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Abstract: A cycle time-throughput (CT-TH) curve, which quantifies the relationship of long-run average cycle time to throughput
rate, plays an important role in strategic planning for manufacturing systems. In this paper, a nonlinear regression metamodel
supported by queueing theory is developed to represent the underlying CT-TH curve implied by a manufacturing simulation model.
To estimate the model efficiently, simulation experiments are built up sequentially using a multistage procedure. Extensive numerical
experiments are presented to demonstrate the effectiveness of the proposed procedure. © 2006 Wiley Periodicals, Inc. Naval Research
Logistics 54: 78–93, 2007
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1. INTRODUCTION

Planning for manufacturing, either at the factory or at the
enterprise level, requires answering “what if” questions
involving (perhaps a very large number of) different scenar-
ios for product mix, production targets, and capital expansion.
A key performance measure for evaluating these scenarios is
the implied cycle time, a random variable representing the
time required for a job or lot to traverse a given routing in a
production system (e.g., [5]). A company can control cycle
time by controlling the rate at which lots are started in the
factory (lot-start rate or, equivalently, throughput rate). Com-
puter simulation is a powerful tool for estimating long-run
average cycle time for given operating conditions. However,
this is only a snapshot of the system’s performance profile;
a more comprehensive picture is provided by a cycle time-
throughput (CT-TH) curve over a range of throughput rates.
Analytically tractable queueing models can produce such
curves, but they invariably require significant simplification
of the actual manufacturing system.

This paper addresses the generation of simulation-based
CT-TH curves for the long-run average cycle time of systems
without batch processing policies or for systems with batch
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policies operating in the range of throughput for which mean
cycle time is monotonically increasing (at low throughput
rates, cycle time can actually decrease due to the reduced
delay required for a batch to form). The goal is to provide
a methodology that requires nothing of the analyst beyond
the simulation model, a throughput range of interest, and a
measure of the required precision for the estimated curve. The
result is a complete response profile like that provided by a
tractable queueing model, but with the fidelity of a simulation
model.

There is already a substantial literature on fitting CT-TH
curves to simulation responses, including [3, 4, 9]. However,
their work either assumes more knowledge of the form of
the CT-TH curve than is actually available in practice or pro-
vides an experiment design to work within a given computing
budget rather than being driven by a desired precision. Our
experience, derived from extensive simulations of real and
stylized manufacturing systems [1, 6], reveals that CT-TH
curves deviate substantially from the forms assumed in the
literature. Further, on many occasions, there is no natural bud-
get. Stated differently, there is sufficient time to estimate the
CT-TH curve (which is only done once), so it is more critical
to insure that it is accurate and precise than it is to estimate
it quickly. Both of these issues emphasize a need to be more
adaptive than available procedures.
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Figure 1. A generic CT-TH curve.

A highly adaptable method used by van Beers and Kleijnen
[10] for estimating CT-TH curves is Kriging, which is a
weighted average interpolation approach. Kriging is most
appropriate for situations in which the user has little or no
knowledge of the true underlying surface to be modeled.
However, in our case, we have substantial justification for
a particular parametric model family for the CT-TH curves,
as will be shown in Section 1.1, so it is highly beneficial to
exploit that information. Therefore, our goal is to make fitting
this parametric model adaptive in terms of the parameters that
we fit (to improve accuracy) and the experiment we design
(to control precision).

1.1. Statement of the Problem

Without loss of generality, we assume that the capacity of
the system is 1, so that the system throughputx is equivalent to
the traffic intensity. In manufacturing systems where product
batching is not implemented, CT-TH curves normally follow
the shape in Figure 1. When the throughput is close to zero,
cycle time is almost equal to the pure processing time; as
the throughput approaches the upper limit of stability, the
cycle time increases nonlinearly and tends to infinity before
actually reaching full capacity. Although in theory the system
throughput can take any value in (0, 1), manufacturers are
usually interested in a much narrower range of throughput
that is likely to deliver a competitive output rate as well as an
acceptable cycle time. We assume that the range of interest,
say [xL, xU ], is given.

The objective of our research is to estimate a CT-TH
curve via sequential experimentation. We suppose that the
simulation experiment is made up of a number of indepen-
dent simulation runs. The distribution of the output response
(average cycle time) from a replication, Y , is dependent on
the system throughput, x. This input–output relationship can

be represented by the following metamodel, which is called
the expected cycle-time (ECT) model,

Yj (x) = µt(x, c, p) + εj (x) j = 1, 2, . . . , n(x), (1)

where

µt(x, c, p) =
∑t

�=0 c�x
�

(1 − x)p
(2)

is the model of the expected value of Y (x). We use the sub-
script t to denote the degree of the polynomial factor in x.
Both p and t , as well as the vector c = (c1, c2, . . . , ct ), are
unknown parameters in the model. Our focus is on long-run
average, or “steady-state” expected cycle time. The form of
model (2) is motivated by heavy traffic analysis of queue-
ing systems. Specifically, Whitt [11] shows that as x → 1
the expected cycle time for most queueing systems takes this
form. In addition, the expected cycle time for several simple
queueing systems discussed later in this section take this form
for all values of x. Our focus on the steady-state expected
cycle time implies that initialization bias has somehow been
mitigated (perhaps by deleting some of the cycle-time obser-
vations at the beginning of each replication). We let the true
expected value be denoted by µ(x, c, p) and also define the
following notation:

Yj (x): the output from the j th independent and identi-
cally distributed (i.i.d.) replication at throughput level
x, which is Yj (x) = H(x)−1 ∑H(x)

h=1 CTjh(x). Here
CTjh(x) represents the individual cycle time of the hth
job in the j th simulation replication, whose distribution
depends on x only; and H(x) is the selected number of
jobs simulated in steady state for simulations at x. We
assume that for a given throughput x the individual cycle
times CTjh(x) are identically distributed, although not
in general independent within a replication.

n(x): number of replications placed at the input level x.

εj (x): error term with expectation 0 and variance, σ 2(x).
The dependence of σ 2(x) on x is represented by the so-
called “variance model,” which will be discussed later.

Remark. In our experiments, the simulation replications are
performed independently without common random numbers
because the sequential nature of the experimentation makes
it nearly impossible to synchronize them effectively.

The expectation function (2) can be decomposed into two
components, f (x) = 1/(1 − x)p, which accounts for the
unbounded behavior of the CT-TH curve as the system is
pushed close to capacity; and the polynomial function in the
numerator. The form of model (2) is motivated by queue-
ing results for a number of elementary stochastic models for
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which (2) is precisely correct for all x and the heavy traffic
analysis mentioned above. Consider, for example, the M/M/1
queue. The steady-state mean of cycle time is

E[Yj (x)] = 1

1 − x
. (3)

This relationship is of the form of the model we suggest.
Another example is the G/G/1 queueing model, which can
be regarded as the simplest representation for real manufac-
turing systems. An approximation of the cycle time for the
G/G/1 is given by Hopp and Spearman [5] as

E[Yj (x)] .= 1 + (C2
a+C2

e

2 − 1
)
x

1 − x
, (4)

where C2
a and C2

e are the coefficients of variation of the inter-
arrival time and effective processing time, respectively. The
symbol

.= is used in this paper to represent “approximately
equal to.” This model is also of the form that we assume. Note
that for both (3) and (4) we would set p = 1 in (2); while this
is the correct value for many simple queueing models, it is
not universally appropriate as demonstrated by the empirical
examples provided in [1] and [6].

With the shape of a CT-TH curve defined by the ECT
model (1), we propose a multistage procedure for efficiently
collecting data to fit the curve. Before a detailed description
of the procedure is given in Section 4, we first review Cheng
and Kleijnen’s [3] approach to the same problem. It should
be noted that Cheng and Kleijnen did not specifically inves-
tigate the CT-TH curve; the response variable in their paper
was expected waiting time, which differs from the expected
cycle time by a constant, the expected pure processing time.

