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a b s t r a c t 

Motivated by critical challenges and needs from biopharmaceuticals manufacturing, we propose a general 

metamodel-assisted stochastic simulation uncertainty analysis framework to accelerate the development 

of a simulation model with modular design for flexible production processes. There are often very lim- 

ited process observations. Thus, there exist both simulation and model uncertainties in the system perfor- 

mance estimates. In biopharmaceutical manufacturing, model uncertainty often dominates. The proposed 

framework can produce a confidence interval that accounts for simulation and model uncertainties by 

using a metamodel-assisted bootstrapping approach. Furthermore, a variance decomposition is utilized to 

estimate the relative contributions from each source of model uncertainty, as well as simulation uncer- 

tainty. This information can be used to improve the system mean performance estimation. Asymptotic 

analysis provides theoretical support for our approach, while the empirical study demonstrates that it 

has good finite-sample performance. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

While the biopharmaceutical industry has developed various in- 

ovative bio-drugs for severe diseases, such as cancers, autoim- 

une disorders, and infectious diseases, the current manufactur- 

ng systems are unable to rapidly produce new and existing drugs 

hen needed, largely due to critical challenges, including high 

omplexity, high variability, and very limited process data. Biother- 

peutics are manufactured in living organisms (e.g., cells) whose 

iological processes are very complex. Manufacturing process typi- 

ally consists of multiple integrated unit operations. There is often 

ery limited data, i.e., having 3–20 process observations is typi- 

al in biomanufacturing ( O’Brien, Zhang, Daoutidis, & Hu, 2021 ), 

eflecting the high cost and long time needed to run lab experi- 

ents. Also, the more personalized nature of emerging bio-drugs 

e.g., cell and gene therapies) makes it difficult to collect extensive 

ata on every possible variety of drugs and every protein therapy 

an be unique, which often forces R&D efforts to work with just 
–5 batches. 
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ufacturing process development, European Journal of Operational Resea
Simulation can facilitate the development of flexible production 

ystems with modular design. Hybrid (“mechanistic+statistical”) sim- 

lation models can support interpretable and robust decision mak- 

ng, while requiring much less data than purely data-based models. 

he mechanistic model parameters (such as cell growth rate, oxy- 

en and nutrient uptake rates) can facilitate the learning of under- 

ying biological/physical/chemical (a.k.a. biophysicochemical ) mech- 

nisms. Thus, in this paper, we suppose that the model family 

r structure, built on mechanism prior knowledge, is given. The 

odel parameters are estimated from very limited real-world data, 

hich introduces model uncertainty. When we create a simulation 

odel to predict the performance of a real system, there exist the 

rrors induced by both simulation estimation uncertainty and pro- 

ess model uncertainty. 

In the biomanufacturing literature, modeling of bioprocess dy- 

amics while considering different sources of uncertainty (e.g., 

atch-to-batch variations, measurement errors, and model uncer- 

ainty) is critical ( Rodríguez & Frahm, 2021 ). Model uncertainty 

uantification can be divided into frequentist and Bayesian ap- 

roaches. In frequentist inference, model parameter estimation un- 

ertainty is typically quantified via a confidence interval or stan- 

ard deviation ( Möller et al., 2020; Wang, Xie, Martagan, Akcay, & 

orlu, 2019 ). In Bayesian inference, posterior distributions are used 

o quantify and update model uncertainty ( Hernández Rodríguez 

t al., 2019; Xie, Wang, Li, Xie, & Auclair, 2022 ). 
tic simulation uncertainty analysis to accelerate flexible bioman- 

rch, https://doi.org/10.1016/j.ejor.2023.01.055 

https://doi.org/10.1016/j.ejor.2023.01.055
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:w.xie@northeastern.edu
mailto:rbarton@psu.edu
mailto:nelsonb@northwestern.edu
mailto:wang.keq@northeastern.edu
https://doi.org/10.1016/j.ejor.2023.01.055
https://doi.org/10.1016/j.ejor.2023.01.055


W. Xie, R.R. Barton, B.L. Nelson et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; March 15, 2023;11:55 ] 

B

i

B

u

t

Z

(

t

t

p

S

a

c

t

i

u

w

n

p

u

w

w

(

m

w

G

g

S

t

y

t

t

s

s

t

i

(

t

t

q

s

Z

t

t

S

f

m

T

t

w

S  

v

2

e

d

(

e

m

a

c

b

t

d

d

v

a

a

o

i

d

s

i

t

c

g

c

s

i

X

w

g

w

v

(

N

u

f

s

t

t

X

m

c

e

s

This study is directly related to the existing frequentist and 

ayesian approaches on uncertainty quantification and sensitiv- 

ty analysis; see recent reviews in Corlu, Akcay, & Xie (2020) , 

orgonovo & Plischke (2016) . The Bayesian approaches typically 

se the posterior distributions of inputs given the real-world data 

o quantify the input distribution uncertainty; see for example 

ouaoui & Wilson (2003) , Zouaoui & Wilson (2004) , Biller & Corlu 

2011) . Direct bootstrapping, as frequentist approach, quantifies 

he impact of input uncertainty using bootstrap resampling of 

he input data and runs simulations at each bootstrap resam- 

le point to estimate the impact on the system mean ( Barton & 

chruben, 2001; Barton et al., 2007 ). Compared with the Bayesian 

pproaches, the direct bootstrap can be adapted to any input pro- 

ess without additional analysis (e.g., posterior distribution deriva- 

ion). The metamodel-assisted bootstrapping approach is further 

ntroduced by Barton, Nelson, & Xie (2014) . In this framework, the 

ncertainty is propagated to the output mean by a metamodel, 

hich can be constructed using simulation results from a small 

umber of runs. Thus, this method does not need substantial com- 

utational effort. 

Built on Barton et al. (2014) , we propose a metamodel-assisted 

ncertainty quantification and sensitivity analysis (UQ&SA) frame- 

ork to accelerate the development of flexible manufacturing process 

ith modular design. As a result we can form a confidence interval 

CI) quantifying the overall estimation uncertainty of the system’s 

ean performance. Specifically, bootstrap resampling of the real- 

orld data is used to approximate the model uncertainty. Then, a 

aussian process (GP) metamodel is used to propagate the hetero- 

eneous process model uncertainty to the output mean response. 

ince model uncertainty typically dominates in the biopharmaceu- 

ical manufacturing processes, we further develop sensitivity anal- 

sis to quantify the contribution from each source of model uncer- 

ainty. 

The key contributions of this study are threefold. 

• First, we introduce a metamodel-assisted uncertainty quan- 

tification (UQ) and sensitivity analysis (SA) framework for 

hybrid model based simulations. The proposed algorithm 

can delivery a percentile CI of system mean response, ac- 

counting for both model and simulation uncertainties. A fur- 

ther sensitivity analysis can provide the relative contribution 

from each source of uncertainty. Differing with existing sim- 

ulation studies in the literature that typically consider the 

simulation model as a black-box (see for example the review 

paper Corlu et al., 2020 ), hybrid model based simulation can 

leverage existing mechanistic models, facilitate mechanism 

learning, and support interpretable decision making. 
• Second, under the assumption that the unknown mean re- 

sponse surface is a realization of GP, which is a useful 

representation in many problems, we provide a systematic 

asymptotic analysis on the proposed GP metamodel assisted 

UQ and SA framework, including (1) the asymptotic consis- 

tency of the proposed CI; and (2) the asymptotic consistency 

of variance estimators quantifying each source of model un- 

certainty and simulation uncertainty. 
• Third, we provide a comprehensive empirical study to show 

that the proposed framework has promising finite sample 

performance, especially under situations with very limited 

real-world data. 

Some existing simulation methodologies can be integrated into 

he proposed framework to support extensions for computational 

aving and system risk performance assessment, such as mea- 

ured by quantiles. Considering the total simulation cost required 

o achieve consistent estimation of model uncertainty when us- 

ng the conventional bootstrap resampling techniques, Lam & Qian 

2018, 2022) proposed the subsampling techniques as a computa- 
2 
ional saver to promote the computational efficiency. In addition, 

he proposed UQ and SA framework can be extended to system 

uantile performance measure through GP based percentile regres- 

ion; see for example Zhang, Wang, & Xie (2022) , Xie, Wang, & 

hang (2018) , Xie, Li, & Zhang (2017) . 

