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ycle time-throughput (CT-TH) percentile curves quantify the relationship between percentiles of cycle time

and factory throughput, and they can play an important role in strategic planning for manufacturing sys-
tems. In this paper, a highly flexible distribution, the generalized gamma, is used to represent the underlying
distribution of cycle time. To obtain CT-TH percentile curves, we use a factory simulation to fit metamodels for
the first three CT-TH moment curves throughout the throughput range of interest, determine the parameters of
the generalized gamma by matching moments, and obtain any percentile of interest by inverting the distribu-
tion. To insure efficiency and control estimation error, simulation experiments are built up sequentially using a
multistage procedure. Numerical results are presented to demonstrate the effectiveness of the approach.
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1. Introduction
Planning for manufacturing, either at the factory or
enterprise level, requires answering “what-if” ques-
tions involving (perhaps a very large number of) dif-
ferent scenarios for product mix, production targets,
and capital expansion. Computer simulation is an
essential tool for the design and analysis of complex
manufacturing systems. Often, before a new system is
deployed or changes are made to an existing system,
a simulation model will be created to predict the sys-
tem’s performance. Even when no substantial changes
are envisioned, simulation is used to allocate capacity
among production facilities. In either case, simulation
is faster and much more cost effective than experi-
menting with the physical system (when that is even
possible). This is especially true in the semiconductor
industry, which is the motivating application for this
research (see, for instance, Schomig and Fowler 2000).
Simulation is popular because it can incorporate
any details that are important, and the now-common
practice of animating simulations means that they
have a face validity that a system of equations can
never hope to achieve. However, simulation can be a
clumsy tool for planning: simulation can only evalu-
ate one scenario at a time, and depending on the com-
plexity of the system and the details of the simulation
model, it may take several minutes or even hours

to complete a simulation run for each scenario. This
can lead to fewer questions being asked and fewer
options being considered, especially when scenarios
are discussed and debated in real time.

To make simulation an effective tool for planning,
our approach is to use simulation to parameterize
sophisticated response surface models (RSMs) that are
easily explored or optimized with respect to the con-
trollable decision variables. Although it might take
significant simulation time to build the RSM, once
it has been generated, the RSM is instantly able to
answer what-if questions in real time (e.g., at a quar-
terly production planning meeting that only lasts
an hour). Analytically tractable queueing models or
approximations can also produce such surfaces, but
they invariably require significant simplification of
the actual manufacturing system. Our RSMs, gen-
erated by simulation, excel in the sense that they
are relatively simple formulas like those provided
by queueing models but are fitted to a high-fidelity
simulation.

In this paper, we propose a simulation-based
methodology to quantify the relationship between
percentiles of steady-state cycle time (CT) and
throughput (TH). Cycle time is defined as a random
variable representing the time required for a job or
lot to traverse a given routing in a production system
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(Hopp and Spearman 2001). A planner can control
cycle time by controlling the rate at which lots are
started in the factory (lot start rate or equivalently,
throughput rate). A CT-TH percentile curve is sim-
ply a given percentile of the cycle time distribution
as a function of the throughput, and it can be used
to discuss the trade-offs of lead time versus through-
put. For instance, if the 95th percentile CT-TH curve
is used to set the throughput level, then 95% of the
time, the actual lead time of any given product will
meet the promised delivery time. Hence, such CT-TH
percentile curves can play an important role in strate-
gic planning for manufacturing. They may be used to
answer questions like: What throughput would this
system be able to sustain if the lead times were quoted
to be four weeks for a particular product? How much
additional throughput could be generated if the lead
time was quoted at six weeks? Do we have sufficient
production capacity to satisfy customer demands, and
how should we distribute the production among facil-
ities? The curves are not designed for making detailed
order-release decisions, however.

We perform a sequence of simulation experiments
to characterize the cycle time distribution as a func-
tion of the throughput. The goal is to provide a
methodology that requires nothing of the user beyond
(1) the simulation model; (2) a throughput range
of interest, say [x;,xy] (the throughput has been
rescaled so that 0 < x; < x;; <1, where 1 is the fac-
tory capacity); (3) a percentile range of interest, say
lag, ay] (0 <@ < ay <1, where 1 corresponds to
100%); and (4) a measure of the required precision
for the estimated curves. The result is a complete
response profile that quantifies the relationship of per-
centiles of cycle time to throughput rate.

In our procedure, the precision of the percentile
estimates is selected by the user and is expressed as a
relative error (e.g., 5% or 10%). Here, “precision” only
refers to the estimated percentiles of the simulated
cycle time. The validity of the simulation model itself,
although of great importance, is beyond the scope of
this research. We assume that the company is satisfied
that the simulation model is sufficiently detailed to
provide useful information about the behavior of the
manufacturing system in question. Once the CT-TH
percentile curves are constructed, they allow planners
to instantly see the limits imposed on throughput rate
with decreasing lead time requirements.

The remainder of this paper is organized as follows.
Section 2 provides an overview of our approach. Sec-
tion 3 describes how we simultaneously estimate the
first three moment curves of cycle time. In §4, the
properties of the generalized gamma distribution are
provided in detail. Section 5 discusses the estimation
of percentiles and the statistical inference made on the
estimators. Section 6 describes the experiment design

used to carry out the sequential simulation experi-
ments and gives a comprehensive presentation of the
multistage procedure we have developed. The pro-
cedure is evaluated in §7 based on some queueing
models and a full factory simulation.

2. Overview

In this section, we provide an overview of the
methodology we propose to generate CT-TH per-
centile curves.

2.1. Distribution of Cycle Time

Our focus is on cycle time, in the sense used by Hopp
and Spearman (2001, p. 321), “as a random variable
that gives the time an individual job takes to traverse
a routing.” However, our objective in this paper is to
go beyond the standard summary measure of aver-
age cycle time (which we addressed in Yang et al.
2007) and consider additional summary measures of
the distribution of cycle time, in particular, percentiles
of cycle time, as a function of throughput. Through-
put is the rate (e.g., number of jobs per week) that jobs
are completed, which is the same as the release rate of
new jobs into the system over the long run if new jobs
are released at a constant rate and the system itself
is unchanging. Thus, we consider the throughput to
be an independent variable that can be controlled by
setting the release rate.

To be precise, let CT, be the cycle time, as defined
above, of the hth product or job completed. We
assume that as & — oo, CT, converges weakly to a
random variable CT whose distribution is indepen-
dent of & (see Billingsley 1999 for a definition of weak
convergence) and has finite first four moments. The
distribution of CT clearly depends on the through-
put x, and we assume convergence of CT;,(x) to CT(x)
for all x € (0, 1), where we have normalized through-
put so that 1 corresponds to the capacity of the sys-
tem. In fact, we actually require a bit more: we also
assume that the sample estimate of the vth (v =
1,2,3) moment H(x)™' Y% (CT,(x))" (where H(x)
is the selected number of jobs simulated in steady
state for simulations at x) is strongly consistent as
H(x) — oo, which requires certain mild regularity con-
ditions on the dependence structure of the cycle time
output process to insure that it satisfies a strong law of
large numbers (e.g., Glynn and Iglehart 1986 give con-
ditions for regenerative processes; Chien et al. 1997
provide conditions based on mixing; and Meyn and
Tweedie 1993, Chapter 17, provide conditions for gen-
eral state space Markov chains). We are interested in
percentiles of CT(x) as a function of x.