1.2. Summary of Cheng and Kleijnen’s Method

Cheng and Kleijnen [3] developed a procedure to improve
the design of simulation experiments for the purpose of esti-
mating a CT-TH curve with a limited computational budget.
In their paper, a linear regression model is developed to rep-
resent the CT-TH relationship by using the model form (1),
but assuming p is known (or equivalently that the function
f (x) = 1/(1 − x)p is completely specified). The variance of
the error term depends on x as

Var[ε(x)] = [g(x)σ ]2, (5)

where g(x) is also assumed known from asymptotic theory
or other considerations.

The design of the experiment consists of the location
of the design points x = (x1, x2, . . . , xm) and the fraction
of a total of N replications assigned to those points π =

(π1, π2, . . . , πm). The design is constructed to minimize

PM0 =
∫ xU

xL
w(x)Var[µt(x, ĉ, p)]dx∫ xU

xL
w(x)dx

= σ 2
m∑

i=1

(
ai(x)

r(xi)

)2

n−1
i , (6)

where w(x) is a weight function chosen by the experimenter.
The performance measure PM0 is the weighted-average vari-
ance of the estimated expected response over the throughput
range of interest. In (6), r(xi) = f (xi)/g(xi), ai(x) is a
function of the design vector x (for the specific form of ai ,
see [3]), σ 2 is the constant term in the error variance (5),
and (n1, n2, . . . , nm) = Nπ is the integer vector represent-
ing the number of replications assigned to the design points.
Obviously, PM0 can be expressed in units of σ 2/N , and the
resulting normalized measure simplifies to

PM =
m∑

i=1

(
ai(x)

r(xi)

)2

π−1
i . (7)

This measure will also be used as the design criterion in
our procedure. To solve this optimization problem Cheng
and Kleijnen relaxed the constraint that Nπ be integer, mak-
ing the πi continuous decision variables, and then rounded
Nπi to obtain the actual allocation; we will adopt a similar
approach.

The CK Procedure for fitting the model (1) can be summa-
rized as follows. Given f (x), g(x), a maximum value of t , and
a fixed budget ofN replications, find the optimal design (x, π)

by minimizing PM. With the design points x fixed, carry out
simulation experiments sequentially and adjust the alloca-
tion π . Once the total number of runs has been exhausted,
use backward selection to decide the appropriate polynomial
order of model (1) and obtain the fitted curve.

Cheng and Kleijnen’s method leaves open the question of
how to specify f (x) and g(x), which affect the design of the
experiment and, more importantly, the adequacy of model (1)
to represent the true CT-TH curve. When these two functions
are known, CK is highly effective and efficient and works
within a fixed budget, which our procedure is not designed to
do. However, for complicated manufacturing systems, there
is not likely to be sufficient information to infer such char-
acteristics. In other words, obtaining good choices for f (x)

or g(x), although not impossible, is difficult in practice. Fur-
ther, we have strong empirical evidence [1, 6] that the f (x)

and g(x) used by Cheng and Kleijnen can be far from cor-
rect in realistic manufacturing simulations. We next discuss
the consequences of misspecifying f (x) and g(x) and the
improvements we have made in this regard.

The most important characteristic of a CT-TH curve is its
sensitivity to throughput. Note that the rate of increase of the
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curve is dominated by f (x) (or more specifically the value of
p) as x approaches 1. Since they consider f (x) to be given,
Cheng and Kleijnen depend on the polynomial numerator
of (2) to adjust the fitted curve for misspecification of f (x).
They argue that the error in p can be corrected by adding more
terms to the polynomial, and therefore the desired accuracy
can always be achieved. Unfortunately, increasing the poly-
nomial order t means increasing the number of unknown
parameters in the model, and therefore more design points
must be included for the purpose of estimation. This implies
that significant computing effort might be required for no
reason other than adjusting for the misspecification of p,
which may not be the most efficient way to make use of
limited resources. Also, a model incorporating a high-order
polynomial may not preserve the monotonicity of the curve
throughout the range of interest, which is known to be a
property of the CT-TH curve.

In light of these issues, we incorporate p as an unknown
parameter. Rather than correcting for misspecification using
the polynomial numerator, our attention is directed toward
obtaining an accurate and precise estimate of p so that the
polynomial order can stay as low as possible. This also tends
to produce a well-behaved curve in terms of preserving mono-
tonicity. At the same time, it makes possible a good fit with
a relatively small number of unknown parameters and there-
fore better uses the simulation effort at a smaller number of
design points.

In the CK Procedure, steps are taken to recover, to some
extent, from the effect of an incorrectly chosen g(x). Thus,
a misspecified g(x) does not seriously hurt the efficiency
of the CK Procedure aside from a non-optimal location of
design points. Nevertheless, making a better choice of design
points is worthwhile if it can be accomplished easily. In our
proposed procedure, a parametric form is assumed for g(x),
based on queueing theory, and a small amount of experimen-
tal effort is expended to fit it. This leads to a better experiment
design.

In summary, the CK Procedure requires more prior knowl-
edge of the system than can usually be assumed in practice.
Therefore, it is of practical interest to develop a method where
little or no prior information is required for the implemen-
tation. The procedure suggested in this paper provides such
an alternative, while also driving the process by a required
precision rather than a fixed computing budget.

The remainder of the paper is organized as follows:
Section 2 discusses the challenges introduced when we allow
p in (2) to be a parameter and consider g(x) in (5) to be
unknown, while Section 3 describes how we determine the
experiment design for this more general model. In Section 4
we assemble all of these pieces into a comprehensive descrip-
tion of the procedure, and we evaluate the procedure in
Section 5. The paper concludes with an illustration using a
realistic manufacturing simulation and a summary.

2. ISSUES RELATED TO
NONLINEAR REGRESSION

The key consequence of treating p in model (1) as an
unknown parameter is that fitting the model becomes a non-
linear estimation problem. In this section, we discuss the
issues that arise in fitting the nonlinear regression model and
how we address them.

2.1. The Error Term

Since one of our goals is to continue to collect simu-
lated data until an accurate model, estimated to a prespecified
precision, is obtained, we must be able to derive valid statis-
tical inference about our fitted model. Nonlinear regression
inference is based on specific assumptions about the error
term, usually that it is normally distributed with zero mean,
constant variance, and independent across replications [2].
Independence across replications can be assured by assign-
ment of random number streams. Normality of the response
Y can be justified by appealing to the Central Limit Theorem
for weakly dependent random variables; indeed, the average
of a large number of individual cycle times is approximately
normally distributed and thus so is the error term. That leaves
only the constant variance assumption.