The remainder of the paper is organized as follows. We present 

he problem description in Section 2 and give a brief review of 

he metamodel-assisted bootstrapping approach in Section 3 . In 

ection 4 , we provide an algorithm to build an interval quanti- 

ying the overall estimation uncertainty of system mean perfor- 

ance, accounting for both model and simulation uncertainties. 

hen, we provide a variance decomposition approach to estimate 

he relative contribution from each source of model uncertainty, as 

ell as simulation uncertainty. We provide an empirical study in 

ection 5 and conclude the paper in Section 6 . All proofs are pro-

ided in the online appendix. 

. Problem description and proposed framework 

A typical biomanufacturing system consists of multiple unit op- 

rations, including upstream fermentation for drug substance pro- 

uction and downstream purification to meet quality requirements 

 Doran, 2012 ). It can consist of numerous unit operations; see an 

xample illustrated in Fig. 1 . Operations typically include (1) fer- 

entation, (2) centrifugation, (3) chromatography, (4) filtration, 

nd (5) quality control. Operation unit (1) belongs to upstream cell 

ulture and target drug substance production process, and (2)–(5) 

elong to downstream purification process. 

To guide reliable and interpretable decision making, a simula- 

ion model can be developed based on hybrid models of modules 

efined according to bioprocess biophysicochemical mechanisms, 

ynamics, and interdependence of mechanistic parameters. Given 

ery limited real-world data, we take existing mechanistic models 

s prior knowledge on the structure of mechanism relationships 

nd create parametric hybrid models . It can leverage the advantages 

f mechanistic and statistical models to facilitate mechanism learn- 

ng and improve sample efficiency and decision interpretability. 

The fermentation is the most critical operation unit in the pro- 

uction process and it determines the generation of target drug 

ubstance (such as protein monoclonal antibodies or mAbs) and 

mpurities. Here we use a simple example of fermentation on pro- 

ein production to illustrate bioprocess hybrid modeling. Specifi- 

ally, the target protein and biomass generation in the exponential- 

rowth phase of fermentation process can be modeled with the 

ell-growth kinetics mechanism ( Doran, 2012 ). Built on it, we con- 

truct a hybrid model capturing bioprocess dynamics and variation, 

.e., 

 t = X 0 · e γ t + εP , (1) 

here X t represents the biomass concentration at time t and the 

rowth rate, denoted by γ , depends on biological properties of 

orking cells and culture environments. We model batch-to-batch 

ariation on: (1) the specific growth rate as γ ∼ N(μγ , σ 2 
γ ) ; and 

2) raw materials or initial concentration of seed cells as X 0 ∼
(μ0 , σ

2 
0 ) . In addition, we model the measurement error or resid- 

al as εP ∼ N(0 , σ 2 
P ) to capture the integrated impact from ignored 

actors. Larger variance from the residual indicates less under- 

tanding on underlying bioprocessing mechanisms obtained from 

he existing exponential growth mechanistic model. Thus, the dis- 

ributions of residual εP , protein growth rate γP , and raw materials 

 0 uniquely characterize the hybrid model of target protein accu- 

ulation during the fermentation process. 

The normality assumption is often used in the biopharmaceuti- 

al literature to model batch-to-batch variations and measurement 

rrors since they are often induced by many underlying factors; 

ee for example Mockus, Peterson, Lainez, & Reklaitis (2015) . In 
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Fig. 1. An illustrative example of integrated biomanufacturing process. 
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ddition, there is often very limited data. In our previous study, 

e used real-world fermentation process data with the size of 8 

atches to conduct the hypothesis test which validates the normal- 

ty assumption ( Xie et al., 2022 ). 

An integrated biomanufacturing system is often composed of 

ultiple interconnected modules. Suppose that the simulation 

odel is a function of L parametric multivariate and univariate 

odels F ≡ { F 1 , F 2 , . . . , F L } characterizing the underlying bioprocess

ynamics and variations. Each � th model F � can be uniquely char- 

cterized by h � unknown parameters. In the simple fermentation 

xample mentioned above in (1) , the variation of residual εP is 

haracterized by model F 1 specified by parameter σ 2 
P 

; the batch- 

o-batch variation on the growth rate γ is characterized by model 

 2 specified by parameters { μγ , σ 2 
γ } and the raw material un- 

ertainty is characterized by model F 3 specified by parameters 

 μ0 , σ
2 
0 
} . 

Each h � -parameter distribution is uniquely specified by its first 

finite) h � moments, which is true for the distributions that are 

ost often used in stochastic simulation. The moments are chosen 

s the input variables for the metamodel of the system response 

urface because when they are close, the corresponding distribu- 

ions will be similar and therefore generate similar outputs. Let x [ � ] 
enote an h � × 1 vector of the first h � moments for the � th model

nd d = 

∑ L 
� =1 h � . Then, by stacking x [ � ] with � = 1 , 2 , . . . , L together,

e have a d × 1 dimensional input vector, denoted by x . Notice 

hat F = { F 1 , F 2 , . . . , F L } is completely characterized by the collection

f model moments x = (x [1] , x [2] , . . . , x [ L ] ) 
� . 

The output from the jth replication of a simulation with model 

oments x can be written as 

 j (x ) = μ(x ) + ε j (x ) (2) 

here μ(x ) = E[ Y j (x )] denotes the unknown expected perfor- 

ance (e.g., productivity of protein drug substance) and ε j (x ) 

epresents the simulation error with mean zero. The simula- 

ion output depends on the choice of process models. Let � ≡
 x ∈ � 

d : the random variable Y (x ) is defined and μ(x ) is finite } de- 

ote the region of interest. We assume μ(x ) is continuous for 

 ∈ � . 

The underlying “correct” process models, denoted 

y F c ≡ { F c 
1 
, F c 

2 
, . . . , F c 

L 
} , specified by the moments, x c =

x [1] ,c , x [2] ,c , . . . , x [ L ] ,c ) , are unknown and are estimated from a

nite sample of real-world data. Suppose that the set of true 

arameters x c is in the interior of � . Our goal is to find a

1 − α)100% CI, denoted by [ Q L , Q U ] , such that 

r { μ(x c ) ∈ [ Q L , Q U ] } = 1 − α, (3)

hich quantifies the overall estimation uncertainty of system 

ean performance, accounting for simulation and model uncer- 

ainties. Then, if this interval is too wide, we further develop a 

ariance decomposition to quantify the contribution from each 
3 
ource of model uncertainty, which can guide more data collection 

nd improve the system mean response estimation. 

The true moments x c are unknown and estimated based 

n a finite sample Z m 

from F c . Let m � denote the number 

f i.i.d. real-world observations available from the � th model, 

.e., Z �,m � 
≡

{
Z �, 1 , Z �, 2 , . . . , Z �,m � 

}
with Z �,i 

i.i.d ∼ F c � , i = 1 , 2 , . . . , m � . Let

 m 

= { Z �,m � 
, � = 1 , 2 , . . . , L } be the collection of samples from all L

odel distributions in F c , where m = (m 1 , m 2 , . . . , m L ) . Let X m 

be

 d × 1 dimensional moment estimator that is a function of Z m 

ritten as X m 

= X (Z m 

) . Specifically, X �,m � 
= X � (Z �,m � 

) and X 

T 
m 

=
X 

T 
1 ,m 1 

, X 

T 
2 ,m 2 

, . . . , X 

T 
L,m L 

) . Let F c 
X m 

represent the true, unknown dis-

ribution of X m 

. Therefore, the impact of model uncertainty is cap- 

ured by the sampling distribution of μ(X m 

) with X m 

∼ F c 
X m 

. The 

eal-world data are a particular realization of Z m 

, say z (0) 
m 

. Given a

nite sample of real-world data z (0) 
m 

, we use bootstrap resampling 

o approximate F c 
X m 

and a metamodel to represent μ(x ) . Notice 

hat the components of the moment estimator X m 

can be statis- 

ically dependent. 