Of course, such convergence never occurs in a
physical manufacturing system, but for planning and
analysis purposes we often approximate the finite-
time behavior of a stochastic system by the limiting
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behavior of a stationary stochastic model of it (e.g.,
Buzacott and Shanthikumar 1993). When the model is
a mathematically tractable (or readily approximated)
queueing network model, then the conditions that
insure the existence of a “steady state” can often be
verified. However, if the model is a discrete event
stochastic simulation, as it is in this paper, then we
can argue for the existence of a steady state by anal-
ogy to more precisely specified stochastic processes
(see, for instance, Henderson 2001), but rarely can
we formally prove it. At a practical level, we are
assuming that if the driving stochastic processes (job
arrivals, machine processing times, failure, and repair
processes) are stationary, and the system logic (job
priorities, queue disciplines, and workcenter capaci-
ties) is unchanging, then a conceptually infinitely long
simulation run will yield cycle times that satisfy our
assumptions. See, for instance, Law and Kelton (2000)
for more on the “steady-state simulation problem.”
From here on, when we refer to “cycle time,” we are
referring to the random variable CT (x).

2.2. Overview of the Method

Simulation is often used to provide percentile esti-
mates, and substantial research effort has been
devoted to the estimation of cycle time percentiles
via simulation. However, efficiently generating cycle
time percentile estimates remains a challenging topic
for at least two reasons: Standard estimators based
on order statistics may require excessive data storage
unless all of the percentiles of interest are known in
advance, and even then it is difficult to do sequen-
tial estimation until a fixed precision is reached (Chen
and Kelton 1999). On the other hand, approximations
based on only the first two moments of cycle time
and assuming a normal distribution can be grossly
inaccurate (McNeill et al. 2003). A technique based on
the Cornish-Fisher expansion has been proposed by
McNeill et al. (2003) to estimate percentiles of cycle
time; it takes into account the first four moments
of the cycle time distribution and allows accurate
and precise percentile estimates to be generated for
moderately nonnormal distributions. However, this
method can only give percentiles at fixed, prespecified
throughputs where simulation experiments have been
performed. The methodology proposed in this paper
aims at providing a more comprehensive profile of
the system by generating CT-TH percentile curves
throughout a throughput range.

Our approach to approximating percentiles of
CT(x) is to fit curves to the first three moments
(equivalently, mean, variance, and skewness) of CT(x)
as a function of throughput x, match a highly flexi-
ble distribution (the generalized gamma distribution
(GGD)) to these moments, and then invert the fitted
distribution to obtain percentiles. More specifically,

the strategy we propose for estimating €, (x), the 100«
(a € [ap, ay]) percentile of cycle time at throughput
rate x € [x;, x;;], is outlined as follows:

1. Use an extended version of the methodology of
Yang et al. (2007) to estimate not only the CT-TH
mean (first moment) curve, but also the CT-TH sec-
ond and third moment curves over the throughput
range of interest. This allows for the prediction of the
first three moments of cycle time at any throughput
X, say py(x), p,(x), and ps(x).

2. Use the method of moments to fit a GGD cumu-
lative distribution function (cdf) G(¢; a(x), b(x), k(x))
as an approximation for the cycle time distribution
(a(x), b(x), and k(x) are distribution parameters that
depend on x). We write the resulting fitted GGD as
G(t; 4(x), b(x), k(x)).

3. Estimate the percentile €,(x) by taking the
inverse of the cdf of the cycle time: Cé\a(x) =
G (e 4(v), b(x), k().

The functional form we have chosen as a meta-
model for the moment curves (see §3) was motivated
by a combination of the known moment curves of
some simple, single-queue models (e.g., M/M/1) and
heavy traffic results for more general models (includ-
ing networks of queues, where a single bottleneck
queue dominates in heavy traffic; see, for instance,
Whitt 1989). Of course, a complex manufacturing sys-
tem behaves neither like a single queue nor (typically)
like a queueing network in extremely heavy traffic.
Therefore, our metamodel has more free parameters
than these simple models, providing greater flexibil-
ity. When considering the first moment, Yang et al.
(2007) showed that this model worked remarkably
well. In fact, there have been a number of papers in
which queueing systems have been well-represented
by metamodels, including Cheng and Kleijnen (1999),
Fowler et al. (2001), and Park et al. (2002). However,
Allen (2003) and Johnson et al. (2004) demonstrated
that the models used in these papers can be inad-
equate for complex manufacturing systems, which
motivated our more flexible formulation.

The ubiquitous use of the normal distribution in
statistics might tempt one to try to get by with a
two-moment approximation for the distribution of
CT. However, even very simple models (such as
the M/M/1 queue, where the steady-state cycle time
is exponentially distributed) demonstrate that this
will be woefully inadequate. On the other hand, we
might consider using four or more moments as in
McNeill et al. (2003), based on the premise that more
moments provide a better characterization of the dis-
tribution. Our choice of three moments is a compro-
mise between the obvious need for more than two
moments and the practical difficulty of precisely esti-
mating curves for higher moments.
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As already described, we adopt an indirect method
to derive cycle time percentiles from the moment esti-
mates. Why not just run simulations at a very fine
grid of x values and save the results? That requires
the storage of a very large amount of data plus many
hours of simulation to cover a fine grid, whereas our
approach will simulate no more than five values of
throughput x and still deliver any percentile at any x
nearly instantly once the simulations are complete.

3. Estimation of CT-TH Moment

Curves
As indicated in the previous section, providing the
first three moment CT-TH curves over the throughput
range of interest is the primary step in the estimation
of €,(x).

In Yang et al. (2007), a metamodeling-based meth-
odology was developed for estimating mean (first
moment w(x)) CT-TH curves, which quantifies the
relationship of long-run average cycle time to through-
put rate. A nonlinear regression metamodel is devel-
oped to represent the underlying CT-TH curve, and
simulation experiments are built up sequentially in an
efficient manner to collect data for fitting the curve. In
this section, we will generalize the method of meta-
modeling to simultaneously estimate the first three
moment CT-TH curves.

In manufacturing simulations, moment CT-TH
curves typically follow the shape in Figure 1 (see, for
instance, Fowler et al. 2001, Park et al. 2002, Allen
2003, Johnson et al. 2004). The methodology used to
fit the mean CT-TH curve (Yang et al. 2007) can be
extended to the estimation of higher moment curves,
so in this subsection we will restate the estimation
method in Yang et al. (2007) in a general way to cover

CT-TH curve

w
S

Moment of cycle time
—_ —_ 353 o] (%) [9%) B e
[=) w [=) W [=] w [=) w

W
T

0 . A A L A A A A A
050 055 0.60 065 0.70 0.75 0.80 0.85 0.90 095 1.00
Throughput x

Figure 1 A Generic Moment CT-TH Curve

estimating the first three moment curves simultane-
ously over a given throughput range [x;, x;;] based
on a single set of simulation experiments.