The variability of individual cycle times increases dramat-
ically as throughput approaches its capacity, and this drives
the variance of Yj (x), the average cycle time, to infinity as
well. Thus, we must stabilize the variance to use standard
methods of statistical inference. Our variance model is based
on queueing analysis. As the traffic intensity approaches 1,
the asymptotic variance of the sample mean of some queue-
ing systems is known to be well approximated by a model of
the form [11]

σ 2
A(x) = lim

H(x)→∞
H(x)Var[Yj (x)]

= lim
H(x)→∞

H(x)Var

[
H(x)−1

H(x)∑
h=1

CTh(x)

]

.=
∑K

k=0 bkx
k

(1 − x)2q
. (8)

Note that the asymptotic variance σ 2
A(x) is not the marginal

variance of the individual cycle times, Var[CTh(x)], but is
related to the variance of the sample mean cycle time in the
following way: For simplicity, set H(x) = H for all values
of x. Recall that the output Yj (x) is the average of {CTh(x);
h = 1, 2, . . . , H }, the cycle times of all the products simulated
in a replication at design point x. Thus, for large H , σ 2(x)

.=
σ 2

A(x)/H , and the variance of Yj (x) has approximately the
same form as the right-hand side of (8). For x close to 1, this
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suggests the model

σ 2(x) = [g(x)σ ]2 .= σ 2

(1 − x)2q
, (9)

which is the model that CK use, but they assume q is known.
For many simple queueing models q = 2, but we have seen

empirically that, for more complicated queueing networks,
it can be markedly different from 2 [1, 6]. To estimate the
error variance, σ 2(x), we use the obvious estimator S2(x), the
sample variance estimated from the i.i.d. replications taken
at x. For the purpose of estimating q, we use the variance
model

S2(x) = σ 2

(1 − x)2q
· τ(n(x)), (10)

where τ(n(x)) ∼ χ2
n(x)−1/(n(x)−1) is a multiplicative error

(see Appendix A.1 for more information) that depends on
n(x), the number of replications performed at throughput
rate x. This provides a good approximation in the range of
throughput we are investigating, say, [0.5, 0.95]. The model
is appealing because (10) can be transformed into a linear
regression by taking the logarithm

log S2(x) = log σ 2 − 2q log(1 − x) + v(x). (11)

This transformed variance model (11) is linear; thus, in our
procedure, (11) will be the model that is fitted directly with
the ordinary least square method. Note that if H(x) is cho-
sen to vary with x, then S2(x) in (11) must be replaced by
S2(x)H(x) to obtain a valid fit.

In model (11),σ 2 is just a nuisance parameter, whileq is the
parameter of interest since it plays a crucial role in stabilizing
the variance for the ECT model (1). If the variance model is
correct, then transforming the response Yj by multiplying by
(1−x)q will yield a constant variance and result in a standard
nonlinear regression model:

Zj = Yj × (1 − x)q = ηt (x, c, r) + δj

=
t∑

�=0

c�x
�(1 − x)r + δj , (12)

where r = q − p is an unknown parameter and we assume
that δj = εj (x) × (1 − x)q ∼ Norm(0, σ 2). Therefore, we
will estimate model (12) directly and then obtain the parame-
ter estimators of the ECT model (1) indirectly by noting that
the coefficients c in model (1) coincide with those in (12),
and p is estimated by the difference between the q and r

estimates.

2.2. Other Issues

Specifying the Polynomial Order of the ECT Model

The appropriate order of the polynomial in the ECT model
is determined in a forward-selection manner. More specifi-
cally, based on a data set, transformed models ηt (x, c, r) for
t = 0, 1, . . . are successively fitted. At each advanced stage
(t > 0), after fitting ηt (x, c, r), an extra sum of squares anal-
ysis (see [2], p. 103, for details) is performed and we keep
increasing the value of t until the variability explained by the
highest order term in the model is found to be insignificant
at a confidence level of 95%. This approach tends to keep
t small and therefore preserve the monotonicity of the curve.

Starting Values of Nonlinear Parameters

Obtaining good starting values for the unknown parame-
ters is important in nonlinear regression. We first consider
the starting value for the parameter r . The limiting form of
model (12), as x → 1, is η0(x, c, r) = c0(1 − x)r . Thus,
r̂ can be obtained by fitting model η0(x, c, r), for which we
have shown that the convergence of nonlinear least-squares
estimators to the global optimum is guaranteed even without
good starting values. For the throughput range of interest,
say [0.5, 0.95], the estimate r̂ from fitting η0(x, c, r) provides
a good initial value of r for fitting the higher-order model
η1(x, c, r). More generally, we obtain an initial value of r

for fitting model ηt (x, c, r) from the estimator r̂ from fitting
model ηt−1(x, c, r), t = 1, 2 . . . . Given any fixed value of r ,
we can perform a simple linear regression to obtain the start-
ing values of the coefficients c. Thus, our forward-selection
procedure provides a natural way of determining starting
values for the parameters of the nonlinear regression models.

3. PROCEDURE FOR DETERMINATION
OF SIMULATION INPUTS

This section is devoted to construction of the experiment
design and issues related to computational efficiency. To pro-
vide context, a high-level description of the procedure is
provided in Figure 2 along with the sections of the paper
in which the key components are described. The detailed
procedure is given in Section 4.

The experiment design consists of the design points x, the
throughput levels at which simulations will be executed, and
the allocation π , the fraction of the available simulation repli-
cations assigned to each design point. The best choice of
(x, π) depends on the true ECT and variance curves. In our
procedure, models of the ECT and variance curves are esti-
mated ever more precisely as simulation data are obtained,
and the choice of what design points to add or at which points
to make additional replications is guided by the current best
estimate of the model.
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Figure 2. Flow chart for the multistage procedure.

3.1. Design for Estimating the Variance Model

As explained in Section 2.1, the variance of the response
Y (x) as a function of x is far from constant, so to obtain
valid statistical inference the first step is to stabilize the vari-
ance. Therefore, we fit the transformed variance model (11)
before performing any other analysis. Since the variance-
stabilizing transformation involves only the parameter q, the
experiment design for fitting model (11) should emphasize
precise estimation of q.

Kiefer and Wolfowitz [7] show that the variance-
minimizing number of design points for fitting a linear model
such as (11) is equal to the number of unknowns, 2 in our case.
In Appendix A.1 we show that the optimal allocation of simu-
lation effort to minimize Var[q̂] is to assign the same number
of replications to the lower and upper bounds, xL and xU . To
achieve this, the number of initial replications, selected by
the user, should be chosen to be an even number.

3.2. Design for Estimating the ECT Model

Design Criterion

We use the PM measure (6) employed by Cheng and
Kleijnen [3] as the design criterion for fitting the ECT
model (1). The variance Var[µt(x, ĉ, p̂)], and hence the PM
measure, depend on x and π , and the optimal design is deter-
mined by minimizing PM with respect to these decision
variables.

Recall that CK treat both p and q as known parame-
ters, which leads to the simplified form of PM in (7), for
which the optimal design is relatively easy to obtain. On
the other hand, we treat p and q as unknown parameters
to be estimated. Actually, p̂ is obtained indirectly through
the relationship p̂ = q̂ − r̂ , where q̂ and r̂ are estimated
from fitting models (11) and (12), respectively. Two difficul-
ties are encountered in evaluating PM as a function of x and
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π : (1) Although the estimators of Var[q̂] and Var[r̂] can be
obtained from model fitting, there is no direct way to estimate
the covariance Cov[q̂, r̂], and hence Var[p̂] = Var[q̂ − r̂] is
difficult to estimate. (2) The ECT is a nonlinear regression
model, and the variance of its expected response estimator,
Var[µt(x, ĉ, p̂)], depends on the unknown parameters. Good
estimates of these unknowns are not usually available when
the experiment design is constructed.

Our approach is to use a small preliminary experiment to
estimate q and then p using the experiment design outlined in
Section 3.1. We then treat these estimates q̂ and p̂ as known
values so that we can harness the formula for PM in (7).
As the sequential estimation procedure continues, we use
updated estimates of both the ECT and the variance mod-
els to refine the design. However, this sequential updating
introduces another complication that we describe next.

Constrained Nonlinear Optimization

Conditional on q̂ and p̂, the optimal design (x, π) can
be obtained by minimizing PM. However, since data are
collected sequentially, the ECT and variance models are con-
tinually refined. Each time we reoptimize the design for the
refined models, the throughput levels that have already been
chosen and the replications that have already been allocated
are constraints on the optimization. CK ignore the data that
have already been allocated and simply solve the uncon-
strained problem for the new allocation π ; therefore, their
new allocation may not be achievable due to a fixed budget.
We propose solving the following constrained optimization
problem each time we reoptimize the design:

min
x,π

PM(x, π) (13)

s.t . {x1, x2, . . . , xm} ⊇ {x̂1, x̂2, . . . , x̂mc
} (14)

xL ≤ x1 < x2 < · · · < xm ≤ xU

m∑
i=1

πi = 1

πi ≥ lbi for i = 1, 2, . . . , m.