Suppose each experiment is expensive. The proposed 

etamodel-assisted bootstrapping uncertainty analysis frame- 

ork can accelerate the development of a simulation model for a 

exible and integrated real manufacturing system with modular 

esign. Since the underlying response surface μ(·) is unknown, 

e model our prior belief about μ(·) by a Gaussian Process (GP). 

iven a set of stochastic simulation outputs, the GP-based belief is 

pdated by a posterior distribution, denoted by M p (·) . When we 

se this metamodel to propagate the sampling distribution of X m 

o the output mean, it introduces the simulation uncertainty in- 

uced by finite simulation runs (i.e., finite design points and finite 

un length in each simulation run). Thus, the estimation uncertainty 

f underlying system mean performance μ(x c ) is characterized by 

he compound random variable, M p (X m 

) , accounting for both model 

nd simulation uncertainties. Based on the variability of M p (X m 

) , 

e can construct an interval estimator [ Q L , Q U ] in (3) to quantify

he overall estimation uncertainty of real system mean response 

(x c ) . 

We further develop a variance decomposition measuring the 

ontributions to Var [ M p (X m 

)] from simulation uncertainty quan- 

ified by GP M p (·) and model uncertainty quantified by the sam- 

ling distribution of X 

T 
m 

= (X 

T 
1 ,m 1 

, X 

T 
2 ,m 2 

, . . . , X 

T 
L,m L 

) . Therefore, if

his interval is too wide, our study can guide further data col- 

ection to efficiently update the simulation model to faithfully 

epresent the real system and improve the estimation accuracy 

f μ(x c ) . 

If the simulation uncertainty dominates, we will allocate more 

omputational resource to improve our knowledge on the mean 

esponse surface μ(·) . However, in biopharmaceutical manufac- 

uring with high stochasticity and very limited process obser- 

ations, model uncertainty often dominates. The distribution of 
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odel uncertainty depends on heterogeneous process observa- 

ions, as well as the complexity of the underlying mechanisms and 

nherent stochasticity at each part of the integrated biomanufac- 

uring system. Thus, if certain model uncertainty, say X �,m � 
with 

 = 1 , 2 , . . . , L , dominates the system performance estimation un-

ertainty, it will guide us collecting the additional real-world data 

here to improve the simulation model. 

. Metamodel-Assisted bootstrapping for UQ 

We introduce the metamodel-assisted bootstrapping and pro- 

ide the algorithm for uncertainty analysis. Basically, we first find 

he space-filling design points covering the most likely bootstrap 

amples of model moments, denoted by ̂ X 

(b) 
m 

with b = 1 , 2 , . . . , B ,

uantifying the model uncertainty. Then, we run simulations and 

onstruct the GP or stochastic kriging (SK) metamodel for the 

ean response surface μ(·) quantifying simulation uncertainty in 

ection 3.1 . This metamodel is used to propagate the model un- 

ertainty to output mean. We introduce the metamodel-assisted 

ootstrapping in Section 3.2 to construct an interval of μ(x c ) ac- 

ounting for both simulation and model uncertainties, and show 

ts asymptotic consistency in Section 3.3 . 

.1. Stochastic kriging metamodel 

Since the outputs from simulations include simulation variabil- 

ty that often changes significantly across the design space of pro- 

ess models specified by moments x , SK is introduced to distin- 

uish the uncertainty about the response surface from the sim- 

lation uncertainty ( Ankenman, Nelson, & Staum, 2010; Kleijnen, 

017 ). Suppose that the underlying unknown response surface can 

e thought of as a realization of a stationary GP. The simulation 

utput Y is modeled as, 

 j (x ) = β0 + W (x ) + ε j (x ) (4) 

here x denotes a d × 1 vector of model moments. SK uses a 

ean-zero, second-order stationary GP W (x ) to account for the 

patial dependence of the response surface. Thus, the uncertainty 

bout the true response surface μ(x ) is represented by a GP 

(x ) ≡ β0 + W (x ) (note that β0 can be replaced by a more gen-

ral trend term f (x ) � β). For many, but not all, simulation settings

he output is an average of a large number of more basic outputs, 

o a normal approximation can be applied: ε(x ) ∼ N (0 , σ 2 
ε (x )) . 

In SK, the covariance between W (x ) and W (x ′ ) quantifies 

ow knowledge of the surface at some design points affects the 

rediction of the surface. A parametric form of the spatial co- 

ariance, denoted by 	(x , x ′ ) = Cov [ W (x ) , W (x ′ )] = τ 2 r(x − x ′ ) , is
ypically assumed where τ 2 denotes the variance and r(·) is a 

orrelation function that depends only on the distance x − x ′ . 
ased on our previous study ( Xie, Nelson, & Staum, 2010 ), we 

se the product-form Gaussian correlation function r(x − x ′ ) = 

xp (−∑ d 
j=1 θ j (x j − x ′ 

j 
) 2 ) for the empirical evaluation in Section 5 . 

et θθθ = (θ1 , θ2 , . . . , θd ) represent the correlation parameters. Thus, 

he prior knowledge of the response surface μ(x ) is represented 

y a Gaussian process, i.e., M(x ) ∼ GP (β0 , τ
2 r(x − x ′ )) . 

To reduce the uncertainty about μ(x ) , we choose an 

xperiment design consisting of pairs D ≡ { (x i , n i ) , i =
 , 2 , . . . , k } at which to run simulations and collect obser-

ations, where (x i , n i ) denotes the location and the num- 

er of replications, respectively, at the i th design point. 

he design that we recommend is described in more de- 

ail in Appendix D. The simulation outputs at D are 

 D ≡
{
(Y 1 (x i ) , Y 2 (x i ) , . . . , Y n i (x i )) ; i = 1 , 2 , . . . , k 

}
and the sample 

ean at design point x i is Ȳ (x i ) = 

∑ n i 
j=1 

Y j (x i ) /n i . Let the sample

eans at all k design points be Ȳ D = ( ̄Y (x ) , ̄Y (x ) , . . . , ̄Y (x )) T .
1 2 k 

4 
et the simulations at different design points independent. Then, 

he variance of Ȳ D is represented by a k × k diagonal matrix 

 = diag 
{
σ 2 

ε (x 1 ) /n 1 , σ
2 
ε (x 2 ) /n 2 , . . . , σ

2 
ε (x k ) /n k 

}
. 

Let 	 be the k × k spatial covariance matrix of the design 

oints and let 	(x , ·) be the k × 1 spatial covariance vector be- 

ween the design points and a fixed prediction point x . If the pa- 

ameters (τ 2 , θθθ, C) are known, then the metamodel or simulation 

ncertainty can be characterized by a refined GP M p (x ) that de- 

otes the conditional distribution of M(x ) given simulation outputs 
¯
 D , 

 p (x ) ∼ GP 

(
m p (x ) , σ 2 

p (x ) 
)

(5) 

here the minimum mean squared error (MSE) linear unbiased 

redictor is 

 p (x ) = 

̂ β0 + 	(x , ·) � (	 + C) −1 
(
Ȳ D − ̂ β0 · 1 k ×1 

)
, (6) 

nd the corresponding variance is 

2 
p (x ) = τ 2 − 	(x , ·) � (	 + C) −1 	(x , ·) 

+ η� [1 

� 
k ×1 (	 + C) −1 1 k ×1 

]−1 
η (7) 

here ̂ β0 = [1 � 
k ×1 

(	 + C) −1 1 k ×1 ] 
−1 1 � 

k ×1 
(	 + C) −1 Ȳ D and η = 1 −

 

� 
k ×1 

(	 + C) −1 	(x , ·) ( Ankenman et al., 2010 ). The spatial correla- 

ion parameters τ 2 and θθθ are estimated by using MLEs. The sample 

ariance is used as an estimate for the simulation variance at de- 

ign points C. By plugging ( ̂  β0 , ̂  τ 2 , ̂  θθθ, ̂  C ) into Eqs. (6) and (7) , we

an obtain the estimated mean 

̂ m p (x ) and variance ̂ σ 2 
p (x ) . Thus, 

he metamodel we use is ̂ μ(x ) = 

̂ m p (x ) with marginal variance es- 

imated by ̂ σ 2 
p (x ) . 