We suppose that the experiment is made up
of a number of independent simulation replica-
tions performed at m distinct levels of through-
put x = (x4, x,,...,%,) with x; € [x;,xy] for i =
1,2,...,m. From the jth replication performed at
throughput x, an output response {Yj(V) (x),v=1,2,3}
can be obtained for the purpose of estimating the
vth moment curve:

1

H(x)
= 16 S (CTy(x)" j=1,2,...

h=1

)
Y (%)

,n(x). (1)
Here, n(x) is the number of replications placed at
throughput x, CTj,(x) represents the individual cycle
time of the hth job completed in the jth replication
at x, and H(x) is the selected number of products sim-
ulated in steady state for simulations at x. A lower
bound on the value of H(x) could be determined
following the guidelines given in Law and Kelton
(2000). As explained in Yang et al. (2007), for simplic-
ity, H(x) could be set as H(x) = H for all values of x
(if H(x) varies with x, then a simple additional step
needs to be taken in the moment-curve fitting). For
a given experiment consisting of a number of simu-
lation replications carried out at m design points, the
data sets

YO = (), Y (),
Y (), Y (%) )

can be extracted for v =1,2,3. The integer vector
n = (n(x;), n(x,), ..., n(x,)) represents the allocation
of replications to the m design points.

To these data sets {Y®,v = 1,2,3}, the three
moment curves can be fitted. The curve fitting
is based on the regression models that will be
introduced below, and justification for the specific
form of the models is given in Online Supple-
ment A.1 (available at http://joc.pubs.informs.org/
ecompanion.html). The metamodeling methodology
applies to fitting moment curves of any order. For the
sake of clarity, we omit the superscript v representing
the vth moment in the regression models that appear
in the remainder of this section.

The CT-TH relationship for the vth moment curve
can be represented by the following metamodel:

Yi(x) =plx, c,p)+eix) j=1,2,...,n(), ()

where ,
I
D10 C1X

(1—x)p "’ @)

/-'L(x/ c, P) =
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Extensive experiments have shown this model to be
flexible enough to model cycle time moments of real-
istic manufacturing simulations (Allen 2003, Johnson
et al. 2004). The exponent p, the polynomial order
t, and the coefficient vector ¢ = (cy, ¢;,...,¢;) are
unknown parameters in the model.

As explained in Yang et al. (2007), the error term
&j(x) has expectation zero and variance a?(x), which
depends on x through a “variance model” of the form:

2

a*(x) = - x)2‘1

©)
Both o2 and g are unknown parameters. Substituting
sample variance as the response in Equation (5), we
can estimate the variance model. With the estimated 7,
a simple transformation of model (3) will yield a stan-
dard nonlinear regression model with approximately
constant error variance:

Z,(x) = Y;(x) x (1= )" ©)

t
— e+ =Y axl-0 18, ()
l:O

where ¥ = g — p is an unknown parameter and the
2

error 87 is assumed to have a constant variance o?.
Because the error term in model (7) has constant vari-
ance, we estimate model (7) directly. The parameters
of the original moment model (3) will be obtained
indirectly by noting that the coefficients ¢ in Equa-
tion (3) coincide with those in Equation (7), and p is
estimated by the difference of the g and r estimates.
The polynomial order t in the moment model is deter-
mined via extra sum of squares analysis in a forward
selection manner.

To conclude this subsection, we summarize the
method described above for estimating the vth (v =
1,2,3) moment CT-TH curve. First, based on the
data set Y as defined in Equation (2), the variance
model (5) is fitted and the estimated parameter g,
is obtained; with g, the data transformation is per-
formed on Y as shown in Equation (6), and the
resulting transformed data set with stabilized vari-
ance can be represented by the following vector:

Z(V) = (Z;V)(xl), .o
me

n(xl (xl)
Z@ﬂw) 8)

Finally, model (7) is fitted to Z® and the three
moment curves {u,(x), v=1,2,3} are obtained over
the throughput range [x;, x;].

4. The Generalized Gamma

Distribution
The distribution family chosen to fit the individual
cycle times for manufacturing settings should be able

to provide a good fit for a variety of cycle time dis-
tributions. As noted by Rose (1999), for complicated
manufacturing systems, cycle times tend to be close
to normally distributed. However, as the system is
loaded with heavier traffic, even for complicated sys-
tems, cycle time distributions become more and more
skewed (McNeill et al. 2003). In our method, the gen-
eralized gamma distribution is adopted because, to
the best of our knowledge, it is the most flexible three-
parameter distribution in terms of coverage of the
skewness kurtosis plane.

The three-parameter generalized gamma distribu-
tion (GGD3), first presented in Stacy (1962), has the
following pdf (probability density function):

k ak—1
H Pl

t>0,a>0,b>0,k#0, (9

g(t,a,b, k)=

where a and k are the shape parameters and b is
the scale parameter. As illustrated in Ashkar et al.
(1988), the GGD can cover a wide range of skewness
as well as kurtosis. Also, the GGD includes a variety
of distributions as special cases, such as exponential
(a=k=1), gamma (k =1), and Weibull (a = 1) distri-
butions. The lognormal and normal distributions also
arise as limiting cases.

In addition to its shape flexibility, the reason why
we adopt the GGD (as opposed to the Cornish-Fisher
expansion proposed by McNeill et al. 2003 or other
flexible distributions such as the Johnson family)
is because it only involves three parameters, which
means only the first three moment curves {u,(x), v =
1,2,3} need to be estimated to provide a fit of the
cycle time distribution. In our experience, precisely
estimating higher moment curves can be very diffi-
cult. As explained in §3, the vth moment curve is
estimated based on the data set (2). When v >4, the
steepness of the moment curve w,(x) and the het-
eroscedasticity of variance in the data (2) become so
pronounced that it requires substantially more simu-
lation data to obtain well-estimated moment curves,
as illustrated through the M/M/1 example in Online
Supplement A.1.

A location parameter f, can be added to GGD3,
and the resulting 4-parameter distribution (GGD4)
is obtained by shifting the lower bound of GGD3
from t =0 to t = f,. The properties of any variable
T following a GGD4 can be derived from those of

—ty ~GGD3. In GGD-based fitting of a cycle time
d1str1but10n, t, signifies the lower bound of individ-
ual cycle times, which might be known in advance. In
cases where f, is difficult to specify, we can set t, =0
because GGD3 is flexible enough to give an adequate
fit even if the origin of the underlying distribution
deviates from zero. In light of these features, we will
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focus our attention on GGD3 and present some of its
properties.
Noncentral moments of GGD3 are given by

_ bT(a+v/k)
A Y

where v is the order of the moment. The moments
are defined only if a + v/k > 0. In the remainder of
this paper, we assume that the moments exist, i.e.,
a+v/k >0 for v=1,2, 3. Choosing any three distinct
values for v will provide the equations required by
the method of moments to obtain the three distribu-
tion parameters 4, b, and k.