The input parameters, decision variables, and constraints
of (13) are given as follows.

Input parameters.

• The range of throughput [xL, xU ]
• mc and m (m ≥ mc), the number of design points

before and after augmenting the design, respectively
• The old design points {x̂1, x̂2, . . . , x̂mc

} and the allo-
cation of simulation replications already made at
those points {nc(x̂1), nc(x̂2), . . . , nc(x̂mc

)}; note that
nc(x) = 0 for x /∈ {x̂1, x̂2, . . . , x̂mc

}

• The total number of replications already allocated
Nc and the increment of replications to be added
to the current design 	N . The choice of 	N at
each stage will be discussed in the next subsec-
tion. Both Nc and 	N are used to calculate the
lower bounds lbi = max{nc(xi), 2}/(Nc + 	N) for
i = 1, 2, . . . , m. We set lbi ≥ 2/(Nc + 	N) to
ensure that at least two replications are assigned to
any point xi included in the design.

Decision variables.

• The new set of design points x = {x1, x2, . . . , xm},
whose values are forced to be increasing in the
subscript. In practice, the design points are also
required to be a certain minimum distance from each
other.

• The updated allocations of simulation effort π =
{π1, π2, . . . , πm} in (13). Following the strategy of
Cheng and Kleijnen [3], the π are treated as con-
tinuous decision variables in the optimization by
relaxing the constraint that Nπ be an integer. The
allocation we actually use is then obtained by round-
ing up; that is, we set n(xi) = �Nπi	, which adds at
most m additional replications relative to any other
rounding of this solution.

Note that the equivalent representations of PM0 in
Eq. (6) depend on the allocations ni being an integer,
while in the relaxed, and scale-free, PM of (7) the
corresponding πi are continuous valued. Since we
jointly optimize x and π in (13), we cannot claim
that rounding up reduces the objective function’s
value relative to the true integer optimal solution
of (6), because the integer solution probably places
the design points x differently and we cannot evalu-
ate (6) for non-integral solutions. However, we can
claim that, given the design point x obtained from
the relaxed problem, rounding all Nπ up reduces the
objective function (6) more than any other rounding
scheme since (6) is a decreasing function of ni .

Constraints.

• The constraint (14) forces the new set of design
points to include the old points.

• The meanings of the other constraints are obvious.

In the procedure, (13) is solved to augment the current
design when an assessment of the ECT model fit shows that
subsequent experimental effort is necessary. The design may
be augmented in two different ways: (1) adding design points
and replications and (2) adding replications only. Augmenta-
tion of type 1, which is not part of CK, gives our procedure
more latitude in terms of obtaining an adequate fit.
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We use coordinate descent methods [8] to solve this
constrained nonlinear optimization problem. More specif-
ically, in each iteration, we fix x, find the value of π

that minimizes PM, and then update π ; we next search
for the optimal x conditional on the fixed π . This itera-
tive process is repeated until convergence is obtained. The
proof of convergence, along with the algorithm, is available
at users.iems.northwestern.edu/˜nelsonb/
Publications/YANOLC.pdf.

Starting Values of the Design Points

Since (13) is decomposed into two nonlinear subproblems
as described in Section 3.2, it is only necessary to provide
initial values for the design points x to start the search for
the optimal design. In all the experiments considered in this
paper, we chose starting values of the design points to be
evenly spaced throughout the interval of throughput when
expanding the 2-point design to an m-point design. More
extreme starting values, such as those clustering at the lower
or upper end, have also been used in a few trial cases and no
difficulties were encountered in locating the optimum.

3.3. Choice of the Number of Additional Replications

In our procedure, experimentation is performed sequen-
tially. Except for the initial experiment, simulations are
carried out according to the design obtained by solving the
constrained nonlinear optimization problem (13). In (13),
	N , the number of additional runs to add to the current
mc-point design, is a parameter that can be chosen by the
experimenter. However, we provide a systematic way to
determine 	N in Appendix A.3.

Guiding the choice of 	N at different stages of the
experiment is important. If the increment is too small, then
computational effort may be wasted due to the refitting,
reevaluation, and determination of further designs after each
increment. On the other hand, if 	N is too large, then more
replications may be run than are actually required.

3.4. Stopping Rule for the Procedure

CT-TH curves help manufacturers decide at what through-
put they should run the system so that they can deliver the
products on time as promised. The desired throughput that
can suit customers’ demands, say x0, is usually of great inter-
est, and it is also where high precision must be achieved
on the CT-TH curve. Our goal is to estimate the expected
cycle time at throughput x0 with a specified precision, while
still estimating the CT-TH curve for all xL ≤ x ≤ xU well.
Therefore, the stopping criterion is relative error at x0, while
the design criterion is the integrated variance of the estimated
curve over the entire range [xL, xU ]. Later, in Section 5, when

we evaluate this overall approach we check the relative error
at a number of points in [xL, xU ], not just at x0.

The procedure verifies that the relative error stopping crite-
rion has been achieved when the half length of the confidence
interval for µ(x0, c, p) is less than γ% of the estimated
expected response µt(x0, ĉ, p̂), where γ% is specified by the
user. We are not in favor of using absolute error because
cycle time varies so greatly over the range of throughput, and
unless the user already has a good idea of the throughput at
the upper end there is no good way to specify an absolute
error criterion.

As explained in Section 3.2, estimating Var[p̂], and hence
Var[µt(x0, ĉ, p̂)], is difficult. Once again, approximations are
adopted with regard to the computation of Var[µt(x0, ĉ, p̂)].
In our experiments we found that q̂ and r̂ are positively
correlated with an estimated correlation as large as 0.996;
thus, p̂ = q̂ − r̂ is much less variable than r̂ . Considering
this, a conservative confidence interval for Var[µt(x0, ĉ, p̂)]
can be estimated by substituting V̂ar[r̂] for V̂ar[p̂]. See
Appendix A.2 for details.

4. THE MULTISTAGE PROCEDURE

In this section, we first give a detailed description of the
multistage procedure that was diagrammed in Figure 2. This
procedure will be referred to as YAN. We then present a brief
summary of the differences between CK and YAN.

4.1. Description of the Procedure

Initially, the number of design points m must be determined
through consideration of the system being investigated.
There should be a sufficient number of design points to allow
for a good fit of the ECT model. Once the locations of the
m design points are found by solving (13) for the first time,
we fix them and then sequentially update the sampling allo-
cations with increasingly more precisely estimated models.
This is based on the argument made by Cheng and Kleijnen,
which is also confirmed in our experiments, that identifying
the location of optimal design points is of secondary impor-
tance compared with having the optimal number of runs at
each point. The YAN procedure is divided into three stages.

Stage 0

In this stage, N0 replications are allocated evenly to the two
end points xL and xU . We then fit the variance model (11) to
the data, stabilize the variance for the dataset with q̂, and fit
the transformed model (12) with t = 0. Note that t cannot be
greater than 0 because the dataset has only two design points.
With the estimated models (11) and (12), we seek to expand
the initial design:
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1. Determine 	N , the number of replications to be
added to the initial design, by following the method
described in Appendix A.3.

2. Solve (13) to find the optimal design (x, π) consisting
of m points given that N0/2 replications have already
been assigned to each of the two end points and 	N

replications will be added.

The number of points m is chosen to be equal to tmax + 2,
where tmax is the polynomial degree that is expected to be high
enough to provide a good fit for the ECT model. Both N0 and
tmax can be user-specified parameters, but we recommend
N0 = 16 and tmax = 2.

