



A. JAMES CLARK SCHOOL OF ENGINEERING



# Some Topics in Simulation Optimization

### Michael Fu University of Maryland

National Science Foundation Workshop College Park, MD May 24-25, 2010

#### **Research Streams**

- Simulation Optimization
  - Discrete: model-based methods, computing budget allocation
  - Continuous: stochastic gradient estimation
- Global Optimization
  - Model Reference Adaptive Search (MRAS) [see Jiaqiao Hu]
  - connecting to stochastic approximation/gradient search [see Jiaqiao Hu]
  - particle filtering framework [see Enlu Zhou]
- Markov decision processes (MDPs)
  - Simulation-based framework, adaptive sampling
  - Population-based & model-based algorithms

Note: joint work with Steve Marcus, Hyeong Soo Chang, Jian-Qiang Hu, Chun-Hung Chen, L. Jeff Hong, Yongqiang Wang, et al.





# What makes simulation optimization hard?

- Key: OBJECTIVE FUNCTION contains quantities that
  must be <u>estimated</u> from <u>stochastic simulation</u> output
- Ordinary optimization can concentrates on the search.
- Due to the stochastic nature of the problem, there is both <u>search</u> and <u>evaluation</u>.
- Trade-off between finding more candidate solutions vs. obtaining a better estimate of current solutions i.e., finding arg min<sub>θεΘ</sub> J(θ) vs. estimating J(θ)





#### **Stochastic Gradient Estimation Approaches**

| approach             | # simulations                  | key features                            | disadvantages                          |
|----------------------|--------------------------------|-----------------------------------------|----------------------------------------|
| IPA                  | 1                              | highly efficient,<br>easy to implement  | limited applicability                  |
| other PA             | often > 1                      | model-specific                          | more difficult to apply                |
| LR/SF                | 1                              | requires only model input distributions | possibly high variance                 |
| WD                   | 2*(# appearances of parameter) | requires only model input distributions | possibly large<br># simulations        |
| SD<br>FD (one-sided) | 2*p<br>p+1 (dimension)         | widely applicable,<br>model-free        | noiser, biased,<br>large # simulations |
| SP                   | 2                              | widely applicable,<br>model-free        | noiser, biased                         |

Acronyms: infinitesimal perturbation analysis, likelihood ratio/score function, weak derivatives, symmetric/finite differences, simultaneous perturbations







4

## Selected Relevant References

- M.C. Fu, "Optimization for Simulation: Theory vs. Practice" (Feature Article), *INFORMS Journal on Computing*, 2002.
- M.C. Fu, "Optimization via Simulation: A Review," Annals of Operations Research, 1994.
- M.C. Fu, "What You Should Know About Simulation and Derivatives" (Cover Story), *Naval Research Logistics*, 2008.
- M.C. Fu and J.Q. Hu, *Conditional Monte Carlo: Gradient Estimation and Optimization Applications*, Kluwer Academic Publishers, 1997.
- M.C. Fu, "Stochastic Gradient Estimation," Chapter 19 in *Handbook of OR/MS: Simulation*, eds. Shane Henderson and Barry Nelson, 2006.
- M.C. Fu, "Simulation Optimization" and "Perturbation Analysis", in *Encyclopedia of Operations Research and Management Science*, 2nd ed., 2001. (3<sup>rd</sup> edition update in preparation)
- H.S. Chang, M.C. Fu, J. Hu, and S.I. Marcus, *Simulation-based Algorithms for Markov Decision Processes*, Springer, 2007.