GGD3 can be regarded as a generalization of the
two-parameter gamma distribution (GD2) by supply-
ing a positive parameter k as an exponent for the
exponential factor of GD2(a, b) whose pdf is

v=1,2,3,..., (10)

ta—le—t/b

f(t)_ b“r(a) 7
Suppose T ~ GGD3(a,b,k). Then, T' = (T/b)k ~
GD2(a, 1) (standard gamma distribution). We have
implemented numerical methods to calculate the
«a percentile of T', ‘¢’'(«; a, 1). The corresponding per-
centile of variable T, say ¢(a; a, b, k), can be obtained
by the straightforward transformation:

Ca;a,b, k)=b(€ (a;a,1)" (12)

t>0,a>0,b>0. (11)

The partial derivatives of the percentile ‘€(«; a, b, k)
with respect to the GGD parameters are as follows:

8%(0[, a, b, k) _ b(%/(a’ a, 1))1/(k—1) 06 (a, a, 1) )

da Tk da
3‘6(%82, A (€'(a;a,1)", (13)

0€(a;a,b, k)
ok N
Note that the partial derivative d¢'(«; a,1)/da can be
approximately calculated using the finite difference:
¢ (a; a, 1)
da
_ €(a;a+Aa/2,1) € (a;a—Aa/2,1)
Aa ’

Therefore, the first derivatives (13) can all be obtained
numerically.

Z—f“@’(a; a,1)) " log € (a; a,1).

(14)

5. Estimation of Percentiles

In this section, we describe in detail how we fit the
generalized gamma distribution at a given through-
put level x € [x;, x;] based on the first three moment
estimates, how the percentiles are estimated once
G(t, d(x), E(x), IAc(x)) is obtained, and how an approxi-
mate standard error can be provided for the percentile
estimators.

5.1. Point Estimation

As explained in §3, the first three moment curves can
be fitted simultaneously based on a number of sim-
ulation experiments performed at different levels of
throughput. Therefore, for any x € [x;, x;;], the first
three moments can be predicted by {&,(x), v=1, 2, 3}.
Substituting the moment estimates into Equation (10)
results in the following equations:

b(x)L(4(x) +1/k(x))

(%) =

T(4(x)) ’
o) = POEEESEEas)
~ o b()’T(a(x) +3/k(x))
A ="""TGaw)

Solving Equation (15) numerically gives the three esti-
mated distribution parameters (d(x), ZAJ(x), lAc(x)) for the
fitted GGD distribution at throughput x. With the esti-
mated distribution of cycle time at throughput rate x,
G(t; a(x), f?(x), IAc(x)), the percentile €, («) can be esti-
mated for any « € [o;, ;] utilizing the relationship
shown in Equation (12).

5.2. Statistical Inference for the

Percentile Estimator
Drawing inference about a parameter obtained indi-
rectly is difficult in general. In this paper, the delta
method (Lehmann 1999) is applied to make inferences
concerning the estimated percentiles.

The percentile €,(x) is estimated based on the fit-
ted GGD distribution and is obviously a function of
the distribution parameters 4, b, and k. The first-order
approximation using the delta method provides the
following estimation for the variance of percentile
estimators, where for convenience we suppress the
dependence of 4, b, and k on x:

Var[ €, (x)]

= (%a(x))zVar[ﬁ] + (%b(x))zvar[i’]

+ (af%k(x) )ZVar[IQ] +2<8%;;x)> (a%(;*;x) >C0V[ﬁ, b]

+2(6‘€a(x) ) (6%“(x) >COV[E, k]

ab ok

+2<6fialfx)> (a%;;x) )cOv[ic, a. (16)

In Equation (16), the partial derivatives of the per-
centile €, (x) with respect to the GGD parameters can
be approximately calculated from Equation (13) by
substituting the estimates 4, B, IAc, and Cé\a(x).
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Because the GGD parameters are estimated by
matching the first three moments of the GGD distri-
bution to the moment estimates {{,(x),v =1,2,3},
the variances and covariances in Equation (16) are
functions of the variances and covariances of [i,(x),
&, (x), and fi;(x). This is where the delta method (first-
order approximation) is applied for a second time.
Using matrix notation, we have the following rela-
tionship as derived in Ashkar et al. (1988):

Var[4] Cy Cp -~ G\ Var[ i, (x)]
Var[0] Cy Gy -+ G Var[fi, (1)]
Var[k] | [ Gy Gy o G Var[fi;(x)]
Cov[a,b] | | Cu Cao - G | | Covla ), 0]
Cov[d, k] G G5 - G Cov[fty(x), As(x)]
COV[IAJ,IA(] Coa G Ces Cov(fiy(x), fi5(x)]
where the matrix C is given by 17)
D}y D}, Di; 2Dy, Dy,
D3 D5, D3, 2D;, Dy,
D3 D5, D3 2D3 D3
DyDyy DDy, Di3Dy; DDy +DypDy
DyDy DDy, Di3Dsz DyDsp+DyyDy
DyDs; DypDsy DyDiyz DyDyy + DypDsy
2Dy Dy5 2Dy,Dy5
2Dy Dys 2D5, D5
2D3 Dy, 2D Dy, (18)
Dy Dy +Dy3Dy DipDps + Di3Dyy
Dy D33+ Dy3Dy3; D1pDss +Dy3Dsy
Dy D33 +DyDs; DypDss + Dy Dy

§3 =K.
From Equation (10), the partial derivatives can
be approximately calculated by substituting the esti-
mated GGD parameters into

Dy = kZI‘( )[F(a—i-l/k)\lf(a—i-l/k)]
T(a+1/k)
YT T
D =t 170 - v,
—2b?
Dy = T (a )[F( +2/k)¥(a+2/k)],
o Ta 200

()

I'(a+2/k)
I'(a)

3

-3
k2T (a)

by = b [V(a+2/k)—W(a)],

Dy = ——[I'(a+3/k)¥(a+3/k)],
T(a+3/k)

D32 = 3k2Wr

P30 1y 137 - wia),

= b3
Ds, I'(a) 9)

h
where 1 dr

F(t) Cdt

Clearly, from the derivation above, estimating
Var[cé\a(x)] requires obtaining the moment estimators
{A,(x),v =1,2,3} and their variances and covari-
ances. The estimators {{i,(x),v = 1,2,3} can be
obtained by following the methodology explained
in §3; estimating their variances and covariances is
discussed in Online Supplement A.3.

()=

6. Procedure for Estimating

Percentiles of Cycle Time
In this section, we discuss issues related to experiment
design and give a description of the proposed pro-
cedure for estimating percentiles. To provide context,
a high-level description of the procedure is provided
in Figure 2.

In summary, simulation experiments are carried out
sequentially until the prespecified stopping criterion
is satisfied. The experimentation is initiated with a
starting design that allocates an equal number (cho-
sen by the user) of replications to the two end points

1. Collect data at two end points, x; and x;;.

2. Fit the three moment curves.

3. Based on the estimated moment models, find the
optimal design for follow-up experiments.

Carry out more simulation experiments
according to the latest design and refit
the moment curves

Estimate the o, percentile at
throughput x;; and its variance

Augment the

current design by
adding more Desired precision
replications achieved?