Stage 1

In this stage, we fix the m design points and keep allocating
more replications to those points until the desired precision is
achieved or the procedure is directed to Stage 2. Three tasks
are to be completed in the following steps.

Step 1: Run more simulation experiments. Assign 	N

additional runs to the m design points found in the previous
stage according to the latest updated loadings π . Reestimate
the variance model (11) using all of the available data at xL

and xU , and stabilize the variance for the expanded data set.

Step 2: Estimate the ECT model. Search for the appro-
priate polynomial order of the ECT model by fitting (12)
using the forward selection method. Starting with t = 0,
keep increasing the value of t until the best fit ηtc (x, ĉ, r̂)
(tc is the polynomial order of the best fitted model obtained
so far) is identified or the highest order constrained by m

is reached. The latter is regarded as “a rare event” in prac-
tice, since m is chosen to be “sufficient” for the estimation
of the system being investigated. If, however, m is inade-
quate, then we move to Stage 2, where an extra design point
is added, followed by additional runs that allow estimation of
the higher-order term; otherwise, we continue with the next
step.

Step 3: Evaluate the precision of the estimator. Estimate
the confidence interval for µ(x0, c, p), and two cases are
considered:

• If the desired precision is achieved (the half width
of the confidence interval for µ(x0, c, p) is less than
γ% of µ(x0, ĉ, p̂)), then stop and report the results.

• Otherwise, based on the best estimated models (11)
and (12) obtained so far, determine the value of 	N

at the current point and then solve (13) for the opti-
mal loadings π of the next design given that the m

design points are fixed. Go back to Step 1.

Stage 2

We augment the experiment design by including an
(m + 1)st design point and 	N additional replications
allocated to the m + 1 points. The updated design (x, π) is
found by solving (13). Then we move to Stage 1.

Depending on what is learned from Stage 1, the design may
be augmented with one or more additional design points to
provide the support necessary to estimate an adequate model.
The procedure moves to Stage 2 only when the value of m,
which is selected before any experiment is carried out, turns
out not to be a good guess for the current situation. In other
words, the highest order term that is estimable in the polyno-
mial is significant, indicating that increasing the polynomial
order, which is not allowed in Stage 1, might result in a
better fit.

4.2. Summary of Key Differences between
Two Procedures

Regression Metamodels

CK assume p is known and use the linear model (1) to rep-
resent the CT-TH curve. We model the response surface with
the full nonlinear model (1) with p unknown, which offers
more flexibility and better properties of the fitted model.

Error Term

Compared to the YAN procedure, a stronger assumption
regarding the variance model is required in the CK procedure.
We assume that [σg(x)]2 has the form (9) with unknown
parameters, while CK assume that g(x) is known and only
σ 2 is not.

Augmenting the Design

In the CK procedure, the number of design points m is
fixed throughout the process. Therefore, m must be chosen
large enough to support good estimation of the curve, and
no remedies for violation of this assumption are provided.
In contrast, YAN offers the potential to augment the current
design by incorporating more design points, which provides
the support necessary to estimate an adequate model with
unexpected higher-order terms. Moreover, as explained in
Section 3.3, YAN provides guidance regarding the incre-
ment of replications, 	N , while CK nearly always takes the
smallest increment possible.

Stopping Criterion

The CK procedure terminates once the computing budget is
exhausted, while YAN terminates when the desired precision
is achieved.

Naval Research Logistics DOI 10.1002/nav



Yang, Ankenman, and Nelson: Cycle Time-Throughput Curves 87

5. EMPIRICAL EVALUATION

In this section, we discuss the numerical results of sim-
ulation experiments to illustrate the efficiency of the YAN
procedure, as well as to compare it to the CK procedure.

5.1. Summary of Evaluation Methodology

Comparison of YAN to CK was with respect to several
queueing systems and one response surface model. In all of
the cases considered, the true expected cycle time throughout
the experimental region was known, and hence the quality of
model estimation could be evaluated. Rather than use only
systems simulation examples, we also chose several response
surface models for which we could control all the model
parameters, including p and the polynomial coefficients in
the ECT model (1) andq in variance model (10). The response
surface models were selected mainly for illustrating the appli-
cability of the procedure in a wide range of cases without
intending to represent any specific real systems.

Two summary measures were used to assess how well each
procedure estimates a CT-TH curve. A worst-case measure
is the maximum relative deviation of the mean cycle time
predicted by the fitted model from the true value over the
range [xL, xU ], defined as

Dw = max
x∈[xL,xU ]

|µ̂(x) − µ(x)|/µ(x). (15)

The measure Dw checks the accuracy of the fitted curve at
locations where the lack of fit is most pronounced. In addition
to Dw, the overall accuracy of the fitted model across the
range of interest was measured by

Da =
∫ xU

xL
|µ̂(x) − µ(x)|/µ(x) dx

xU − xL

, (16)

the average deviation of the estimated curve from the true
curve. We chose Dw and Da to be the performance measures
because they are both relative deviations and dimension-
less. For each model considered, the entire experiment was
repeated a number of times and the measures Dw and Da

were averaged across these “macro-replications.”
Cheng and Kleijnen’s method is designed to work with a

computing budget constraint, while our procedure aims to
achieve a user-specified relative precision (specified by γ%).
To compare these two procedures, we needed to ensure that
they were implemented with the same computational effort.
In our experiments, the YAN procedure was first applied for,
say, K macro-replications, with N1, N2, . . . , NK correspond-
ing to the number of simulation runs required in each. The
average 
N = K−1 ∑K

k=1 Nk was then used as the computing
budget for each of the K macro-replications of CK.

The performance of Cheng and Kleijnen’s method depends
on prior knowledge of the system being investigated, or more

specifically, the forms of f (x) and g(x). If the value of p

is incorrectly specified, then Cheng and Kleijnen’s method
might fall short. In all the experiments where the CK pro-
cedure was implemented we took f (x) = 1/(1 − x) and
g(x) = 1/(1 − x)2, which are the forms assumed by Cheng
and Kleijnen in their numerical examples.

For the YAN procedure, the value of the initial sample
size N0 was set at 16 replications. This choice is of lim-
ited importance, since the variance model is updated as the
experimentation proceeds.

5.2. Queueing Systems

We compared the two procedures, CK and YAN, through
the queueing systems, M/M/1/FIFO, M/M/1/SPT (nonpre-
emptive shortest processing time first), and M/M/1/LPT
(nonpreemptive longest processing time first), which were
also examined by Cheng and Kleijnen [3]. For each system,
100 macro-replications were performed and the measures Dw

andDa evaluated for each fitted curve. From these 100 macro-
replications where a common procedure was implemented,
the sample mean and its standard error of these two measures
were obtained. This allowed a detailed examination of the
accuracy of the estimated CT-TH curves resulting from each
particular procedure.

For YAN, the throughput range of interest is given as
[0.5, 0.95], and the procedure was driven by a desired rel-
ative error of γ% = 5% at x0 = xU = 0.95. Table 1 displays
the performance measures, Dw and Da , associated with the
two procedures. Each case is discussed in detail below.

5.2.1. M/M/1/FIFO

For M/M/1/FIFO system, the user-specified design param-
eter m (number of design points) was chosen to be 4 for
both procedures. Recall that the true underlying CT-TH curve
and variance-TH relationship are represented by (3) and (9),
respectively, with p = 1 and q = 2, which coincide with the
assumed forms of f (x) and g(x) for CK. Not surprisingly,

Table 1. Sample mean and its standard error of Dw and Da

from 100 macro-replications of the M/M/1/FIFO, M/M/1/SPT, and
M/M/1/LPT.

