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Multiple-comparison procedures are useful for comparing the performance of competing systems
via simulation. In this paper we extend a particular multiple-comparison procedure, multiple
comparisons with the best, to steady-state simulation by using an autoregressive-output-analysis
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1. INTRODUCTION

An important use of simulation analysis is to compare and select the best
from among a number of competing systems. This paper presents a procedure
that can be applied when there are a finite number of systems and when
comparisons are based on long-run expected performance.

In [14] we updated a method for constructing a confidence interval for the
long-run expected performance of a single system based on an old idea:
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autoregressive modeling. Here we extend this method to the problem of
maultiple comparisons, that is, constructing simultaneous confidence intervals
on differences in the expected performance of two or more systems.

In the next section, we review multiple comparisons and the results of [14].
Section 3 presents the new procedure and proves that it is asymptotically
valid. In Section 4 we empirically evaluate the small-sample properties of the
procedure. Conclusions and recommendations are given in Section 5.

2. BACKGROUND

There are many practical decision problems in which the number of compet-
ing systems is finite. Allocating a finite amount of buffer space between
workstations in a production line is an example. Let 6,,0,,...,0, be the
performance parameters associated with k£ competing systems, and let 6;,, >
f(r—1 = * = 6}y, be the ranked system performance parameters, where [i]
denotes the unknown index of the ith ranked system. Suppose that a larger
performance parameter is better and that we want to find the best system.

Hsu and Nelson [11] showed that multiple comparisons with the best
(MCB) can be applied to such problems. MCB constructs simultaneous confi-
dence intervals for the parameter set 6, — max, ., 0,, for i =1,2,..., k. If
there is a unique best system, then only 6,,; — max,,; 6, is positive, while
all of the other parameters are negative. For systems other than the [%]th,
6, — max,_; 0, is the difference between the performance of the ith system
and the best system. MCB confidence intervals establish whether the sample
best system can be declared to be the true best system, based on the data,
and also how far the performance of each system might be from the perfor-
mance of the best system.

MCB inference is frequently more conclusive than, for example, all-
pairwise multiple comparisons (6, — 0, for all i #/). This is because MCB
forms k£ simultaneous confidence intervals, whereas all-pairwise multiple
comparisons require k(k — 1)/2 intervals to be simultaneously correct; the
more intervals that must be simultaneously correct, the wider the intervals
tend to be.

Figure 1 illustrates two possible sets of MCB intervals. The dots represent
the unknown parameters 6, ~ max, ., 6,, for i =1,2,...,5, and the vertical
lines through the dots represent the associated confidence intervals. Notice
that MCB intervals are constrained to contain O or have 0 as one endpoint. In
Figure 1a all five intervals are correct, since they cover the parameters; MCB
controls the probability of this event, which we call correct inference. The
inference is also conclusive, since system 3 can be identified as the best (the
lower endpoint of its interval indicates that the difference between system 3
and the best of the other systems is greater than or equal to 0). In Figure 1b
the intervals are correct, but not conclusive; since two intervals contain 0,
neither of the corresponding systems can be inferred to be different from the
best. However, the lower endpoints of the intervals bound (with prespecified
confidence level) how far the performance of these systems is from the
performance of the best system.
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(a) (b)

P

Fig. 1. MCB confidence intervals for 6, — max ., 6,,fori = 1,2,...,5.

Let Y;; denote the jth observation of system performance from alternative
i,for j=1,2,...,n, and i = 1,2,..., k. Throughout this paper we assume
that, for each system i, Yil,Yiz,...,Yini is a stationary stochastic process,
typically from a single replication of a steady-state simulation, and that
ElY; j] = 0,. In addition, we only consider independent experiments; that is,
the observations across systems are independent.

Let Y, = Lt.,Y,;/n; be the point estimator for 6,. The following are
sufficient conditions for forming MCB intervals [12]:

(1) The joint distribution of the sample-mean vector [Y,,Y,,...,Y,] is

Y, 6, 6 0 -+ 0
Y, 6, \ 0o 6 --- O
1 | I e I | £ (1)
?k 0k O 0 N ' 6k

where N, stands for the multivariate normal distribution of dimension %
and where the §’s are known constants.