A Yes

Estimate the o, percentile at
throughput x;, and its variance

No . e Yes
Desued. precision STOP
achieved?

Flow Chart for the Multistage Procedure

Figure 2
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of the throughput range [x;, x;;]. As the procedure
progresses, new design points are included and addi-
tional replications are added in batches. Each batch
of replications is allocated to the design points to
minimize PM (defined in Equation (22)), an experi-
ment design criterion that is related to the variance
of the percentile estimators. Because the design crite-
rion depends on unknown parameters of the moment
curves, the current best estimates of the parameters
are used in the allocation of each batch of replications.
As more simulation data are collected, increasingly
precise estimators are obtained until the precision of
the estimators matches the stopping criterion.

6.1. Experiment Design

As already noted, the experiments are started by a
design that allocates an equal number of replications
to the upper and lower end of the throughput range.
This design will then be augmented by including
more design points and more replications as the pro-
cedure progresses. To determine the follow-up design,
we need to answer three questions based on the esti-
mates obtained from the current data set: (i) How
many additional replications, say AN, will be added?
(if) At what design points (throughput levels) will the
simulations be executed? (iii) How many of the AN
replications should be allocated to each design point?
We use the vector x = (x4, x,, ..., x,,) to represent the
set of design points included in the design, and = =
(my, 7y, ..., ,) to represent the fractions for the total
replications assigned to each design point. At each
step, the values of x and = will be determined condi-
tional on the fact that some replications have already
been allocated to certain design points.

6.1.1. Design Criterion. Our goal is to develop
a method to estimate the percentile €,(x) for x €
[x;,xy] and « € [, ay;]. Therefore, the experiment
design will seek to minimize some measure of the
variance of {éa(x). Suppose that N is the number of
replications available for allocation. A natural perfor-
mance measure, which is inherited from Cheng and
Kleijnen (1999), is the weighted average variance over
the throughput range of interest normalized by N:

[ w(x)Var[€,, (x)] dx
fx’;” w(x) dx

PM,=N , (20)

where w(x) is the weight function, which in the sim-
plest case is one, and NVar[‘éau (x)] is the normalized
variance, which is independent of N. As explained
in §5.2, from the first three fitted moment curves
{#,(x), v=1,2,3}, the variance Var[€,(x)] can be esti-
mated for any percentile estimator €, (x) (x € [x;, x;],
a € [a;, ay7]). We chose to base Equation (20) on the
variance of the largest percentile a;; because ‘é\au (%)

is typically much more variable than other percentile
estimators. Unfortunately, it is not practical to deter-
mine [x, 7] by minimizing PM, because Var[{@\a(x)]
can only be numerically estimated for given values of
x and «a (§5.2). Hence, we use the simple finite differ-
ence approximation of Equation (20):

PMy=N Y Var[€, (x)]- Ak, (1)

ke,

where €, is a chosen set of evenly spaced grid points
in the range [x;, x;;] and Ak is the interval between
two neighboring points. Obviously, Ak is a constant
that can be dropped from Equation (21), so we define
our design criterion as

PM=N Y Var[%€,, (k)]. (22)

ke,

Measure PM is a function of the design [x, w]
as illustrated in Online Supplement A.5. Evaluat-
ing PM for given [x, @] requires providing an esti-
mate for Var[céau(x)], which can be obtained at any
later stage of experimentation, where simulation data
are available for the estimation of the first three
moment curves (for details, see Online Supplement
A.5). Hence, at a point where further experiments are
to be carried out, PM can be approximately calculated
for given [x, w], which enables us to apply a numeri-
cal search method to the problem of optimizing PM.
Note that N x 7 is not restricted to be an integer in
the search for the optimal solution of [x, =].

Next, we will give the details on how the optimiza-
tion problem is constructed and solved to augment
the current experiments at each stage.

6.1.2. Optimal Experiment Design. We propose
solving the following constrained nonlinear optimiza-
tion problem to guide further simulation experi-
ments given that some replications have already been
allocated:

min PM(x, ), (23)

subject to {xy, %5, ..., X, ) 2{X;, X%, ..., %, ] (24)

XpSX <X <--- <X, <Xy
d>m(x) =1

i=1

m(x;)>1b(x;) fori=1,2,...,m.

The input parameters, decision variables, and con-
straints of Equation (23) are as follows:

Input Parameters

* The range of throughput [x;, x;].

* m, and m (m > m,), the number of design points
before and after augmenting the design, respectively.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T

1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

636

Yang, Ankenman, and Nelson: Estimating Cycle Time Percentile Curves

INFORMS Journal on Computing 20(4), pp. 628-643, ©2008 INFORMS

* The old design points {%;, %,,..., %, } and the
allocation of simulation replications already made
at those points {n.(%;), n.(%,), ..., n.(%,,)}. Note that
n.(x)=0for x ¢ {%,,%,,..., %, }.

* The total number of replications already allo-
cated N, and the increment of replications to be
added to the current design AN. Therefore, we have
N = N, + AN. For the same reason as explained in
Yang et al. (2007), guiding the choice of AN at each
stage is important and the way to determine AN
is detailed in Online Supplement A.6. Both N, and
AN are used to calculate the lower bounds Ib(x;) =
max{n(x;),2}/(N. + AN) for i =1,2,..., m. We set
Ib; > 2/(N, + AN) to ensure that at least two repli-
cations are assigned to any point x; included in the
design.

Decision Variables

* The new set of design points x = {xy, x,, ..., x,,},
whose values are forced to be increasing in the
subscript.

* The updated allocation of simulation effort ==
{m, m, ..., m,}, which has to be mapped into integer
numbers of replications, say {n(x;),i=1,2,...,mj},
assigned to the design points. We use a simple round-
ing in our method by setting n(x;) = [N#;]. By round-
ing up, we insure that each design point gets at least
as many replications as called for by the optimal solu-
tion, and because our goal is to achieve a fixed pre-
cision (rather than optimize a fixed budget), this can
do no harm. The resulting integer solution could be
suboptimal but seems to work well in our numerical
experiments.

Constraints

* The constraint (24) forces the new set of design
points to include the old points.

e The meanings of the other constraints are
obvious.

To solve the optimization problem, we need to
choose starting values for each of the decision vari-
ables. In all the experiments considered in this paper,
the starting values of x are chosen to be evenly spaced
throughout the interval of throughput, and the frac-
tion of replications at each design point x; initiates
from N~'(n.(x,) +AN/m) (i=1,2,...,m).