Ankenman et al. (2010) demonstrate that ̂ m p (x ) is still an un- 

iased predictor even with the plug-in estimator ̂ C , and the vari- 

nce inflation of σ 2 
p (x ) caused by using ̂ C is typically small. In the 

symptotic analysis, we assume that the parameters (τ 2 , θθθ, C) are 

nown. This is necessary (and common in the kriging literature) 

ecause including the effect of parameter estimation is mathemat- 

cally intractable. Further, there is both theoretical and empirical 

vidence that in many cases prediction accuracy is minimally af- 

ected by using estimated hyperparameters; see Wang et al. (2021) . 

.2. Metamodel-Assisted bootstrapping for uncertainty quantification 

The proposed metamodel-assisted bootstrapping can provide a 

I for the true mean performance, which accounts for both model 

nd simulation uncertainties. Since m p (x ) is an unbiased predic- 

or under the GP assumption, σ 2 
p (x ) = 0 for all x would imply 

hat there is no simulation uncertainty due either to a finite num- 

er of design points x i or finite number of replications n i ; that is,

 p (x ) = μ(x ) . Unfortunately, if the budget is tight relative to the

omplexity of the true response surface, then the effect of simu- 

ation uncertainty could be substantial, resulting in significant un- 

ercoverage of the confidence interval of Barton et al. (2014) as 

e show in Section 5 . The new interval introduced here does not 

uffer this degradation, and therefore is robust to the amount of 

imulation effort that can be expended. 

The kriging literature is the foundation for our work; see for 

nstance Santner, Williams, & Notz (2003) . Kriging models un- 

ertainty about the function as a GP M(·) by assuming μ(·) is 

 realization of M(·) . An interval constructed to cover the con- 

itional distribution of M(x 0 ) given the values at the design 

oints is often interpreted as a CI for μ(x 0 ) ; see for example 

icheny, Ginsbourger, Roustant, Haftka, & Kim (2010) . The success 

f this paradigm is not because the function of interest is actu- 

lly random—it is not—but because in many problems the condi- 

ional GP appears to be a robust characterization of the remaining 

esponse-surface uncertainty. 
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Algorithm 1: Metamodel-Assisted Bootstrap for UQ and SA. 

Input : Given real-world data z (0) 
m 

= { z (0) 
�,m � 

, � = 1 , 2 , . . . , L } 
Output : Estimated CI and ACI quantifying the overall 

estimation uncertainty of μ(x c ) ; Estimated model 

variance ̂ σ 2 
I , simulation variance ̂ σ 2 

M 

and uncertainty 

contribution ̂

 s � from � th model. 

Function of Uncertainty Quantification (UQ): 
Step 1: Build the design space covering the most likely 

bootstrap moment estimates of process models, and 

choose a space-filling experiment design 

D = { (x i , n i ) , i = 1 , 2 , . . . , k } as described in online 

Appendix D. 

Step 2: Run simulations at design points to obtain outputs 

Y D . Compute the sample average Ȳ (x i ) and sample 

variance S 2 (x i ) of the simulation outputs, i = 1 , 2 , . . . , k . 

Fit the SK metamodel parameters (β0 , τ
2 , θθθ, C) to obtain ̂ m p (x ) and 

̂ σ 2 
p (x ) using 

(
Ȳ (x i ) , S 

2 (x i ) , x i 
)
, i = 1 , 2 , . . . , k . 

Step 3: for b = 1 to B do 

Step 3(a) : Draw m � samples with replacement from 

z (0) 
�,m � 

, denoted by Z 

(b) 
�,m � 

, and calculate the 

corresponding h � × 1 vector of bootstrap moment 

estimates denoted by ̂ X 

(b) 
�,m � 

= X � (Z 

(b) 
�,m � 

) for 

� = 1 , 2 , . . . , L . Then stack the results for all L processes 

to obtain a d × 1 vector ̂ X 

(b) 
m 

. 

Step 3(b) : Let ̂ μb ≡ ̂ m p ( ̂  X 

(b) 
m 

) . 

Step 3(c) : Draw 

̂ M b ∼ N 

(̂ m p ( ̂  X 

(b) 
m 

) , ̂  σ 2 
p ( ̂

 X 

(b) 
m 

) 
)

. 

Return (1) Estimated (1 − α)100% bootstrap percentile CI 

and ACI; (2) Estimated model variance and simulation 

variance, 

CI 0 = 

[̂ μ(	 B α2 
 ) , ̂  μ(	 B (1 − α
2 ) 
 ) 

]
, CI + = 

[ ̂ M (	 B α2 
 ) , 
̂ M (	 B (1 − α

2 ) 
 ) 
]
, 

̂ σ 2 
I = 

B ∑ 

b=1 

( ̂  μb − ̂ μ) 2 / (B − 1) , ̂ σ 2 
M 

= 

B ∑ 

b=1 ̂

 σ 2 
p ( ̂

 X 

(b) 
m 

) /B, 

where ̂ μ(1) ≤ ̂ μ(2) ≤ · · · ≤ ̂ μ(B ) and ̂ M (1) ≤ ̂ M (2) ≤ · · · ≤ ̂ M (B ) are the sorted values, and ̂ μ = 

∑ B 
b=1 ̂

 μb /B . 

Function of Sensitivity Analysis (SA): 

for each J ⊆ L with L = { 1 , 2 , . . . , L } do 

Step 4: Generate bootstrap samples ̂  X 

(b) 
J for 

b = 1 , 2 , . . . , B ′ and obtain simulation output prediction ̂ m p (x (0) 
−J , ̂

 X 

(b) 
J ) . 

Step 5: Estimate the cost function c(J ) by (13). 

Return Estimated � th model uncertainty contribution ̂

 s � 
through (12) with � = 1 , 2 , . . . , L . 

M

T

t

T

h

c

m

4

i

e

o

We adopt the kriging paradigm but with two key differences: 

ur prediction point x c is unknown and must be estimated from 

eal-world data, and our function μ(·) can only be evaluated in 

he presence of stochastic simulation noise. Given the simulation 

utputs Ȳ D , the remaining uncertainty about μ(·) is character- 

zed by the conditional GP M p (·) . To account for the impact from

oth model and simulation uncertainties, we construct an interval 

 C L , C U ] covering M p (x c ) with probability (1 − α)100% , i.e., 

r { M p (x c ) ∈ [ C L , C U ] } = 1 − α. (8)

ince the conditional coverage is 1 − α, the unconditional cover- 

ge of M(x c ) is 1 − α as well. The revised objective ( 8 ) is connected

o our objective ( 3 ) through the assumption that the function μ(·) is 
 realization of the GP M(·) . A procedure that delivers an interval 

atisfying (8) will be a good approximation for a CI procedure sat- 

sfying (3) if M p (·) faithfully represents the remaining uncertainty 

bout μ(·) . This is clearly an approximation because in any real 

roblem μ(·) is a fixed function, therefore we refer to [ C L , C U ] as

n approximation for the CI (ACI). 

Based on a hierarchical approach, we propose Algorithm 1 to 

uild (1 − α)100% bootstrap percentile ACIs to achieve (8) . In this 

rocedure, Step 1 provides an experiment design to build a SK 

etamodel, which is central to the metamodel-assisted bootstrap- 

ing approach. Since the system model uncertainty is quantified 

ith bootstrapped samples, we want the metamodel to correctly 

redict the responses at these sample points ̂ X m 

∼ ̂ F X m 

(·| z (0) 
m 

) . 

hus, the metamodel needs to be accurate and precise in a de- 

ign space that covers the “most likely” bootstrap moment esti- 

ates, which can be achieved by the experiment design proposed 

y Barton et al. (2014) . Specifically, they find the smallest ellipsoid 

enoted by E that covers the most likely bootstrap resampled mo- 

ents and then generate a space-filling design that covers E; see 

he details in online Appendix D. 