(2) An estimator S? of o ? is available that is independent of the sample-mean
vector, and the distribution of S/o is known.

For example, suppose the data satisfy a one-way analysis-of-variance model
Y, =6+ €,

for j=1,2,...,n; and i = 1,2,..., %, where the ¢; are iid. N(0, 0'?) ran-
dom variables. Then both conditions are satisfied by letting S? be the usual
pooled variance estimator of o ? and by letting 8, = 1/n,. Unfortunately, this
model is not appropriate for steady-state simulation when the outputs from
within each system are dependent.

We now display the MCB intervals associated with the sufficient conditions
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enumerated above. Let n = [ny, n,,...,n,], and let

U(n) = (min T.-¥+di_, 8/5+ 5 )
l#i ’

& = {i: min {l_’L -Y + di_, /S8 + 6/> > 0} ,

+
2

r#i
0, if & = (i},
L(n) = = = -

() —(min/eﬁ,/”{Yi Y, -d{ ., .S/5+ 5,}) ,  otherwise,
where a” = max{0,a}, a”= —~min{0, a}, and di_,, , is the critical value such
that

Pr{Y,~6,>Y,—-0,—di__ .S/5 +05,,V/#i =1-a. (2
i i e 4 l-a,f i 4

THEOREM 2.1 [9, 10].  If the sufficient conditions (1) and (2) are satisfied,
then

{[Ll(n)9 Ul(n)]a [Lz(n), UZ(n)] [ [Lk(n)’ Uk(n)]}

form a set of (1 — a) 100 percent simultaneous confidence intervals for 0, —
max,,.; 0, i=12,...,k.

For the situations considered in this paper, d! _ «,f 18 the 1 — o quantile of
the maximum of a (¢ — 1)-dimensional multivariate ¢ random variable with
degrees of freedom f and correlation matrix:

1 MDA e AN
AP 1 e AN
R, = : X X ; ’ (3)
)‘(ki)‘ 1)‘(1i) /\(ki)—ll\(Qi) 1

where

J1+36,/5,, it /<i,
: : (4)
V1+6,./6;, if /=i.

See [8, pp. 374-375] for a definition of the multivariate ¢ distribution and for
the computation of critical values like dj _, /.

To extend MCB to steady-state simulation, assume that the output process
J=1,2,...,n,,is a stationary AR(p,) process defined by the model

1/ =

Y,

ije

D;
Y, =6 + > Gim(Y; j_m — 0,) + €
m=1

I

b (5)
=i+ 2 bimY; jom Tt €
m=1
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where the ¢;; are i.i.d. mean 0, variance o? random variables, and ¢;;, =

0,(1 — L2i_, ¢;,,). For system i, p; and ¢;,, are the autoregressive order and
coefficients, respectively, and o;? is the residual variance.

Under mild conditions, an AR model can match the autocovariance struc-
ture of an output process to any finite number of lags. Thus, a procedure that
assumes that the output process is AR should provide a good approximation.
The theoretical basis for the AR-confidence-interval procedure we employ is
given in [14], but we briefly review it here. For ease of presentation, we
temporarily drop the subscript i, denoting system.

(1) AR order identification. There are a number of procedures and crite-
ria for AR order identification. They include Hannan’s F test [5], Akaike’s
information criterion [1], Box and Jenkins’s recursive procedure [2], Gray,
Kelly, and McIntire’s “D” statistics [4], and Rissanen’s predictive-least-
squares (PLS) criterion [13]. We use Rissanen’s PLS criterion because it
provides a strongly consistent order estimator; strong consistency is a prop-
erty we exploit to prove the asymptotic validity of our MCB procedure.

Let

Z] 2h+2 J(h)
n—-2h-1 "~

PLS, =

where e, (h) =Y, — Y(h) is the honest prediction error for Y;, assuming that
the AR order is h and where Y(h) is the predictor of Y, based on the AR(R)
model estimated from Y,,Y,,...,Y,_;. The PLS crlterlon estimates the order
to be the value p such that

PLS; = min PLS,,
hed

where @ is the set of possible orders. We assume that & contains the true
order. An important result is the following:

THEOREM 2.2 [6, 7]. If model (5) pertains, then p — p with probability 1
as n = ©,

(2) Use the conditional-least-squares estimators (CLSE) to estimate the
coefficients. Suppose p is the PLS order estimator. Conditional on the first p
observations, we can express the relationship between the remaining n — p
observations as a linear model in the unknown AR coefficients. The AR
coefficients are then estimated via least squares.