In the procedure, Equation (23) is solved to aug-
ment the current design when an assessment of the
chosen percentile estimates shows that subsequent
experimental effort is necessary. The design may be
augmented in two different ways: (1) adding design
points and replications, and (2) adding replications
only. Augmentation of type 1 only occurs once in
the procedure, when we expand the starting design
which only consists of experiments performed at the
two end points x; and x;; to a m-point design. (Guide-
lines for determining the number of design points m

is provided in §6.3.) Afterward, the location of design
points are fixed, and only the allocation of simulation
effort can be modified by assigning more replications
to the current design points. In our experiments, the
optimization problem (23) is coded in Matlab, and the
Matlab optimization function “fmincon” is used to
solve the nonlinear constrained problem (with m =5
as will be explained in §6.3). This takes about 150 sec-
onds on a computer with a processor speed of 3 GHz.

6.2. Stopping Rule
The proposed procedure collects simulation data to
allow for estimation of €,(x) for x € [x;, x,] and
a € [a;, ay;] with both ranges of interest being spec-
ified by the user. Moreover, our method provides an
error estimate for any percentile estimator Cé\a(x) (x e
[x,, xy], a €[, ay]) (85.2). Obviously, the upper end
of throughput is where the variability of cycle time is
most pronounced, and it is known that estimators of
larger percentiles are more variable than their lower
counterparts. Consequently, C'éau(xu) is considered to
possess the highest variability among all the estimable
percentiles, which motivates us to use the relative
error of %\au (xy7) as the stopping criterion for our pro-
cedure. By controlling the precision of the most vari-
able estimator Cé;u (x), we hope that other percentiles
will also be well estimated.

Specifically, we let the user specify a precision level,
say 100y%, and the procedure terminates only when
the condition

2SE[ G, (v0)]

C@au (xll)
is satisfied. We define SE[-] = /Var[-]. Moreover,
a safe fallback strategy is adopted. As illustrated in

Figure 2, a check is also performed on the precision
of ‘€,, (x;), and simulation data will be collected until

<100y%

2SE[€,, ()]

= < 100’}/0/0.
%QL (xu)

Constraining the precision of any percentile estimator
6,(x) within a certain prespecified level is difficult,
but by controlling the relative precision of the two
estimators {éau (x;) and CgaL (xy), we hope to impose
precision control on percentile estimators throughout
the range we consider.

6.3. The Multistage Procedure
This subsection is devoted to an overall description
of the multistage procedure, which is diagrammed in
Figure 2.

The procedure is divided into two stages: In the ini-
tial stage, pilot simulation runs are performed at the
two end points of the throughput range to provide the
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preliminary data for model estimation; in the second
stage, the experiments are augmented to include, say,
m design points, and simulation runs are added in an
efficient manner until the desired precision level on
the chosen percentile estimators is achieved.

The number of design points m is a user-specified
parameter, which has to be set to allow for the good
estimation of the first three moment curves; that is,
m should be sufficiently large to allow the moment
model (4) to include enough polynomial terms to
generate a good fit for the vth (v =1, 2, 3) moment
curve. As pointed out by Yang et al. (2007), the
value of m must be determined through considera-
tion of the system being investigated. In our exten-
sive experiments with both simple queueing models
and realistic manufacturing systems, we have never
encountered a situation where five design points pro-
vided an inadequate fit for the moment curves over
[x1, x;] =10.5,0.95] (a throughput range much wider
than the range within which a real manufacturing sys-
tem is typically operated). Hence, we recommend set-
ting m =5 if no reliable information is available to
suggest the use of fewer points.

Inputs. Simulation model of the system being
investigated; precision level 100y%, which is defined
as the relative error on the chosen percentiles;
throughput range [x;, x;;]; percentage range [a;, a];
number of design points m; and initial number of
replications Nj.

Outputs. Fitted moment curves {g,(x), v =1, 2, 3}
and the inferred variance-covariance information,
from which the percentile estimate “¢,(x) and an

approximate standard error §E\J[Cga )] =V \a[@a(x)]
can be provided for x € [x;, x;] and « € [a;, ay].

Stage 0. Initially, N, replications are allocated
evenly to the two end points x; and x;;. The three
moment curves {{,(x), v=1,2, 3} are then estimated
by fitting models (5) and (7) as described in §3. At
this point, the polynomial order of {1,(x), »=1, 2, 3}
is equal to zero because of the constraint imposed by
the number of design points (two). With the estimated
moment models and the inferred variance informa-
tion, we:

1. determine AN, the number of replications to
be added to the initial design (see Online Supplement
A.6 for the determination of the value of AN);

2. find the optimal design (x, ) consisting of
m points by solving the nonlinear optimization
problem (23).

Stage 1. In this stage, we fix the m design points
and keep allocating more replications to those points
until the desired precision is achieved. Three tasks are
to be completed in the following steps:

Step 1. Run more simulation experiments. Assign
AN additional runs to the design points found in

the previous stage according to the latest updated
loadings . Refit the three moment curves and
search for an appropriate polynomial order for
each fitted model; we follow the forward selection
method suggested in Yang et al. (2007). Obtain the
estimate of the distribution of cycle time at x,
G(t; {i(xu),l;(xu),fc(xu)) and then estimate the per-
centile ‘€, (x) by inverting the cdf.A

Step 2. Evaluate the precision of €, (x,;). Estimate
the standard error of ‘éau (xy). If the desired precision
is achieved (2@[%;“ (x)] is less than y% of (éau (xy)),
then move to Step 3. Otherwise, conditional on the
current design points, find the value of AN at the cur-
rent point and solve Equation (23) to adjust the load-
ings 7 of the design according to the latest estimated
moment curves. Go back to Step 1.

Step 3. Evaluate the precision of %;L (xy;). Estimate
the standard error of Cg%(xlﬁ,). If the desired preci-
sion is achieved (2@[@%(9(”)] is less than y% of
Cé\aL (xy)), then stop. Otherwise, conditional on the cur-
rent design points, solve Equation (23) to adjust the
loadings & of the design according to the latest esti-
mated moment curves. Go back to Step 1.

7. Numerical Evaluation

In this section, we evaluate the performance of
the proposed procedure based on queueing mod-
els. In our experiments, we have considered the fol-
lowing G/G/1 queueing systems: M/M/1, M/E, /1,
D/E,/1, and D/M/1. These models cover deter-
ministic, Erlang, and exponential (representing no,
moderate, and high variability) distributions for the
interarrival and processing times, and they represent
a range of cycle time distributions while still being
analytically tractable. We use these simple models to
allow control of factors that might affect procedure
performance; a realistic full factory simulation is stud-
ied in the next section.

Not surprisingly, our procedure performs best on
M/M/1, where the assumptions concerning the form
of moment models and the distribution of cycle times
are known to be true. Among these four systems, our
procedure has the worst performance on the D/M/1
system. Due to space constraints, we only present the
results for M/M/1 and D/M/1.