Based on the experiment design provided in Step 1, we run 

imulations and construct a metamodel in Step 2 by fitting 

β0 , τ
2 , θθθ, C) . Given the metamodel, we predict the simulation’s 

ean responses at different model settings corresponding to boot- 

trap resampled moments. The bootstrap resampled moments are 

rawn from the bootstrap distribution denoted by ̂ F X m 

(·| z (0) 
m 

) . In 

tep 3(a), we generate bootstrapped model moments. Then, we re- 

urn a (1 − α)100% interval estimators as shown in Algorithm 1 . 

otice that Step 3(b) accounts for the model uncertainty and 

tep 3(c) accounts for the simulation uncertainty. Thus, this pro- 

edure provides two types of intervals: (a) CI 0 , proposed in Barton 

t al. (2014) , returns an estimate of [ Q L , Q U ] in Eq. (3) by assum-

ng ̂ m p (x ) = μ(x ) ; that is, it only accounts for model uncertainty

nd will be in error if there is substantial simulation uncertainty. 

b) CI + returns an estimate of [ C L , C U ] in Eq. (8) . This ACI ac-

ounts for both model and simulation uncertainty. As the simu- 

ation uncertainty decreases, CI 0 and CI + become closer and closer 

o each other. Before evaluating the finite-sample performance of 

I + in Section 5 , we establish its asymptotic consistency for objec- 

ive (8) in Section 3.3 . Then, in Steps 4 and 5, variance decomposi-

ion is developed to quantify the contribution from each source of 

ncertainty, which will be studied in Section 4 . 

.3. Asymptotic consistency study on interval CI + 

In this section, we show that the ACI CI + provided in 

lgorithm 1 satisfies Eq. (8) asymptotically. The asymptotic con- 

istency of this interval is proved under the assumption that the 

rue response surface μ(x ) is a realization of a GP with all pa- 

ameters known except β0 . Under this assumption, M p (x ) charac- 

erizes the remaining simulation uncertainty after observing Ȳ D . 
ince the model uncertainty is asymptotically correctly quanti- 

ed by the bootstrap moment estimator ̂ X m 

, the distribution of 
5 
 p ( ̂  X m 

) accounts for both model and simulation uncertainties. 

heorem 3.1 shows that this interval satisfies objective (8) asymp- 

otically. The detailed proof is provided in online Appendix B. 

heorem 3.1. Suppose that Assumptions ( 
 ) in online Appendix A 

old. Then the interval CI + = [ M (	 B α
2 

 ) , M (	 B (1 − α

2 
) 
 ) ] is asymptotically 

onsistent, 

lim 

 →∞ 

lim 

B →∞ 

Pr 
{

M (	 Bα/ 2 
 ) ≤ M p (x c ) ≤ M (	 B (1 −α/ 2) 
 ) 
}

= 1 − α. (9) 

. Variance decomposition for uncertainty analysis 

In a practical setting, what is the next step if the interval CI + 
s so wide that we are uncomfortable making decisions based on 

stimates with that level of error? We suggest gaining some sense 

f the relative contribution from each source of uncertainty as a 
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t

(

i  

t

p

X̂  

n

i  

p

ĉ

w

E

b  

e

s

uide toward either collecting more real-world process data to re- 

uce the model uncertainty or running more simulations to im- 

rove the system mean response estimation at any given models F . 

he overall estimation variance of system true performance μ(x c ) 

s quantified by Var [ M p (X m 

)] . In Section 4.1 , we propose a variance

ecomposition approach to quantify the contribution from simu- 

ation and model uncertainties. Compared with the existing stud- 

es on estimating the relative contributions, such as Song & Nel- 

on (2013) , our variance decomposition does not require the ho- 

ogeneity assumption, i.e., the simulation noise has a constant 

ariance. Since the effect of model uncertainty is induced by the 

omplex interactions of estimation uncertainties from L models 

F 1 , F 2 , . . . , F L ) , we further decompose it by using Shapley value

SV) based global sensitivity analysis to correctly quantify the con- 

ribution from each source of model uncertainty in Section 4.2 . 

his information can provide a guide on which model F � to col- 

ect more real-world data and improve the system mean perfor- 

ance estimation. Then, we provide the asymptotic consistency 

tudy over the variance component estimation for each source of 

ncertainty in Section 4.3 . 

.1. Simulation and model uncertainty contribution quantification 

Suppose that the parameters (τ 2 , θθθ, C) are known, the simu- 

ation uncertainty can be characterized by a GP, and the simula- 

ion error follows a normal distribution. Then given the simulation 

utputs Ȳ D , the simulation uncertainty is characterized by a GP, 

.e., M p (x ) ∼ N (m p (x ) , σ 2 
p (x )) . Conditional on Ȳ D , both m p (x ) and

2 
p (x ) are fixed functions. For notation simplification, all of follow- 

ng derivations are conditional on the simulation outputs Ȳ D , but 

e will suppress the “| ̄Y D ”. 

To quantify the relative contribution of model and simulation 

ncertainties, we decompose the total variance of M p (X m 

) into 

wo parts: 

2 
T ≡ Var [ M p (X m 

)] 

= E { Var [ M p (X m 

) | X m 

] } + Var { E [ M p (X m 

) | X m 

] } 
= E [ σ 2 

p (X m 

)] + Var [ m p (X m 

)] . (10) 

he term σ 2 
M 

≡ E [ σ 2 
p (X m 

)] is a measure of the simulation uncer- 

ainty: the expected metamodel variance weighted by the density 

f moment estimator X m 

. This weighting makes sense because the 

ccuracy of the metamodel in regions with higher density is more 

mportant for the estimation of system mean performance. The 

erm σ 2 
I ≡ Var [ m p (X m 

)] is a measure of model uncertainty when 

e replace the unknown true response surface μ(·) with its best 

inear unbiased estimate m p (·) . 
If the simulation uncertainty disappears (i.e., σ 2 

p (·) = 0 ), then 

2 
M 

= 0 , CI 0 and CI + coincide. On the other hand, as m → ∞ (more

nd more real-world data), X m 

a.s. → x c and since m p (x ) is continu- 

us we have σ 2 
I 

= 0 ; therefore, the width of CI 0 shrinks to zero as

oes coverage since there is remaining simulation uncertainty in 

eneral. However, because CI + accounts for simulation uncertainty 

t still provides asymptotically consistent coverage. This effect is 

emonstrated by the empirical study in Section 5 . 

Our decomposition allows us to express the total variance in 

q. (10) as the sum of two variances measuring model and simula- 

ion uncertainties: σ 2 
T 

= σ 2 
I 

+ σ 2 
M 

. In the metamodel-assisted boot- 

trapping framework, we can estimate each variance component as 

ollows: 

• Total variance: ̂ σ 2 
T = 

∑ B 
b=1 (M b − M̄ ) 2 / (B − 1) , where M̄ = ∑ B 

b=1 M b /B. 

• Model variance: ̂ σ 2 
I 

= 

∑ B 
b=1 (μb − μ̄) 2 / (B − 1) , where μ̄ = ∑ B 

b=1 μb /B . 

• ̂ 

2 
∑ B 2 ̂ 

(b) 
Simulation variance: σ
M 

= b=1 σp ( X m 

) /B . t

6 
The ratio ̂  σI / ̂  σT provides an estimate of the relative contribution 

rom model uncertainty on CI + . If it is close to 1, the contribution 

rom simulation uncertainty can be ignored. Thus, this ratio can 

elp a decision maker determine where to put more effort: If the 

odel variance dominates, then get more real-world data (if pos- 

ible). If the simulation variance dominates, then it can be reduced 

y more simulations, which can be a combination of additional de- 

ign points and additional replications at existing design points. If 

either dominates, then both activities are necessary to reduce CI + 
o a practically useful size. 

.2. Variance decomposition for model uncertainty analysis 

The overall model variance σ 2 
I = Var [ m p (X m 

)] is in- 

uced by the estimation uncertainty of correct moments 

 c = (x [1] ,c , x [2] ,c , . . . , x [ L ] ,c ) for process models F c = { F c 
1 
, F c 

2 
, . . . , F c 

L 
} .

o efficiently identify the bottlenecks and reduce the impact of 

odel uncertainty, we are interested in quantifying the contribu- 

ion of moment estimation uncertainty of X �,m � 
= X � (Z �,m � 

) for 

ach � th model F � . To approximate the estimation uncertainty of 

 �,m � 
with � = 1 , 2 , . . . , L , the bootstrap resampled moments are

rawn from the bootstrap distribution, ̂ X �,m � 
∼ F X �,m � 

(·| z (0) 
�,m � 

) . 