Let &(n, p) = [dy(n, p), dy(n, p),..., ¢ps(n, p)I' be the CLSE in conjunc-
tion with the PLS order estimator. Then we have the following result:

TuEOREM 2.3 [14]. If model (5) pertains, then &(n, p) > & as n = o,
where & = [dg, $y,..., b, is the true coefficient vector, and % denotes
convergence in probability.

From here on we drop the argument (n, p) from <f>m(n, p) where there will
be no confusion.
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(3) Estimate the residual variance, o2, by

~ R n 2
62 = ;‘l=p"+1(y} - ¢o - Z:ﬁ:l d’ij—m)
n—p ‘

(6)

(4) Estimate the variance of ¥ by

6.2

n(1-52,d,)

Var(Y) =

THEOREM 2.4 [14]. If model (5) pertains, then 625 o2, nVan¥) 5
0-2/(1 - 271:t=1 d)m)za and

Y-0
—— % N(0,1
VVar(Y) @1

D . . . .
as n — ©, where = denotes convergence in distribution.

(5) Approximate the distribution of the sample variance, VEr(?), as a
constant times an x? random variable. If the sample size is very large, take
the degrees of freedom to be n. If the sample size is small, use Fishman’s
approximation [3] or use the equivalent sample size, max{1, [n(l -
E;;: 1 ¢I7’L)2J}

In the next section, we extend the results of [14] for univariate confidence
intervals to multiple comparisons using MCB.

3. MCB FOR STEADY-STATE SIMULATION

3.1 Model Assumptions

Our results depend on the following assumptions: For fixed L Y, J=
1,2,...,n;, is a stationary AR(p,) process, and Y;; is independent of Y,,, for
t #/. Furthermore, 0> = 02, for i =1,2,...,k. In other words, initial-
condition bias has been mitigated, the dependence in each output process has
an autoregressive structure, the systems are simulated independently, and
the residual variance is common across systems. The implications of these
assumptions are explored in Section 5.

3.2 The MCB Procedure

When min {rn} is large and the assumptions in Section 3.1 are approximately
satisfied, Theorem 2.4 justifies the approximation:

Y, 0, §, 0 - 0
7, b, |0 & 0

~ Nk . , O »
?k Ok 0 0 A 8k
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where 8, = 1/[n,(1 — LPi_; ¢,,,)*]. This is structure (1). Thus, an AR model
provides a natural interpretation for o? and §;, which was our primary
reason for selecting an AR representation over the more commonly used
method of batch means. . .

For system i, let p, be Rissanen’s order estimator, and let ¢;, = b n(ny, D)),
for m = 1,2,..., p;, be the combined CLSE and PLS coefficient estimators.
An asymptotically valid MCB procedure is formed as follows: Let

O
i
,-;
r——
—
|
>
hes
3
—~———
o

7 = {z m1n{K—Y/+d1 . f&\/§i+ 8 >0},
r#i ’
0, if & ={i},
Li(n) = . = = 'y s =\ )\ )
—|min, ¢y Y, — Y, —d{_, 6V 5,15 , otherwise,
and
fo i1 [;67
i fi

where 62 is the estimated residual variance of system i and where f; is the
degrees of freedom associated with 4.2 (discussed below). The critical value,

! o is the 1 — a quantile of the maximum of a (k — 1)-dimensional
multivariate ¢ random variable with correlation matrix (3), where we substi-
tute 8, for 5, in (4). We set the degrees of freedom for the multivariate ¢ to be
f= Z?: 1 i

Our main results follow. For simplicity we present only the balanced case,
ny=ng= ' =n,=n

LEmMA 3.1 If the assumptions in Section 3.1 hold, then as n — « the
critical value di_a’f—g—; di_, . the 1— a quantile of the maximum of a
(k — 1)-dimensional standard multivariate normal random variable with
mean zero and correlation matrix (3), where 8 = 1/(1 — LEi_; ¢,,,)".

