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Problem Statement

minimize g(x)

subject to h(x) ≥ 0,

x ∈ D ⊂ IRq,

where

– g : D → IR can only be estimated using the “black box”
estimator Gm, where Gm(x) ⇒ g(x) for all x ∈ D and m is
some measure of simulation effort;

– h : D → IRn can only be estimated using the “black box”
estimator Hm, where Hm(x) ⇒ g(x) for all x ∈ D and m is
some measure of simulation effort;

– D ⊆ IRq is a known set, e.g., the non-negative orthant.
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Notes and Some Notation

– The case of known h has been studied far more.

– The feasible region resulting from the constraints h and the
region D are usually assumed to be closed and convex.

– Denote (π∗, v∗) as the set of global minima and the global
minimum value corresponding to the problem. Denote λ∗

as the set of local minima (appropriately defined) of the
problem.

– Usually an element of π∗ or an element of λ∗ is requested.
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Sample Average Approximation (SAA)

Logic:

1. “Generate” a sample-path problem with sample size m.

2. Use a procedure to “solve” the sample-path problem

minimize Gm(x)

subject to h(x) ≥ 0,

x ∈ D ⊂ IRq.

Algorithm Parameters:

(i) procedure for solving the sample-path problems;

(ii) sample size m;

(iii) if sample-path problem can only be solved numerically, the
error-tolerance ǫ to within which the sample-path problem
should be solved.
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SAA Refinement — Retrospective Approximation (RA)

Logic:

1. “Generate” kth sample-path problem with sample-size mk.
2. Use a procedure to solve the kth sample-path problem to

within error-tolerance ǫk. Obtain a retrospective solution
Xk.

3. Weight obtained solutions to get

Xk =
k

∑

j=1

wjXj, wj ≥ 0,

k
∑

j=1

wj = 1.

4. Update k = k + 1 and goto Step 1.

Algorithm Parameters:

(i) procedure for solving the sample-path problems;
(ii) sample-size sequence {mk};
(iii) error-tolerance sequence {ǫk}.
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Retrospective Approximation
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SAA and RA — When?

Advantages

1. When sample-path problems have structure so that generic
search procedures are guaranteed to work well.

2. When sample-path problems have special structure that is
known and can be utilized for efficiency. (Surprising
counterexample provided by Nemirovski et al. [9].)

3. Advances in deterministic math. programming at our
disposal, in principle.

Disadvantages

1. When the user cannot be expected to choose an
appropriate procedure to solve sample-path problems.

2. Sample-paths are poorly behaved or have no known
structure, and so choice of procedure is unclear.

3. Incorporation of variance reduction techniques can be
difficult.
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An Outline of Key Results

1. Consistency

– Convergence of optimal value (SAA and RA).
– Convergence of optimal solution (SAA and RA).

2. Speed of Convergence

– CLT-type results for optimal value (SAA and RA).
– CLT-type results for optimal solutions (SAA and RA).
– Results under special conditions.

3. Algorithmic Results

– Minimum sample size results (SAA).
– Quality of solution/confidence interval type results (SAA).
– Parameter choice results (RA).

4. Results relating to stochastic feasible regions.
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Consistency (SAA and RA)

Theorem (Shapiro [14])

1. If limm→∞ supx∈D |g(x) − Gm(x)| = 0 wp1, then V∗
m → v∗

wp1.

2. If limm→∞ supx∈D |g(x) − Gm(x)| = 0 wp1, D is compact,
and g is continuous, then limm→∞ dist(π∗, Π∗

m) → 0 wp1.

– Results carry over to the RA context in a straightforward
manner.

– Corresponding results for local minima provided by Bastin
et al. [1]

– Results on epiconvergence provided by Dupačová and
Wets [4], and Robinson [12].
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Consistency — Optimal Value

g(x) = 1 + (1− x)2, 0 < x < 1

Gm(x) = 0.5I(0,1/m)(x) + g(x)I[1/m,1)(x), 0 < x < 1

1/m
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Consistency — Optimal Solution

g(x)

Gm(x) = g(x)I(0,m)(x)+ v
∗I[m,∞)(x), 0 < x <∞

m
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Speed of Convergence (SAA and RA) — Optimal Value

Theorem (Pflug [11], Shapiro [14])

Suppose β(m) is a function satisfying limm→∞ β(m) = ∞ such
that β(m)(Gm − g) ⇒ Y(x) ∈ C(D), where C(D) is the linear
space of continuous functions on D. Then,

β(m)(V∗
m − v∗) ⇒ minx∈π

∗Y(x).

– Rate of convergence of “black box” estimator transferred
over to optimal value.

– When g is an expectation, the functional CLT condition is
satisfied with a Lipschitz condition on Gm, where the
Lipschitz constant has finite second moment.

– Corresponding CLT on optimal solution can be found in
King and Rockefellar [5], and Shapiro [13].
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Speed of Convergence — Important Special Cases

Theorem (Kleywegt et al. [6])

Let D be finite and g(x) = E[G(x)], Gm(x) =
∑m

i=1 Yi(x) where
Y1, Y2, . . . are iid copies of a random variable Y(x). Denote
π∗(ǫ) = {x : g(x) − v∗ ≤ ǫ} and Π∗

m(δ) = {x : Gm(x) − V∗
m ≤ δ}.