CK procedure YAN procedure


Dw 
Da 
Dw 
Da

System SE(
Dw) SE(
Da) SE(
Dw) SE(
Da)

FIFO 1.004% 0.688% 2.475% 1.038%
0.144% 0.061% 0.174% 0.060%

SPT 5.125% 1.439% 3.630% 0.471%
0.251% 0.043% 0.226% 0.023%

LPT 5.896% 2.388% 2.914% 1.436%
0.161% 0.066% 0.129% 0.048%
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Table 2. Empirical frequency distribution of the number of poly-
nomial terms in the fitted models (100 macro-replications) for
M/M/1/FIFO.

Number of polynomial terms

Procedure 1 2 3 4

CK 87 3 6 4
YAN 95 5 0 0

CK performs better than YAN. However, the results in Table 1
show that YAN provides a good fit in the sense of achieving
the desired accuracy and precision. Further, YAN tends to
yield a simpler form of the fitted model in terms of the num-
ber of parameters in the polynomial, although the mode for
both procedures is 1 term. Table 2 shows the empirical fre-
quency distribution of number of parameters included in the
polynomial in the final regression model from each proce-
dure. (For this case, the true number of parameters in the
polynomial is 1.)

5.2.2. M/M/1/SPT and M/M/1/LPT

For these two systems, m was set to be 5 for the CK pro-
cedure as Cheng and Kleijnen suggested and 4 for the YAN
procedure. Straightforward functional relationships like (3)
cannot be obtained for SPT and LPT from queueing analy-
sis, although the underlying true cycle time at any throughput
rate can be computed numerically. As pointed out by Cheng
and Kleijnen, both queues behave markedly different from
FIFO.

Table 1 clearly shows that in these two cases, YAN has
superior performance to CK in which the incorrect f (x) and
g(x) are used, i.e., significant improvement of the fit was
achieved by the YAN procedure in terms of the Dw and Da

measures. Suppose that the comparison between the two pro-
cedures is relative to the CK procedure. Then for the SPT
system, 
Dw decreased about 29% and 
Da decreased 67%;
for the LPT system, the decreases were 50 and 40%, respec-
tively. Note that although the CK procedure is likely to be
highly accurate at the chosen design points x, large deviations

Table 3. Empirical frequency distribution of the number of poly-
nomial terms in the fitted models (100 macro-replications) for SPT
and LPT.

Number of polynomial terms

Procedure 1 2 3 4 5

SPT CK 0 0 48 41 11
YAN 83 16 0 1 0

LPT CK 0 0 0 1 99
YAN 96 3 1 0 0

Table 4. Sample mean and variance of Dw and Da from 100
macro-replications of the selected RSM.

CK procedure YAN procedure


Dw 
Da 
Dw 
Da

SE(
Dw) SE(
Da) SE(
Dw) SE(
Da)

2.607% 0.849% 1.709% 0.695%
0.110% 0.033% 0.077% 0.032%

between the fitted and true curves at other non-design points
can occur. The use of Dw and Da allows us to check for depar-
tures of the fitted model from the true surface throughout the
experimental region.

As in the FIFO case, YAN tended to yield a simpler fitted
model than the CK procedure, as shown in Table 3, where
the mode for YAN is 1 term but 3 or 5 for CK. Fewer design
points were generally required in YAN compared to the fixed
number, 5, used in the CK procedure. For both SPT and LPT
cases, of 100 macro-replications to which YAN was applied,
more than 90% of them led to a design incorporating only
4 design points, the starting value of m, and the maximum
number of design points used by YAN is 6.

5.3. Comparison Based on a Response Surface Model

In the previous section we showed that YAN provides a
more accurate estimation of the CT-TH curve when behav-
ior of the system differs from M/M/1/FIFO. When modeling
CT-TH response curves via Eq. (1) for real manufacturing
systems, we have found that the best value of p can be
significantly different from 1, resulting in a much more dra-
matic departure from M/M/1/FIFO behavior than the priority
queueing systems considered above. Here, we will further
investigate the performance of the two procedures based on
the estimation of a response surface model (RSM) which,
although somewhat extreme, does represent what might be
encountered in practice [6].

For illustration we take

E[Y (x)] = µ1(x) = 3 + 10x

(1 − x)0.1
, (17)

with the true variance model being [g(x)σ ]2 = [0.56/

(1 − x)0.6]2 (implying σ = 0.56 and q = 0.6). We make
the error normally distributed. The number of design points
was fixed at 6 for the CK procedure; a starting value of 4
design points was used in YAN. The numerical results are
given in Table 4. As expected, applying the YAN procedure
leads to large improvements in fit, with a relative decrease of
34% in maximum deviation and 18% in average deviation.

Moreover, applying the CK procedure, when the assumed
p is far from its true value, sometimes results in loss of impor-
tant properties of the CT-TH curve. As shown in Figure 3,
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Figure 3. Fitted curve from CK (left) and YAN (right).

the fitted curve resulting from CK displays a tiny downward
turn at the high end, while cycle time is known to increase
with respect to throughput. The selected CK curve plotted in
Figure 3 was an extreme one, and nonmonotonic behavior
was observed in only 5 of the 100 fitted curves. However,
10% of the CK fitted curves had a negative second derivative
somewhere in the experimental range, whereas the true CT-
TH curve is convex throughout. The YAN procedure, which
aims at obtaining a good estimate of the exponent term p,
reduces the order of the polynomial and is largely free of
these problems.

The effectiveness of the YAN procedure was further
evaluated based on a number of response surface mod-
els. Due to space limitation, these results are reported
at users.iems.northwestern.edu/˜nelsonb/
Publications/YANOLC.pdf.

6. AN EXAMPLE OF
MANUFACTURING SYSTEMS

In this section, we apply the YAN procedure to a semi-
conductor wafer fab simulation with behavior quite different
from an M/M/1 queue. We consider a model describing
a real wafer fab, provided by the Modeling and Analy-
sis for Semiconductor Manufacturing Lab at Arizona State
University (www.eas.asu.edu/˜masmlab/).

The model is designed to process two types of jobs, Prod1
and Prod2, with each type being released into the system at a
constant rate and mix. Jobs of different types follow different
process steps and thus have different expected cycle times.
In this example, we assume that the product mix is fixed and
the two products are considered separately. For the estimated
CT-TH curve of Prod1, the response is the mean cycle time of
Prod1, and the independent variable is the joint throughput of
both products. To estimate Prod1’s CT-TH curve, we design
to minimize the variance of the estimated expected cycle time

for Prod1. We independently apply YAN a second time to
estimate the CT-TH curve for Prod2.

For the implementation of the YAN procedure, the range
of throughput was chosen to be [0.5, 0.95], the precision level
was set at 3% for the upper-end point x0 = xU = 0.95, and
the initial value of m was chosen to be 4.

Since the true underlying curve is unknown, points evenly
distributed in the range of throughput were selected to check
lack of fit in the fitted model at those locations. Substan-
tial additional data were collected at the check points to
obtain the “nearly true” estimates for expected cycle times
(about seven times as much computational effort as used in
the YAN procedure was invested in these check points, since
at each check point, simulation experiments were performed
until the standard error of the expected cycle time estimate
was essentially zero). A comparison between these highly
precise estimates and those predicted by the fitted model
obtained from YAN is given in Table 5. Column µ repre-
sents the nearly true cycle times and column µ̂ the estimates
from applying YAN procedure once for each product inde-
pendently. The departures of the fitted model from the true
surface at the selected points are within 2% relative error. The

Table 5. Comparison of the estimated expected cycle time to the
“true” values.