PrOOF. The critical value, di_, ,, is the 1 —  quantile of the maximum
of a (k — 1)-dimensional multivariate ¢ random variable with correlation
matrix

— -1

1 XA AN

A ADRD 1 e AR
Rl‘z . . . . 5
e Ak -1
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where
Vi+3/8 it <,
V1+8,../5 if />i.

As a consequence of Theorem 2.4, Ri converges in probability to R,. And, as
n — o, the degrees of freedom f— o, so the multivariate ¢ distribution
converges to the standard multivariate normal distribution. Thus, in the
limit, d;_,  is the 1 — @ quantile of the maximum of a (¢ — 1)-dimensional
standard multivariate normal random variable with correlation matrix
R, O

I3

1/80 =

The proof of Lemma 3.1 does not depend on the choice of degrees of
freedom, f;, provided f; goes to infinity as n, does. However, the choice of f;
does affect the small-sample properties of the MCB procedure. Yuan and
Nelson [14] reviewed three alternatives. Of these alternatives, Fishman’s
approximation is not appropriate here, since it does not provide a basis
for pooling the residual variances; the other two are applicable. Based on
empirical evidence in [14], we suggest using the full sample size, f; = n;

1 2

when n; is very large, and using the equivalent sample size, f; =

max{1,|n(1 — £2i_, cf)im)zj}, when the n/s are small or when the output
processes are strongly positively correlated.

THEOREM 3.1 If the model assumptions in Section 3.1 hold, then as n — «©

Pr{()i — max 6, € [ L,(n), U(n)], Vi} >1-a.
L+

Proor. By analogy to Hsu’s [10] proof of Theorem 2.1, we only need to
show that

—— — AL

lim Pr{¥, - 6,27, - 6,—di_, 0v/8 +8, v+ i =1-a,

n-» o
fori=1,2,..., k. As a direct consequence of Theorem 2.4,
_‘/_’_1_(?1 ~ 01) .
Vn (Y, — 0
( ; a0,
‘/;(i;k - Bk)

where ¥ is a diagonal matrix such that %(/, /) = a2/(1 — L2, ¢,,.)%
Fix i and let

(Y,-0)-(Y.-0)

GV 6, + &
Define a (k — 1) X k transformation matrix A; such that A(/,i) = —1, for
all /3 A(/,/)=1, for /=1,2,...,i -1, A(/,/+ D=1, for /=1i,i +
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1,...,k — 1;and all remaining elements of A, are 0. Also, define a (£ — 1) X
(k — 1) diagonal matrix V; such that Vi(#, /) = (n62(§, + §,))"1/2, for /< i,
and Vi(/, /) = (n6%(5, + §,,,)) /2, for /> i. Then

Zy,; - _ .
Zy,, Vn (Y, - 6,)
: . |V (Y, -0
Zi-l,i = iAi n( ? 2)
Zifl,i :
: \/I—l-(?k - Bk)
L Zk’i . ) J

Since V, 3 V,, where V/(/, /) = (no?(8; + 8,)" Y2, for /< i, and
V(2,7)=(no?(8; + 8,,,) /2 for /> i, we have

Zl,i
Z,,

Zi1,i | 5N, (0, VA ZA V).

But VA, XA V) = R,. Therefore, using the result of Lemma 3.1,

lim Pr{ii. ~ 6,2V, -6,~d_, 6\/8+5, v+ i>

n-—» %

It

lim Pr{z,,<di , , V/+ i
n—wx
(7)
)

= lim Pr{max{Z/ Jo=<di,
n—ow #i ’ ’

=Pr{X <d! }

1-a,»

=1-a,

where X is the maximum of a (k — 1)-dimensional standard multivariate
normal random variable with correlation matrix R,. Given (7), we can
directly follow the steps in [10] to show that {{L,(n), Uyn)], [Ly(n),
U, ...,[L,(m), U,m)]} is asymptotically a set of (1 — a)100 percent
confidence intervals for 6, — max,,;0,,i=1,2,..., k. 0O

Theorem 3.1 can be extended to unbalanced cases (n; # n,), provided
lim, . . n,n;is finite for all /+ i. To implement the procedure, we need
to set aside storage space for the k output processes. We recommend batching
the output processes first, which reduces the storage space required and
tends to improve the AR approximation; see test set 4 in the next section. A
routine is needed to evaluate the AR order and coefficients, the residual
variance and associated degrees of freedom, and the sample mean. These
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results are stored and passed to another routine to compute MCB confidence
intervals. We wrote our own MCB routines, but several commercial statisti-
cal-analysis packages also contain them, including JMP version 2 and Minitab
release 8. The procedure can be readily automated, since no user judgment is
required to select the AR order.