Motivated by the SV based sensitivity analysis (see for exam- 

le Song, Nelson, & Staum, 2016 ), the overall model variance σ 2 
I 

n (10) can be decomposed as the sum of contributions from each 

ource of model uncertainty, 

2 
I = Var [ m p (X m 

)] 

= Var [ m p (X 1 ,m 1 
, X 2 ,m 2 

, . . . , X L,m L 
)] = 

L ∑ 

� =1 

s � , (11) 

ith s � quantifying the contribution from the � th model uncer- 

ainty, 

 � = 

∑ 

J ⊆L\{ � } 

(L − |J | − 1)! |J | ! 
L ! 

[ c(J ∪ { � } ) − c(J ) ] , (12) 

here L = { 1 , 2 , . . . , L } denotes the index set of L sources of model

ncertainty and | · | indicates the set size. Here, for any sub- 

et J ⊆ L , we use the total effect based cost function c(J ) =
 [ Var [ m p (X m 

) | X −J ]] measuring the expected remaining variance 

hen all other model moments, denoted by X −J , are conditionally 

xed, where −J denotes the remaining subset L \ J . 

The metamodel-assisted bootstrap resampling is used to es- 

imate the contribution from each source of model uncertainty 

 Algorithm 1 ). Basically, for any model with the index i / ∈ J or 

 ∈ L \ J , we take the sample moment x (0) 
i,m i 

as true one. Denote

hese model moments by x (0) 
−J . Then, for the model with index 

j ∈ J , we draw with replacement to generate the bootstrap sam- 

le moments quantifying the corresponding model uncertainty, 
 

 

(b) 
j,m j 

∼ F X j,m j 
(·| z (0) 

j,m j 
) with b = 1 , 2 , . . . , B ′ . We represent the combi-

ation of bootstrap moment samples for all model moments with 

ndex j ∈ J by ̂  X 

(b) 
J . Thus, we estimate c(J ) by a Monte Carlo sam-

ling approach, 

 

 (J ) = 

1 

B 

′ − 1 

B ′ ∑ 

b=1 

[̂ m p 

(
x 

(0) 
−J , ̂

 X 

(b) 
J 

)
− m̄ J 

]2 
(13) 

here m̄ J = 

∑ B ′ 
b=1 ̂

 m p (x (0) 
−J , ̂

 X 

(b) 
J ) /B ′ . By plugging ̂ c (J ) into 

q. (12) , we can get the estimator ̂ s � quantifying the contri- 

ution from the � th model uncertainty to Var [ m p (X m 

)] . An

fficient approximation algorithm, using the randomly selected 

ubset instead of all possible index sets permutations, can be used 

o reduce the computational burden; see Song et al. (2016) . 
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Table 1 

The underlying true process model parameters. 

Protein Concentration Impurity Concentration 

Initial Biomass X 0 ∼ N (15 . 98 , 4 . 17 2 ) N.A. 

Growth Rate γ ∼ N (0 . 0475 , 0 . 008 2 ) 

Residual εP ∼ N (0 , 0 . 4918 2 ) εI ∼ N (0 , 0 . 4918 2 ) 

Centrifuge N.A. Q ∼ Unif (0 . 4 , 0 . 5) 

Chromatography Q p ∼ Unif (0 . 4833 , 0 . 5907) Q I ∼ Unif (0 . 1458 , 0 . 1782) 

Filtration N.A. Q f r ∼ Unif (0 . 99 , 1) 
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.3. Asymptotic consistency study of variance contribution estimation 

We provide the asymptotic consistency study of variance 

ontribution estimation from each source of uncertainty; see 

heorems 4.1, 4.2 , and 4.3 . 

heorem 4.1. Suppose that Assumptions 1–4 in online Appendix A 

old. Then conditional on Ȳ D , the variance component estimators 
 

2 
M 

, ̂  σ 2 
I , ̂

 σ 2 
T are consistent as m, B → ∞ , where as m → ∞ we have

 � /m → c � , � = 1 , 2 , . . . , L , for a constant c � > 0 . Specifically, 

• As m → ∞ , the model uncertainty disappears: 

lim 

m →∞ 

σ 2 
M 

= σ 2 
p (x c ) , lim 

m →∞ 

σ 2 
I = 0 and lim 

m →∞ 

σ 2 
T = σ 2 

p (x c ) . 

• As m → ∞ and B → ∞ in an iterated limit, the variance com-

ponent estimators are consistent: 

lim 

m →∞ 

lim 

B →∞ ̂

 σ 2 
M 

= lim 

m →∞ 

σ 2 
M 

= σ 2 
p (x c ) , 

lim 

m →∞ 

lim 

B →∞ ̂

 σ 2 
I = lim 

m →∞ 

σ 2 
I = 0 , 

lim 

m →∞ 

lim 

B →∞ ̂

 σ 2 
T = lim 

m →∞ 

σ 2 
T = σ 2 

p (x c ) , 

lim 

m →∞ 

lim 

B →∞ ̂

 s � = lim 

m →∞ 

s � = 0 for � = 1 , 2 , . . . , L. 

Theorem 4.1 demonstrates that the variance components esti- 

ators ̂ σ 2 
I 

, ̂ σ 2 
M 

, ̂ σ 2 
T 

, and 

̂ s � for � = 1 , 2 , . . . , L are consistent. How-

ver, we can see that the model uncertainty disappears as m → ∞ . 

n addition, we study the consistency of scaled versions of σ 2 
I and 

 

2 
I 

in Theorem 4.2 , showing that mσ 2 
I 

and m ̂

 σ 2 
I 

converge to the 

ame non-zero constant. 

heorem 4.2. Suppose Assumptions 1–6 in online Appendix A hold. 

hen we have lim m →∞ 

mσ 2 
I = lim m →∞ 

lim B →∞ 

m ̂

 σ 2 
I = σ 2 

μ almost 

urely, where σ 2 
μ is a positive constant. 

heorem 4.3. Suppose Assumptions 1–6 in online Appendix A 

old. Then we have lim m →∞ 

ms � = lim m →∞ 

lim B →∞ 

m ̂

 s � = σ 2 
s almost 

urely, where σ 2 
s is a positive constant. 

Theorems 4.1 –4.3 give the asymptotic properties of the vari- 

nce component estimators, guaranteeing: (1) ̂ σI / ̂  σT is a consistent 

stimator for the relative contribution of model uncertainty to the 

verall estimation uncertainty; and (2) ̂  s � is a consistent estimator 

f the contribution from the � th model uncertainty. The detailed 

roof is provided in online Appendix C. We will empirically evalu- 

te its finite-sample performance in Section 5 where we form the 

ariance component estimators by inserting ( ̂  τ 2 , ̂  θθθ, ̂  C ) for the un- 

nown parameters (τ 2 , θθθ, C) . 

. Empirical study 

We study the finite sample performance of the proposed 

etamodel-assisted uncertainty analysis framework and compare 

t with the direct bootstrap approach. We consider a biophar- 

aceutical manufacturing example in Sections 5.1 . A cell culture 

rocess hybrid model for cell therapy manufacturing is studied 

n Section 5.2 . Additionally, a queueing network example is pro- 

ided in online Appendix E. The proposed framework demonstrates 

ood and robust performance under different experiment settings 

n terms of (1) the amount of real-world data m which controls 

he level of model uncertainty; (2) the simulation budget N which 

ontrols the simulation uncertainty; and (3) the number of design 

oints k for GP metamodel construction, with N, is used to control 

he metamodel uncertainty. 

The empirical results show that the proposed framework can 

rovide better performance than the direct bootstrap approach. 

he new ACI CI + is robust to different levels of real-world data m , 

umber of design points k , and simulation budget N in terms of 
7 
eplications. When simulation uncertainty is significant, CI 0 tends 

o have undercoverage that becomes more serious as m increases. 

ince CI + accounts for both simulation and model uncertainties, it 

oes not exhibit this degradation. The ratio ̂ σI / ̂  σT is a useful mea- 

ure of the relative contribution of model uncertainty to overall 

tatistical uncertainty and the SV-based sensitivity analysis further 

uantifies the contribution from each source of model uncertainty. 