Prod1 Prod2
Check
points µ µ̂ Error µ µ̂ Error

0.52 471.9 467.9 −0.8% 617.0 606.1 −1.8%
0.58 479.7 471.7 −1.7% 618.0 608.0 −1.6%
0.64 481.1 478.2 −0.6% 626.7 615.7 −1.8%
0.70 493.4 488.8 −0.9% 638.0 630.7 −1.1%
0.76 511.4 505.8 −1.1% 661.4 656.0 −0.8%
0.82 540.8 534.1 −1.2% 698.7 697.1 −0.2%
0.88 595.9 586.1 −1.6% 767.3 767.2 −0.01%
0.94 703.0 708.6 0.8% 896.2 912.9 1.9%
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Table 6. Experiment designs resulting from the YAN procedure.

Prod1 Prod2

Design points 0.50, 0.62, 0.80, 0.95 0.50, 0.61, 0.70, 0.81, 0.95
Allocation of replications 8, 6, 13, 25 8, 9, 13, 17, 24

fitted CT-TH curves for Prod1 and Prod2 are given in (18)
and (19), respectively:

Prod1 Ŷ (x) = 480.43 − 225.12x

(1 − x)0.34
(18)

Prod2 Ŷ (x) = 736.80 − 624.29x + 337.72x2

(1 − x)0.25
. (19)

Apparently, the values of p differ markedly from 1 for
both models. The resulting experiment designs are given in
Table 6.

From the “Error” columns in Table 5, we conjecture that
the fitted curve intersects with the true curve at some point
close to the upper end of throughput. At throughput levels
lower than the intersection point, we underestimate the cycle
times (negative error), and at throughput levels high than the
intersection point, we overestimate the cycle times (positive
error). This consistent pattern of errors is what we would
like to have: it indicates that the fitted curve does not oscillate
around the true curve while trying to maintain a certain sta-
tistical precision. We believe that this is the result of making
p an active parameter in the ECT model.

7. SUMMARY

A nonlinear regression model has been developed for
the estimation of CT-TH curves in manufacturing systems.
For the purpose of efficiently estimating such a curve, a
multistage procedure has been proposed to collect data
via simulation experiments until a prespecified precision is
achieved for the fitted curve.

It is important to note that our proposed model, which
is motivated by queueing theory, is different from the lin-
ear model suggested by Cheng and Kleijnen [3] in that an
additional unknown parameter p is introduced to capture the
curvature of CT-TH curves. The necessity of including p as an
unknown parameter is suggested by the fact that the actual
value of p for a system is usually hard to obtain based on
prior knowledge alone and has been shown to vary over a
wide range. Possible negative effects of misspecifying p in
the CK procedure have been explained in the paper. In addi-
tion, Cheng and Kleijnen’s prior assumption on the variance
of cycle time is also dropped in YAN. Numerical experiments
show that our method can be more efficient than the CK pro-
cedure in the sense of achieving higher precision at the same

computational expense, but the key contribution is driving
the design by a prespecified precision.

ACKNOWLEDGMENTS

This research was supported by National Science Grant
DMI-0140385. Additional thanks go to Professors John
Fowler and Gerald Mackulak from Arizona State University,
the Associate Editor, and two anonymous referees.

APPENDIX

A.1. Optimal Design for Estimating
the Variance Model

In the variance model (10), S2(x) is the sample variance estimated from
the replications simulated at the design point x:

S2(x) = 1

n(x) − 1

n(x)∑
j=1

(Yj (x) − 
Y (x))2. (20)

The sample variance S2(x) is an unbiased estimator of the true variance
σ 2(x) = σ 2/(1 − x)2q , where σ 2 and q are unknown parameters. Based on
the assumed normality of the output response Yj (x), we have

S2(x) = σ 2

(1 − x)2q
× τ(n(x)) = σ 2

(1 − x)2q
× U(n(x))

n(x) − 1
, (21)

where U(n(x)) ∼ χ2(n(x) − 1). Thus, in the log-variance model (11), the
error term v(n(x)) is distributed as

log
U(n(x))

n(x) − 1
. (22)

For convenience, we rewrite model (11) as follows

log S2(x) = log σ 2 − 2q log(1 − x) + v(n(x)). (23)

Clearly, (23) is a linear model with two unknown parameters, σ 2 and q. The
error depends only on n(x), the number of replications taken at x, and not
directly on the value of x.

The goal is to design an experiment that minimizes the variance of q̂

given the total number of replications, say N0, to be allocated. Stated math-
ematically, we want to determine the vector x = (x1, x2, . . . , xm) and the
corresponding allocation n = (n1, n2, . . . , nm) that solves

min
x,n

Var[q̂] (24)

s.t .
m∑

i=1

ni = N0

xL ≤ x1 < x2 < · · · < xm ≤ xU .

The difficulty stems from the complicated form of the error term.
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Properties of the Error

For any design point xi with n(xi) replications, define νi = n(xi) − 1, so

the error term can be written as v(νi )
D= log(Ui/νi ) where Ui ∼ χ2(νi ).

Let ψ(z) = ′(z)/(z) be the digamma function. We can show that

E[v(ν)] = ψ(ν/2) + log
2

ν
(25)

Var[v(ν)] = w(ν) = ψ ′(ν/2) =
∫ ∞

0

te−νt/2

1 − e−t
dt . (26)

The expectation of the error E[v(ν)] depends on ν. Although E[v(ν)] → 0
as ν → ∞, E[v(ν)] �= 0 when ν is finite. For ν ∈ [5, 50], the expectation
ranges from −0.2 to −0.02. If E[v(ν)] were a constant, then according to
Kiefer and Wolfowitz ([7], Theorem 2), the optimal number of design points
m should be 2, the number of unknowns in the model. We adopt this as an
approximation.

With m chosen to be 2, the variance of q̂ can be expressed as

Var[q̂] = 1/4∑2
i=1 w(νi)−1(xi − x̄w)2

= 1

4
(x1 − x2)

−2(w(ν1) + w(ν2)),

where x̄w = (∑2
i=1 w(νi)

−1xi

)/(∑2
i=1 w(νi)

−1
)
. Upon examination, we

see that the optimal locations are x1 = xL and x2 = xU .
To determine the allocation of N0 replications between these two design

points, we need to minimize w(ν1)+w(ν2) with respect to ν1 and ν2, which
is equivalent to solving

min
ν1

h(ν1), (27)

where h(ν1) = w(ν1) + w(d − ν1), and d = N0 − 2 is the total degrees of
freedom.

We first prove that the discrete function w(ν1) is convex with respect to ν

in the sense of having decreasing successive differences. It is easy to show
that for any value of ν1,

(w(ν1) − w(ν1 + 1)) − (w(ν1 − 1) − w(ν1))

=
∫ ∞

0

t

1 − e−t
e−νt/2( − √

e − 1/
√

e + 2
)
dt

< 0.

The last inequality follows because the integrand is negative throughout the
range of integration. Thus, h(ν1) is also convex with respect to ν1. Since
h′(d/2) = 0, we conclude that d/2 is the unique minimum point of h(ν1)

provided d/2 is an integer, and ν1 = ν2 = d/2. If d/2 is fractional, set
ν1 = �d/2� and ν2 = d − ν1.

In summary, the optimal design for estimating the transformed variance
model (11) employs two design points, xL and xU , with an equal num-
ber of replications assigned to each of them. In our experiments, with the
replications performed at the two end points, two sample variances, S2(xL)

and S2(xU ), can be obtained. Based on these two sample variances, the two-
parameter model (23) can be fitted. Note that throughout the YAN procedure,
we only use the data collected at the two end points for estimating model (23)
even with simulation runs available at other design points. This is because
the number of replications assigned by the optimal design to some middle
point may not be large enough to provide a good estimate of the variance at
that point, which in our experience can hurt the accuracy of the estimated
model (23). On the other hand, the two end points always having at least
N0/2 replications assigned to each of them are reliable sources for estimating
sample variances.