The PLS criterion could be computationally expensive to use, since a
matrix inversion is required for each candidate order and each observation.
In [14] we presented a procedure for computing p, that efficiently updates a
single matrix inversion for each candidate order, rather than performing the
inversion; this procedure also yields the AR coefficient estimators as a
by-product.

4. EMPIRICAL STUDY

For a set of test cases, we estimated the probability that our MCB intervals
are correct (cover all of the parameters) and that they are both correct and
conclusive (cover all of the parameters and identify differences between
systems’ performance) for nominal 90 percent MCB intervals. The probability
of being “correct” should be 0.90, and this is the probability that we expect
the procedure to control. The probability of being “correct and conclusive” is
the probability of identifying the best system design as well as covering all of
the MCB differences; it is a function of the sample size and was included in
the study to obtain a sense of the sharpness of the procedure for identifying
the best. ;

The estimates were obtained by replicating each experiment 100 times;
thus, the first digit in each estimate is accurate, but the second less certain.
The simulations were initialized using the steady-state distribution, when it
was known; otherwise, an appropriate number of initial outputs were deleted.
Three levels of sample size, n, were used to compare the small-sample and
large-sample behavior of the procedure. The set of possible AR orders was
@ =1{1,2,...,8. In addition, we used both the full sample size and the
equivalent sample size to obtain the degrees of freedom, f.

4.1 Test Sets

Four sets of processes were selected for experiments. In all cases the objective
was to identify the system with the largest mean response from among %k = 5
competing systems.

(1) Test Set 1. In this set we used AR processes. They are

Y ;j=0,=03Y, ;.1 —6) + ¢

Yo — 05 =0.8(Yy;_; — 60,) + €,

Yy — 03 =05(Y;; 1 — 0;) +0.25(Y;; 5 — 0y) + €5,

Y5 = 0, =03, ;- — 6) +02(Y,;_, — 6,) + 0.1Y, ;5 — 0) + €,

Y5, = 05 =045 ; 1 — 0;) + 0.2(Y5 ;5 — 6;) + 0.1(Y; ;5 — 05)
+0.05(Y; ;4 — 05) + € 5,
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. operation —

5 operators 1 repair technician

Fig. 2. Production system for test set 4.

where (6,, 0,, 03, 6,, 05) = (5.0,5.25,5.50,5.75, 6.00) and where the € ;s are
1i.d. N(0, 1) random variables, Vi, j.

(2) Test Set 2. In this set we used models with nonnormal marginal
distributions to observe the effect of deviation from normality. The test
models are identical to set 1 except that the (€; ; + 1)’s are i.i.d. exponential
random variables with mean 1, Vi, j. The revised models are still covariance
stationary.

(3) Test Set 3. 1In this set we used ARMA processes to observe the effect of
correlation structures different from AR processes. They are

Yl,j - 01 = 0'7(Y1,j*1 - 01) + El,j + 0.561"]'_1,

Yy ;= 0,=03(Y, ;1 — 0,) + €,; 7026 ; 4,

Y; ,—0;= 0.5(Y; ;.1 — 6) + 0.25(Y; ;o — 03) + €3;+ 0.3€; ;_4,
Y, —6,= 0.4(Y, ;_, — 6,) + 0.2(Y, ; 5 — 6,) + €, ;+0.25¢ ;_,
+0.1e ;. o,

+02¢ ;_,,

where (0, 6, 03, 6,, 05) = (5.3,5.0,5.6,5.9,6.2), and the €, ,;’s are i.i.d N(0, 1)
random variables, Vi, j.