7.1. Results for Queueing Systems

For both M/M/1 and D/M/1, the true percentiles of
cycle time at different throughputs can be analytically
computed, and hence the quality of percentile estima-
tion can be easily evaluated. For each model, the pro-
posed procedure was applied 100 times. Then, from
each of the 100 macroreplications, selected percentile
estimates were compared with their true values.
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In our experiments, the throughput range of inter-
est was chosen to be [x;,x;] =[0.7,0.95] and the
percentile range [a;, a;;] = [0.85,0.95], where we
have normalized the throughput so that the maxi-
mum system capacity is one. The precision level of
the relative error used as the stopping criterion was
set at 100y% = 5% (see §6.2). For all the queueing
models considered, the location parameter ¢, (see §4)
was set at 0 throughout the throughput range. As
already noted, our procedure is able to give percentile
estimates ‘€, (x) for any point in the two-dimensional
region defined by the percentile « € [a;, a;;] and
throughput x € [x;, x;]. We call this region the feasi-
ble region. To evaluate the accuracy and precision of
the percentile estimation, checkpoints were selected
inside this feasible region, as shown in Figure 3. At
each of these points, the estimates were compared
with the true percentiles of the queueing system.

7.1.1. Point Estimators. All the point estimators
for percentiles performed similarly well in terms of
deviation from the true value for both M/M/1 and
D/M/1. Two types of plots were made to display
graphically the 100 realizations of each percentile esti-
mator made at the checkpoints: (i) relative error plots,
where the y-axis is defined as

Percentile Estimate — True Percentile

O,

True Percentile x100%, (25)
and (ii) absolute error plots, in which percentile esti-
mates are plotted around their true values.

Figure 4 shows the percentile estimation results for
M/M/1. Figures 4(a)—(c) are relative error plots with
the percentile a being 85%, 90%, and 95%, respec-
tively. For these graphs, the x-axis represents through-
put rate x, and every point in the graph represents
the relative deviation at corresponding checkpoint

100 T T T T T
9B
9

94

92r b
90 . ° . . o [ E

88 b

Percentage level a (%)

86 b

84t g g -

80 i L L L : i
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Throughput x

Figure 3 Checkpoints Selected in the Feasible Region

(a, x), calculated by Equation (25) from one of the
100 macroreplications. Notice that a very high pro-
portion of the relative deviations of the percentile
estimates at the selected checkpoints are within 5%
(the precision level 100y% imposed prior to exper-
imentation). Figures 4(a’)-(c’) are the absolute error
plots, in which the solid curve represents a piece-
wise linear version of the true percentile curve across
the throughput range and the percentile estimates are
plotted in absolute units. From these plots, it is evi-
dent that the variability of the percentile estimators
at the highest throughput x; = 0.95 is the most pro-
nounced and, as explained in §6.2, it has been well
controlled in our procedure.

Figure 5 shows an analogous plot for the D/M/1
system and similar conclusions can be drawn, al-
though the performance is not as good as the M/M/1,
especially when the throughput is at x =0.95.

7.1.2. Standard Error (SE). An_estimator of the
standard error SE[€,(x)] = v Var[€,(x)] is provided
for each percentile estimator @(x) by the procedure
described in §6.3. Our goal in this section is to eval-
uate the quality of the SE estimator. Tables 1 and 2
show the results for M/M/1 and D/M/1, respec-
tively. The column labeled “Sample stdev” is the
sample standard deviation of the percentile point esti-
mators calculated from the 100 realizations of the per-
centile estimator; therefore, it is an unbiased estimator
of the true standard error. The “Average SE” column
is the average of the 100 standard error estimators
@[@a(x)], each one of which is estimated from within
a single macroreplication.

Table 1 shows that for M/M/1, the mean of the
standard error estimate in the “Average SE” column is
close to, but consistently less than, the unbiased exter-
nal estimate of the standard deviation found in the
“Sample stdev” column. The underestimation trend
is more apparent for the D/M/1. Nevertheless, the
estimated standard error ﬁ[@a(x)] provided by the
procedure can still give the user a rough idea about
how variable the percentile estimator is.

In the absence of any knowledge about the distribu-
tion of the percentile estimators, it would be natural
to attempt to form a 95% confidence interval for the
percentile by using

€. (x) £1.96 x SE[€, (x)]. (26)

For M/M/1, Equation (26) works well in terms of
coverage and gives a conservative confidence interval.
However, for D/M/1, the coverage probability was
lower than the nominal level. This can be explained
by underestimation of the standard error and nonnor-
mality of the percentile of cycle time estimator. In the
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(a) Relative error plots for 85th percentile
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Figure 4

case with D/M/1, it appears that nonnormality is the
dominant factor.

7.2. Summary of Results
Through experimentation with queueing models, it
has been shown that the proposed procedure has

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

(a”) Absolute error plots for 85th percentile
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Plots of the Percentile Estimates for M/M/1 (100 Macroreplications)

the potential to be effective in providing accurate
and precise percentile estimators. By controlling the
relative standard error of the percentile estimators at
the upper end of the throughput range, high preci-
sion has been achieved for estimators of percentiles
throughout the feasible region.
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(a) Relative error plots for 85th percentile
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For each percentile estimator, an estimate of the
standard error is also provided that gives the user
a sense of its variability. However, in the scope of
our work, there is not sufficient information to draw
any conclusion regarding the distribution (or limiting
distribution) of the percentile estimators. Thus, no

(a”) Absolute error plots for 85th percentile
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reliable confidence interval can be created based on
the standard error estimation.

Of course, real manufacturing systems are networks
of queues. To stress our procedure in a realistic set-
ting, we next consider a semiconductor fabrication
model.
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Table 1 Estimated Standard Errors of Percentile Estimates for M/M/1
85th percentile 90th percentile 95th percentile
Sample Sample Sample
TH x  stdev  Average SE stdev  Average SE stdev  Average SE

0.70  0.055 0.053 0.072 0.067 0.117 0.105
0.75 0.056 0.053 0.071 0.067 0.112 0.106
0.80 0.070 0.064 0.089 0.080 0.137 0.125
0.85 0.110 0.100 0.139 0.126 0.213 0.190
090 0.225 0.213 0.282 0.270 0.430 0.399
095 0.759 0.734 0.950 0.926 1.439 1.361

8. An Example of Manufacturing

Systems

In this section, we apply the proposed procedure
to a semiconductor wafer fab simulation model rep-
resenting a full manufacturing factory. The model
(testbed data set #1 created in Factory Explorer)
was taken from the website of the Modeling and
Analysis for Semiconductor Manufacturing Lab at
Arizona State University (http://www.eas.asu.edu/~
masmlab/). The model is designed to process two
types of jobs, Prod1 and Prod2, with each type being
released into the system at a constant (deterministic)
rate. Jobs of different types follow different process
steps and thus have different cycle time distributions.
The primary sources of variability are machine fail-
ures and repairs.

In our experiments, the product mix (expressed as
a percentage of production dedicated to each prod-
uct type) is set as 66.7% Prodl and 33.3% Prod2.
We investigate the CT-TH relationships for the two
types of products separately. For the percentile of
cycle time curves to be generated, the independent
variable, throughput, was defined as the overall pro-
duction rate (as a percentage of the capacity) of both
types of jobs that are mixed with a constant ratio.
Note that the cycle time distribution for a particular
type of product also depends on the product mix. In
this paper, we restrict ourselves to situations where
the jobs are released with fixed product mix. The con-
struction of CT-TH-PM (product mix) surfaces is the
subject of ongoing research.