Then, if δ ≤ ǫ,

Pr{Π∗
m(δ) * π∗(ǫ)} ≤ |π∗ \ π∗(ǫ)| exp{−mγ(δ, ǫ)},

where γ(δ, ǫ) = minx∈π
∗\π∗(ǫ)Ix(−δ), Ix(·) being the rate

function associated with the sequence {Gm(x)}.

– The probability of not obtaining an ǫ-optimal solution
drops exponentially.

– This result forms the essence of most minimum sample size
results [7, 14].
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Speed of Convergence — Important Special Cases

Theorem (Shapiro and Homem-de-Mello [15])

Let g be a finite-valued function having a sharp minimum, i.e.,
g satisfies g(x) ≥ g(x∗) + c‖x − x∗‖ for x ∈ D, where c is a
positive constant and x∗ is the unique minimum. Let
g(x) = E[G(x)] for Gm(x) =

∑m
i=1 Yi(x), where Y1(x), Y2(x), . . .

are iid copies of a random variable Y(x) having fixed finite
support. Then, if G is convex, and the set D is closed and
convex, Π∗

m = {x∗} for large enough m wp1.

– The result is easily extended to contexts where π∗ is not a
singleton.

– The earlier result on exponential convergence holds in this
special case as well.
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Results for Solution Quality

Theorem (Mak et al. [8])

Let g(x) = E[G(x)] for Gm(x) =
∑m

i=1 Yi(x), where
Y1(x), Y2(x), . . . are iid copies of a random variable Y(x). Then,

1. E[V∗
m] ≤ v∗;

2. E[V∗
m+1] ≥ E[V∗

m];

3. If x ∈ D, 0 ≤ g(x) − v∗ ≤ g(x) − E[V∗
m].

– The result is very general, e.g., D need not be convex. (See
also Birge [3] for related results.)

– Mak et al. [8] use the above result to construct confidence
intervals on the optimality gap of a candidate solution.

– Bayraksan and Morton [2] extend this to a sequential
procedure for constructing confidence intervals.
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Parameter Choice in RA

How to choose the sequence of sample sizes {mk}, and the
sequence of error tolerances {ǫk} in RA? Consider the following
three conditions.

C.1. When the numerical procedure used to solve sample-path
problems exhibits

(a) linear convergence: lim infk→∞ ǫk
√

mk−1 > 0;

(b) polynomial convergence: lim infk→∞
log(1/

√
mk−1)

log(ǫk) > 0.

C.2. lim supk→∞

(

∑k
j=1 mj

)

ǫ2k < ∞.

C.3. lim supk→∞

(

∑k
j=1 mj

)

m−1
k < ∞.
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Parameter Choice in RA

Theorem (Pasupathy [10])

If the sequences {ǫk}, {mk} satisfy conditions C.1, C.2, and C.3,
and π∗ = {x∗}, then Wk‖Xk − x∗‖2 = Op(1).

Theorem (Pasupathy [10])

If even one of the conditions C.1, C.2, or C.3 is violated, and
π∗ = {x∗}, Wk‖Xk − x∗‖2 p→∞.

Exp. Growth Pol. Growth Lin. Growth
(mk = e1.1mk−1) (mk = m1.1

k−1) (mk = 1.1mk−1)

Pol. Conv. N Y Y

Lin. Conv. N N Y

S-Lin. Conv. N N NA
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Introducing ... an SO Testbed
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Recall Objectives

– Fill the stated and yet unfulfilled need for a
carefully designed testbed of SO problems.

(The stochastic programming community has a few of its
own libraries, e.g., SIPLIB for stochastic integer programs,
POSTS for linear recourse problems.)

– Actively draw attention to finite-time performance of
algorithms, through the use of finite-time performance
measures.

– Identify particular problem types that defy efficient
solution.

– Increase visibility and usage of SO formulation and
solution.
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Problem Organization Within Testbed

e.g., Call Center Staffing

e.g., Ranking & Selection

e.g., Newsvendor Problem

e.g., Parameter Estimation e.g., (s,S) Inventory

e.g., Rosenbrock Function e.g., Ambulance Location

All Problems

Integer-Ordered
Variables 

Categorical
Variables 

Continuous
Variables 

Constrained Unconstrained

Constrained
Unconstrained

Smooth Non-Smooth

Smooth Non-Smooth
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Where do we stand?

e.g., Call Center Staffing

Unconstrained
(3)

Unconstrained
(7)

Non-Smooth
(3)

Continuous
Variables (10)

All Problems
(23)

Constrained
(3)

Categorical
Variables (1)

e.g., Ranking & Selection

Integer-Ordered
Variables (12)

Constrained
(9)

e.g., Newsvendor Problem

Smooth
(0)

Non-Smooth
(3)

Smooth
(4)

e.g., Parameter Estimation e.g., (s,S) Inventory

e.g., Rosenbrock Function e.g., Ambulance Location
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Where do we stand and what’s next?

1. Good: The testbed is close to having a critical mass of
problems.

2. Bad: Not as much variety as we would like to see.

3. Bad: Small number of continuous-variable and
categorical-variable problems.

1. One PhD and one undergrad comb past WSC proceedings.

2. Large source of potential continuous-variable problems:
Approximate DP.
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Group Discussion

1. What does the apparent dearth of problems tell us?

2. Should particular categories be coalesced?

3. Is it time yet to launch the testbed?

4. To submit or simply view, point your browser to
www.simopt.org.
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