.1. A biopharmaceutical manufacturing example 

We consider the biomanufacturing example illustrated in Fig. 1 ; 

ee the details in Wang et al. (2019) . We are interested in esti- 

ating the expected productivity of an antigen protein drug, i.e., 

(x c ) . The protein and impurity accumulations in the exponential- 

rowth phase of fermentation process are modeled with the hybrid 

odels, i.e., X t = X 0 · e γ t + εP and I t = I 0 · e γ t + εI with 0 ≤ t ≤ T ,

here γ is the growth rate, X 0 and I 0 are the starting amounts of 

iomass and impurity. We consider the fixed harvest time T = 54 

nd the fixed initial impurity amount I 0 = 14 . 64 . 

The downstream purification process includes centrifuge, chro- 

atography, filtration, and quality control. Random proportions of 

rotein and impurity are removed at each operation unit, except 

t the quality control step. (1) Centrifuge Step. The protein and 

mpurity levels before and after centrifuge are denoted by (X F , I F ) 

nd (X C , I C ) . We assume that this step does not change the pro-

ein level, i.e., X C ≡ X F ( Delahaye, Lawrence, Ward, & Hoare, 2015 ), 

nd it removes a random proportion of impurity, i.e., I C = Q · I F .

2) Chromatography Step. For chromatography, random removal 

roportions of protein and impurity, denoted by Q P and Q I , follow 

niform distributions ( Martagan, Krishnamurthy, Leland, & Mar- 

velias, 2017 ). The target protein and impurity levels before and 

fter chromatography are denoted by (X C , I C ) and (X P , I P ) , and

e have X P = Q P · X C and I P = Q I · I C . (3) Filtration Step. Filtration

orks as a polishing procedure and it slightly reduces the impu- 

ity. Denote the protein and impurity levels before and after fil- 

ration with (X P , I P ) and (X f r , I f r ) . Thus, I f r = Q f r · I P . and X f r = X P .

4) Quality Control Step. During the quality control step, if the 

mpurity percentage 
I f r 

X f r + I f r 
is greater than the requirement, say 

 = 25% , the corresponding batch is discarded. Therefore, the ex- 

ected productivity of each batch is defined as: 

(x c ) = E 

[
X f r · 1 

(
I f r 

X f r + I f r 

≤ ω 

)]
. 

Thus, this biopharmaceutical manufacturing example has L = 8 

rocess models: (1) F 1 modeling the residual or measurement er- 

or εP ; (2) F 2 modeling the batch-to-batch variation of the growth 

ate γ ; (3) F 3 modeling the variation of the initial biomass X 0 ; (4)

 4 modeling the residual εI of impurity and metabolic waste accu- 

ulation; (5) F 5 modeling the random impurity removal ratio Q at 

entrifuge step; (6) F 6 and F 7 modeling the random removal ratios, 

 p and Q I , of protein and impurity at chromatography step; and 

7) F 8 modeling the random impurity removal ratio Q f r at filtration 

tep. All the underlying true model parameters are summarized in 

able 1 . In the empirical study, we assume that these parameters 

re unknown and they are estimated with finite observations with 
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Table 2 

The CIs results (SD) of the expected productivity and ̂  σ 2 
I / ̂  σ 2 

T when N = 20 0 0 . 

m = 10 Metamodel-Assisted Uncertainty Analysis Direct Bootstrap 

k = 20, n = 100 k = 40, n = 50 k = 80, n = 25 

Coverage of CI 0 84.80% 88.20% 89.40% 99.60% 

Coverage of CI + 88.60% 90.40% 92.00% 

CI 0 Width 89.60 (32.99) 99.19 (37.08) 98.54 (33.62) 224.21 (81.25) 

CI + Width 103.21 (35.81) 109.60 (38.66) 102.81 (35.09) ̂ σ 2 
I / ̂  σ 2 

T 80.26% 88.99% 89.51% 61.10% 

m = 20 Metamodel-Assisted Uncertainty Analysis Direct Bootstrap 

k = 20, n = 100 k = 40, n = 50 k = 80, n = 25 

Coverage of CI 0 85.80% 89.60% 89.60% 100.00% 

Coverage of CI + 92.60% 93.00% 92.60% 

CI 0 Width 64.09 (19.68) 66.98 (17.18) 70.96 (17.84) 205.85 (48.12) 

CI + Width 75.46 (20.93) 74.69 (17.29) 79.01 (19.37) ̂ σ 2 
I / ̂  σ 2 

T 76.55% 84.15% 83.62% 63.69% 

m = 40 Metamodel-Assisted Uncertainty Analysis Direct Bootstrap 

k = 20, n = 100 k = 40, n = 50 k = 80, n = 25 

Coverage of CI 0 84.20% 91.00% 86.40% 100.00% 

Coverage of CI + 93.80% 95.40% 92.40% 

CI 0 Width 43.62 (11.38) 47.58 (10.26) 48.09 (10.42) 196.75 (32.74) 

CI + Width 55.23 (12.59) 56.79 (10.86) 57.74 (11.73) ̂ σ 2 
I / ̂  σ 2 

T 68.46% 74.73% 73.96% 65.03% 
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ize m . Since we often have very limited biopharmaceutical manu- 

acturing process data available in the real world, we focus on the 

ases with m = 10 , 20 , 40 and let m � = m for � = 1 , 2 , . . . , L . 

We assess the performances of CI + and CI 0 especially under the 

ituation when the system has large simulation uncertainty. There- 

ore, the run length for each replication is set as 2 after the warm

p equal to 25 in terms of the number of batches. For the pro-

osed metamodel-assisted uncertainty analysis framework, when 

e build the GP metamodel, we set the number of design points 

 = 20 , 40 , 80 . The same number of replications is assigned to each

esign point, i.e., n j = n = N/k for j = 1 , 2 , . . . , k . To precisely es-

imate the percentile interval quantifying the system mean per- 

ormance estimation uncertainty, we set the number of bootstrap 

esampled moments B = 10 0 0 ( Barton et al., 2014 ). We compare

he performance of our proposed framework with direct bootstrap 

nder the same computational budget. In the direct bootstrap ap- 

roach, we run simulations at each bootstrapped moments to es- 

imate the system mean response and equally allocate the simu- 

ation budget. It means that the number of replications at each 

ootstrapped moment sample is n d = N/B . To assess the coverage 

f CIs, we conduct a side experiment with 10 6 run length and 

0 replications to estimate the true mean response and obtain 

(x c ) = 116 . 759 ± 0 . 006 . 

.1.1. Biomanufacturing system uncertainty quantification 

Tables 2 and 3 show the mean and standard deviation (SD) re- 

ults of width and coverage of 95% CIs, quantifying the overall es- 

imation uncertainty of the expected productivity, obtained by the 

roposed metamodel-assisted uncertainty analysis framework and 

he direct bootstrap approach, when the simulation computational 

udget is N = 20 0 0 , 40 0 0 . We also record the ratio of model uncer-

ainty to total variance ̂ σ 2 
I / ̂

 σ 2 
T . All results are based on 500 macro- 

eplications. As m increases, the contribution of model uncertainty, 

easured by ̂ σ 2 
I 
/ ̂  σ 2 

T 
, decreases. The coverage of CI + is constantly 

etter and closer to the nominal value of 95% compared with CI 0 . 

he direct bootstrap approach has substantial over coverage issue, 

hich was described and explained in Barton et al. (2007) . Since 

ach experiment can be expensive and the average value of each 

atch of bio-drugs excesses one million, this over coverage issue 
8 
an lead to overly conservative decision making and dramatically 

mpact the profit. Given the fixed computational budget, as the 

umber of real-world data m increases, the mean and SD of the 

nterval widths decrease, and the coverage becomes closer to the 

ominal value. Overall, the proposed metamodel-assisted uncertainty 

nalysis will provide better performance, especially under the situa- 

ion with very limited amount of real-world data and high model un- 

ertainty, which often happens in the biopharmaceutical manufac- 

uring industry. 

