time performance of
algorithms, through the use of finite-time performance
measures.

– Identify particular problem types that defy efficient
solution.

– Increase visibility and usage of SO formulation and
solution.
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Problem Organization Within Testbed

e.g., Call Center Staffing

e.g., Ranking & Selection

e.g., Newsvendor Problem

e.g., Parameter Estimation e.g., (s,S) Inventory

e.g., Rosenbrock Function e.g., Ambulance Location

All Problems

Integer-Ordered
Variables 

Categorical
Variables 

Continuous
Variables 

Constrained Unconstrained

Constrained
Unconstrained

Smooth Non-Smooth

Smooth Non-Smooth
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Where do we stand?

e.g., Call Center Staffing

Unconstrained
(3)

Unconstrained
(7)

Non-Smooth
(3)

Continuous
Variables (10)

All Problems
(23)

Constrained
(3)

Categorical
Variables (1)

e.g., Ranking & Selection

Integer-Ordered
Variables (12)

Constrained
(9)

e.g., Newsvendor Problem

Smooth
(0)

Non-Smooth
(3)

Smooth
(4)

e.g., Parameter Estimation e.g., (s,S) Inventory

e.g., Rosenbrock Function e.g., Ambulance Location
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Where do we stand and what’s next?

1. Good: The testbed is close to having a critical mass of
problems.

2. Bad: Not as much variety as we would like to see.

3. Bad: Small number of continuous-variable and
categorical-variable problems.

1. One PhD and one undergrad comb past WSC proceedings.

2. Large source of potential continuous-variable problems:
Approximate DP.
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Group Discussion

1. What does the apparent dearth of problems tell us?

2. Should particular categories be coalesced?

3. Is it time yet to launch the testbed?

4. To submit or simply view, point your browser to
www.simopt.org.
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