A.2. Confidence Interval for Expected Cycle Time

Suppose we want to achieve a relative precision level of γ% at x0. Recall
that the precision level γ means that the 100(1 − α)% CI has a rela-
tive half width of γ%. Therefore, we need a confidence interval for the
expected response at x0. Assuming that q = q̂ is a given constant, let
θ = (r , c0, c1, . . . , ctc ) be the parameters for the transformed model (12)
with tc being the best polynomial order obtained so far. Let Tc = tc + 2
denote the total number of parameters. The fitted transformed model is
ηtc (x, θ̂ c) = (∑tc

�=0 ĉ�x
�
)
(1 − x)r̂ , and the estimated ECT model can be

expressed as

µtc (x, θ̂ c) =
∑tc

�=0 ĉ�x
�

(1 − x)q−r̂
. (28)

According to Bates and Watts [2], an approximate 100(1 − α)% CI for the
expected response at x0 is then

µtc (x0, θ̂ c) ± t(Nc − Tc , α/2) × s

√
vc

′(V̂′
cV̂c)−1vc (29)

with notation defined as follows:

s2: the residual mean square error resulting from fitting model (12) based
on Nc − Tc degrees of freedom, where Nc is the total number of
replications collected so far;

t(Nc−Tc , α/2): the 1−α/2 quantile of t distribution with Nc−Tc degrees
of freedom;

V̂c: the Nc × Tc derivative matrix with elements {vkj } defined as

vkj = vj (xk) = ∂ηtc (xk ; θ)

∂θj

∣∣∣∣
θ̂c

k = 1, 2, . . . , Nc; j = 1, 2, . . . , Tc; (30)

vc = [vj (x0)]Tc×1 = [∂µtc (x0, θ̂ c)/∂θ1, ∂µtc (x0, θ̂ c)/∂θ2, . . . , ∂µtc

(x0, θ̂ c)/∂θTc ]′.

A.3. Incrementing the Number of Runs

At different stages during the experiment we must augment the current
design by adding more simulation experiments. The question is, how many
more replications, say 	N , do we need to run? Recall that the target level
for the relative error is set at γ%, and adding 	N replications should help
to achieve that goal. More specifically, suppose the achieved precision level
obtained so far is γc%. Then the 	N additional replications should drive it
down to, say, γ1% (γ ≤ γ1 < γc).

We consider two different situations. If γc% ≤ 5 × γ%, then we would
like 	N to be large enough to achieve γ%, and thus we set γ1% = γ%.
If γc > 5 × γ%, which means the current estimate is very poor, then a
relatively conservative step 	N should be taken to avoid overshooting based
on imprecise parameter estimates. In the latter case, we set γ1% = γc%/5 >

γ% in our experiments. The constant 5 was found to be efficient in our
experiments, but can be changed by the user.

Next, we illustrate how the number 	N is computed for achieving the
desired precision level γ1%. The goal is to obtain a relatively quick approx-
imation for 	N , not a highly refined estimate. Therefore, we solve a
relaxation of the allocation problem to obtain a proportion of the replica-
tions to be allocated to the design points for any value of the total number
of replications N . We then solve for the (continuous) value of N required to
reduce the relative error to the desired level and round it up.
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Most of the notation is as in Appendix A.2. In addition, we define

mc: the number of design points included in the current design;

π∗ = (π∗
1 , π∗

2 , . . . , π∗
mc

): the optimal allocation vector, which is obtained
by solving

min
π

PM(x, π) (31)

s.t .
mc∑
i=1

πi = 1

πi ≥ 0 i = 1, 2, . . . , mc

conditional on q̂ and p̂. Note that the lower-bound constraints (15) are
ignored in (31) to simplify the calculation;

N : the total number of replications required to achieve the precision of
γ1% in the ideal situation (using the allocation π = π∗);

ni = Nπ∗
i : the number of replications needed at the design point xi

(i = 1, 2, . . . , mc). The integer constraint on ni is relaxed in this
derivation;

V̂: the N × Tc derivative matrix defined as (30).

GIVEN: Current data set that incorporates a total of Nc replications dis-
tributed to mc distinct design points x = (x1, x2, . . . , xmc ) and the
best fitted model (28).

FIND: Total number of replications N required at the mc points x to
achieve the desired precision γ1%, assuming Tc parameters and that
the allocation π = π∗ is ideal.

Stated mathematically, we want to determine the smallest N that satisfies

zα/2 × s

√
vc

′(V̂′V̂)−1vc

µtc (x0, θ̂ c)
≤ γ1%. (32)

The numerator of the left-hand side is approximately the half-length of (29).
In (32), (V̂′V̂)−1 is the only term that depends on the variable N . We will
show that (V̂′V̂)−1 = N−1B(x, π∗), where B does not depend on N , and
therefore

N =
⌈

(zα/2s)
2vc

′B(x, π∗)vc

(µtc (x0, θ̂ c)γ1%)2

⌉
. (33)

The derivation of matrix B(x, π) is as follows.
Define the matrix A = V̂′V̂ with element ast = ∑mc

i=1 nivs(xi )vt (xi ). We
can write the determinant of A as

|A| =
mc∑

i1=1

ni1 v1(xi1 )

mc∑
i2=1

ni2 v2(xi2 ) · · ·
mc∑

iTc =1

niTc
vTc (xiTc

)

×

∣∣∣∣∣∣∣∣∣∣
v1(xi1 ) v1(xi2 ) · · · v1(xiTc

)

v2(xi1 ) v2(xi2 ) · · · v2(xiTc
)

...
...

...
...

vTc (xi1 ) vTc (xi2 ) · · · vTc (xiTc
)

∣∣∣∣∣∣∣∣∣∣
.

Then |A|, the determinant of A, and |Ast |, the cofactor of A, can be written
as

|A| =
∑
is �=it

1≤i1,...,iTc ≤mc

ni1 ni2 · · · niT v1(xi1 )v2(xi2 ) · · · vTc (xiTc
) (34)

×

∣∣∣∣∣∣∣∣∣∣
v1(xi1 ) v1(xi2 ) · · · v1(xiTc

)

v2(xi1 ) v2(xi2 ) · · · v2(xiTc
)

...
...

...
...

vTc (xi1 ) vTc (xi2 ) · · · vT (xiTc
)

∣∣∣∣∣∣∣∣∣∣
= NTc u(x, π∗) (35)

|Ast | =
∑
ia �=ib
ia �=it

1≤i1,...,iTc ≤mc

ni1 · · · nit−1 nit+1 · · · niTc

× v1(xi1 ) · · · vt−1(xit−1 )vt+1(xit+1 ) · · · vTc (xiTc
)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v1(xi1 ) · · · v1(xit−1 ) v1(xit+1 ) · · · v1(xiTc
)

...
...

...
...

...
vs−1(xis−1 ) · · · vs−1(xit−1 ) vs−1(xit+1 ) · · · vs−1(xiTc

)

vs+1(xis+1 ) · · · vs+1(xit−1 ) vs+1(xit+1 ) · · · vs+1(xiTc
)

...
...

...
...

...

vTc (xi1 ) · · · vTc (xit−1 ) vTc (xit+1 ) · · · vTc (xiTc
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= NTc−1ust (x, π∗). (36)

Steps (35) and (36) follow because ni = Nπ∗
i . The functions u(x, π∗) and

ust (x, π∗) can be evaluated given x and π∗. Then the inverse of A can be
obtained as

(A−1)st = |Ast |
|A| = N−1 ust (x, π∗)

u(x, π∗)
. (37)

Thus, A−1 = N−1B(x, π∗), where B = [ust (x, π∗)/u(x, π∗)](Tc×Tc),
and Eq. (33) follows. The additional number of replications to be added is
therefore 	N = N − Nc .
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