Table 2 Estimated Standard Errors of Percentile Estimates for D/M/1
85th percentile 90th percentile 95th percentile
Sample Sample Sample
TH x  stdev  Average SE stdev  Average SE stdev  Average SE

0.70  0.028 0.024 0.035 0.029 0.056 0.046
0.75 0.035 0.026 0.044 0.032 0.065 0.048
0.80  0.060 0.042 0.074 0.052 0.103 0.079
0.85 0.090 0.065 0.106 0.082 0.142 0.125
0.90 0.144 0.105 0.171 0.132 0.224 0.195
095 0.399 0.373 0.503 0.471 0.733 1.696

As already indicated, our objective is to estimate
the CT-TH percentile curves for both Prod1 and Prod2
based on a single set of simulation runs. In our exper-
iments, we chose to drive the simulation by the pre-
cision of Prod2. After accumulating sufficient data for
the estimation of Prod2, we estimate the percentile
curves for both products. For the implementation of
our procedure, the range of throughput was chosen
to be [0.7,0.95], where “1” corresponds to system
capacity, and the percentile range was chosen to be
[85%, 95%]. The precision level was set at 100y% = 1%
and the number of design points was set at m = 5.
In the remainder of this section, we will discuss the
results for Prod2 in detail; similar conclusions can be
drawn for Prod1.

As explained in §4, we allow the user to introduce
a fourth parameter t;, which represents the lower
bound of the GGD representing cycle time. There are
at least three different ways to set the location param-
eter t,(x) for the GGD distribution fitted at through-
put rate x: In the absence of any knowledge about
the lower bound of cycle time, zero can always be
used as the default value of fy(x) for any x. Next, the
pure minimum processing time of the product being
considered, which is usually available to the user, can
be safely used for the location parameter through-
out the range of throughput. These two simple set-
tings can provide good percentile estimates, as will be
explained later. However, to achieve better precision,
we recommend using a third method that imposes
a much tighter lower bound on the cycle time. As
already noted, the distribution of steady-state cycle
time varies with the range of throughput, as illus-
trated in Figure 6, which gives histograms of 50,000
individual cycle times for Prod2 at two throughput
levels, 0.7 and 0.95. Although the theoretical pure
processing time is not a function of throughput, the
impact of queueing is to make the effective minimum
cycle time much larger, from about 450 hours at x =
0.7 to about 680 hours at x = 0.95. As can be seen from
the graphs, at high throughput levels, the steady-state
cycle times are bounded well away from their pure
processing time (223 hours), the theoretical minimum.
Our experiment results have shown that using the
empirical minimum brings significant improvement
to the percentile estimates. To obtain the empirical
minimum of cycle time at any x € [x;, x;], we propose
the following method: at the five design points where
simulation experiments are performed, the empirical
minimal cycle time can be easily obtained. For other
points, we use linear interpolation based on the five
minimums at those design points.

To evaluate the percentile estimates, the check-
points as shown in Figure 3 are used again. Because
the true percentiles at those points are unknown, sub-
stantial additional data were collected at the check-
points to obtain the “nearly true” estimates for
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(a) Histogram of cycle times at x = 0.70 (b) Histogram of cycle times at x = 0.95
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Figure 6 Histograms of Cycle Times (50,000 Cycle Times in Each Graph)

percentiles of cycle times. We present in Table 3
the numerical results for Prod2 with the throughput-
sensitive location parameter being the empirical
minimum at each throughput level. In Table 3, abso-
lute deviations (defined as percentile estimates minus
“true percentiles”) and relative deviations (defined by
Equation (25)) of the estimated percentiles are given
as well as an estimate of the standard error of the
percentile estimator.

The point estimates of percentiles are good in terms
of the relative error; with the exception of two check-
points at which the absolute value of the relative error
is slightly above 1%, the deviations are well within
the desired precision. From the sign of the deviations,
it is obvious that at the lowest throughput rate the
percentiles are overestimated, and that at the higher
throughput levels the percentiles are underestimated.
We conjecture that the bias in percentile estimates was
inherited from the moment estimates. We compared
the estimated moments obtained from the procedure
with (very precisely estimated) “true” moments and
detected the same pattern: the first three moments
are all slightly overestimated at the lower end of
the throughput range while being slightly underesti-
mated at the other throughput levels. As explained in

Yang et al. (2007), this consistent pattern in the esti-
mation on moment estimates is what we expected.
Due to the form of the moment model (4), the fit-
ted moment curve is likely to increase smoothly and
intersect with the underlying true moment curve at
some point within the throughput range. In this case,
for all three moment curves, the intersection point is
somewhere close to the lower end. In other words,
at throughput levels lower than the intersection, we
overestimate the moments, and at throughput levels
higher than the intersection, we underestimate the
moments.

Based on the same data set, percentile estimates
were also obtained using different settings of the loca-
tion parameter: (i) #y(x) =0 and (ii) fy(x) equal to
the pure processing time. The percentile estimates
obtained from these two settings are still fairly good
in terms of relative error. For case (i), the relative error
at all the checkpoints was within 3.5%. The precision
achieved in case (ii) is slightly better.

9. Summary

Estimating percentiles of cycle time via simulation is
difficult due to the high variability of percentile es-
timators and the diversity of cycle timedistributions.
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Table 3 Results for the Semiconductor Manufacturing Model
85th percentile 90th percentile 95th percentile

TH x Abs. dev. Rel. dev. (%) Est. SE Abs. dev. Rel. dev. (%) Est. SE Abs. dev. Rel. dev. (%) Est. SE
0.70 4.62 0.66 0.84 5.49 0.76 1.21 5.67 0.76 1.96
0.75 —2.53 —0.35 0.63 —3.27 —0.44 0.87 —1.98 —0.26 1.39
0.80 —6.88 —0.91 0.47 —7.77 —1.00 0.66 —7.34 —0.91 1.07
0.85 —6.93 —0.86 0.63 —7.12 —0.86 0.90 —6.87 -0.80 1.48
0.90 —3.98 —0.45 0.92 -3.38 —0.37 1.17 -1.95 -0.21 1.71
0.95 —9.60 -0.91 1.64 —10.04 —0.94 2.31 -11.78 —1.06 3.73
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This paper proposes a new methodology for estimat-
ing multiple cycle time percentiles throughout the
throughput range of interest based on a single set of
simulation runs. It has been shown through exper-
iments on queueing models such as M/M/1 and
D/M/1 and a real semiconductor manufacturing sim-
ulation that the multistage procedure provides good
point estimators for percentiles of cycle time.

As a by-product of our research, our moment curves
can also be used to obtain other summary statistics
such as the standard deviation of cycle time. Our fit-
ting techniques could also be employed to estimate
simulation-generated “clearing functions” (a type of
throughput versus work-in-process inventory curve;
see Asmundsson et al. 2006). Clearing functions are
used in production planning optimization models to
allow the model to assess the impact on work in pro-
cess and throughput of altering the production plan.
This is the subject of ongoing research.
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