(4) Test Set 4. In this set we used the production system shown in Figure
2. The system consists of five identical machines, n spares, five machine
operators, and one repair technician. The failure times and repair times are
exponentially distributed random variables. There are five alternatives that
trade off spare machines against reduced mean repair time in order to
maximize the long-run expected number of machines in operation. The five
alternatives are listed in Table I. The output Y;; is the average number of
operating machines over the jth batch of 40 time units for alternative 1; that
is, we used batch means of the original output process as the basic output
data.
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Table I. Investment Alternatives for the
Production System in Test Set 4

Alternative Spare machines Mean repair time

1 4 3.25
2 3 3.00
3 2 2.50
4 1 2.00
5 0 1.75

Table II. Number of MCB Intervals Out of 100 that Were Correct or Correct and Conclusive

Sample Size

500 2500 5000

Degrees of Full Equivalent Full Equivalent Full Equivalent
freedom sample sample sample sample sample sample
Test set 1 )

Correct 91 91 87 88 95 95

Correct and conclusive 27 27 71 70 95 95
Test set 2

Correct 90 90 88 88 89 89

Correct and conclusive 22 22 70 69 89 89
Test set 3

Correct 75 75 94 94 96 96

Correct and conclusive 17 17 79 79 95 95

Fail to compute d; _, 10 10 0 0 0 0
Test set 4

Correct 89 87 93 91 88 87

Correct and conclusive 32 33 71 71 88 87

4.2 Experiment Results

In test set 1 (see Table II), we find that the probability of correct inference is
close to the nominal level at all three sample sizes. The probability of correct
and conclusive inference is reasonable only in the moderate- or large-sample
case. Almost no difference is observed between the two approximations for
degrees of freedom. When the underlying assumptions are satisfied, the
procedure seems able to meet the nominal coverage. A moderate sample size
may be required for the procedure to reach a conclusive decision.

In test set 2, we find that the probability of correct inference is still close to
the nominal level. But the probability of correct and conclusive inference is a
bit lower as compared to test set 1. Thus, the deviation from the normal
residual assumption did not have a significant effect.

In test set 3, for small n, we encountered a few cases where we failed to
compute MCB critical values because the numerical integration and search
procedure did not converge. Also, the probability of correct inference is much
lower than 0.90 when the sample size is small. This suggests the deviation
from AR-correlation structure may have adverse effects (an ARMA model is
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an infinite-order AR model). The procedure works well in the moderate- or
large-sample case.

In test set 4, the overall performance is satisfactory. Similar trends are
observed: The probability of correct inference is usually under control. When
the sample size is small, the probability of correct and conclusive inference is
low, but it improves with increased sampling. Again, there seems to be no
difference between the MCB intervals computed using the two approxima-
tions for degrees freedom.

5. CONCLUSIONS AND DISCUSSION

The asymptotic validity of our procedure (Theorem 3.1) depends on the
assumption that the underlying output processes are AR( p), which is never
precisely true in practice. However, provided that we allow the set of candi-
date orders, @, to be large enough, an AR(p) model can provide a good
approximation to the output processes, as it did in the empirical study.

A more critical assumption is that the residual variances are common
across systems (o® = o2, for i =1,2,...,%). This should be empirically
verified in practice. Notice, however, that we do not assume that the response
variances, Var[Y;;], or the variances of the sample means, Var[Y, ;1, are
equal. Instead, we assume that the remaining variance, after removing the
effect of the AR-dependence structure, is the same across systems. Batching
can be used to improve this approximation when it is violated.

We also assume that the %k systems are simulated independently; in
practice, this means that different random number streams are used to drive
the simulation of each system. This assumption rules out the use of common
random numbers (CRN), which is known to reduce the variance of estimators
of differences (such as Y, — max, ,; Y,). Application of CRN in this setting is
still an open problem.

Some tentative conclusions can be drawn from the empirical study:

(1) In most of the experiments, the MCB procedure was able to control the
probability of correct inference. This supports the validity of the proce-
dure in small samples.

(2) The MCB procedure seemed to be robust to the assumption of normal
residuals or AR correlation structure when the sample size was at least
moderate.

(3) The two approximations for degrees of freedom lead to similar perfor-
mance. We conjecture that the approximate degrees of freedom for the
pooled-residual-variance estimator in either case is so large that it has
little effect on the MCB critical values.

In closing, we mention that, even though this paper focused on MCB
inference, the method we propose extends directly to multiple comparisons
with a control system.
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