.1.2. Biomanufacturing system variance decomposition 

When the model uncertainty plays a dominate impact on the 

ystem performance estimation uncertainty, it is critical to iden- 

ify the key source, which can be used to efficiently improve the 

imulation model. Based on the analytical study in Section 4.2 , 

he means with 95% CI of the relative contribution from each � th 

odel uncertainty, i.e., ( ̂  s � / ̂  σ 2 
I × 100% ), are recorded in Table 4 . 

he results are estimated based on 100 macro-replications. We set 

he number of bootstrapped moments used for the variance esti- 

ation B ′ = 20 0 0 . Since the model uncertainty of protein genera-

ion process characterized by models for { εP , γ , X 0 } dominates, we 

radually increase m � with � = 1 , 2 , 3 as m 

′ = 10 , 20 , 40 , while fix-

ng the number of real-world data for remaining models m � = 10 

or � = 4 , 5 , . . . , L . The order of importance, εP > γ > X 0 is consis-

ent across all sample sizes. Of the remaining variables, the re- 

oval proportion of protein at chromatography, Q P , provides the 

argest proportion of contribution across all sample sizes and it in- 

reases dramatically as the sample size increases. As the sample 

ize m 

′ increases, the relative contribution from model uncertainty 

f { X 0 , γ , εP } reduces. The overall model uncertainty, measured by 

I , also decreases with increasing sample size. 

This case study is motivated by a real animal bio-drug pro- 

uction. The quality requirement, i.e., 
I f r 

X f r + I f r 
≤ ω with ω = 25% , 

s relatively easy to meet through downstream purification. Thus, 

he results in Table 4 indicate that the influence of the impu- 

ity pathway parameters is negligible. This observation does not 

old in general, especially for antigen proteins for human beings 

hat typically have much more restrictive quality requirements (say 

 = 1% ). 
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Table 3 

The CIs results (SD) of the expected productivity and ̂  σ 2 
I / ̂  σ 2 

T when N = 40 0 0 . 

m = 10 Metamodel-Assisted Uncertainty Analysis Direct Bootstrap 

k = 20, n = 200 k = 40, n = 100 k = 80, n = 50 

Coverage of CI 0 86.80% 89.40% 91.20% 99.40% 

Coverage of CI + 91.20% 90.60% 92.80% 

CI 0 Width 91.96 (33.84) 103.24 (37.66) 99.45 (35.73) 178.19 (64.18) 

CI + Width 102.84 (34.90) 108.23 (38.96) 103.46 (36.72) ̂ σ 2 
I / ̂  σ 2 

T 83.52% 92.78% 93.38% 72.20% 

m = 20 Metamodel-Assisted Uncertainty Analysis Direct Bootstrap 

k = 20, n = 200 k = 40, n = 100 k = 80, n = 50 

Coverage of CI 0 88.80% 91.20% 91.60% 100.00% 

Coverage of CI + 92.40% 93.00% 93.40% 

CI 0 Width 65.58 (21.10) 69.49 (16.92) 73.37 (17.45) 156.94 (39.69) 

CI + Width 75.87 (21.68) 74.64 (17.59) 78.50 (18.43) ̂ σ 2 
I / ̂  σ 2 

T 79.08% 88.86% 89.13% 75.56% 

m = 40 Metamodel-Assisted Uncertainty Analysis Direct Bootstrap 

k = 20, n = 200 k = 40, n = 100 k = 80, n = 50 

Coverage of CI 0 87.00% 93.60% 91.60% 100.00% 

Coverage of CI + 94.80% 95.00% 94.80% 

CI 0 Width 45.69 (11.59) 49.66 (9.71) 51.19 (10.27) 145.75 (30.15) 

CI + Width 54.52 (12.42) 55.87 (10.04) 57.18 (10.79) ̂ σ 2 
I / ̂  σ 2 

T 74.93% 82.37% 82.99% 77.71% 

Table 4 

The relative contributions from each model uncertainty when m 

′ = 10 , 20 , 40 . 

Process Model m 

′ = 10 m 

′ = 20 m 

′ = 40 

εP 44.51% ± 5.05% 40.32% ± 4.74% 37.73% ± 4.53% 

γ 35.18% ± 4.93% 31.89% ± 4.18% 28.44% ± 3.69% 

X 0 15.04% ± 4.55% 14.34% ± 4.28% 11.88% ± 3.89% 

Q P 3.87% ± 0.88% 10.44% ± 2.16% 18.06% ± 3.32% 

εI 0.83% ± 1.11% 1.90% ± 1.81% 2.28% ± 2.02% 

Q 0.18% ± 0.35% 0.33% ± 0.53% 0.70% ± 0.89% 

Q I 0.29% ± 0.23% 0.35% ± 0.37% 0.45% ± 0.54% 

Q f r 0.04% ± 0.12% 0.23% ± 0.19% 0.64% ± 0.94% ̂ σI 25.43 ± 2.01 18.10 ± 1.21 13.51 ± 0.65 
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.2. Cell culture expansion scheduling for cell therapy manufacturing 

Here we use the erythroblast cell therapy manufacturing exam- 

le presented in Glen, Cheeseman, Stacey, & Thomas (2018) to as- 

ess the performance of proposed framework. The cell culture of 

rythroblast exhibits two phases: a relatively uninhibited growth 

hase followed by an inhibited phase. The hybrid model cell 

rowth and inhibitor accumulation is 

t+1 = ρt + �t · r g ρt 

(
1 −

(
1 + e (k s (k c −I t )) 

)
−1 

)
+ e 

ρ
t , 

I t+1 = I t + �t ·
(

ρt+1 − ρt 

�t 
− r d I t 

)
+ e I t , 

here �t represents the time interval, ρt and I t represent the 

ell density and the unobservable inhibitor concentration at the 

th time step. The kinetic coefficients r g , k s , k c and r d denote the

ell growth rate, inhibitor sensitivity, inhibitor threshold, and in- 

ibitor decay. The residuals follow the normal distributions, i.e., 

 

ρ
t ∼ N(0 , (v ρ ) 2 ) and e I t ∼ N(0 , (v I ) 2 ) . There is raw material un-

ertainty for seed cell density, i.e., ρ0 ∼ N(μρ, σ 2 
ρ ) . The initial in- 

ibitor concentration equals to 0 due to the fresh medium, i.e., I 0 = 

 . Additionally, the investigation from Glen et al. (2018) shows that 

he growth rate has significant variability cross different donors. 

herefore, we incorporate batch-to-batch variation by considering 

he random effect on the growth rate, i.e., r g ∼ N (μg , (σ g ) 2 ) . 
9 
Thus, this erythroblast cell therapy manufacturing example has 

 = 7 process models: (1) F 1 for ρ0 ; (2) F 2 for e ρ ; (3) F 3 for e I ; (4) F 4 
or r g ; and (5–7) the degenerate distributions F 5 , F 6 , F 7 for biopro-

ess kinetic parameters k s , k c , r d . Set the underlying true param-

ters as { μρ, σρ, v ρ, v I , μg , σ g } = { 3 , 0 . 03 , 0 . 01 , 0 . 01 , 0 . 037 , 0 . 008 }
nd { k s , k c , r d } = { 3 . 4 , 2 . 6 , 0 . 005 } , which are validated by using the

eal-world data presented in Glen et al. (2018) . In this empirical 

tudy, we assume that all these parameters are unknown and esti- 

ated with a finite amount of real-world data with size m . The cell 

ensity data are collected every 4 hours, i.e., �t = 4 hours. Thus, 

e have m trajectory observations, i.e., τττ (i ) ≡ (ρ(i ) 
0 

, ρ(i ) 
1 

, . . . , ρ(i ) 
T 

) 

ith i = 1 , 2 , . . . , m . 

At any time t , if the batch-extension is performed, the origi- 

al batch is scaled up to a λ times larger cell culture vessel fill- 

ng with fresh medium. That means the cell density ρ and the 

oncentration of inhibitor I decrease to 1 /λ of original values. In 

his example, suppose that the batch-extension is scheduled at the 

4th hour (corresponding to time step t = 

24 
�t 

+ 1 = 7 ). Then, the

riginal batch is scaled up to λ = 4 fold. The cell culture process 

nds at T = 40 hours (corresponding to time step t = 

T 
�t 

+ 1 = 11 ).

ur goal is to estimate the expected productivity in terms of total 

iomass of target cells, i.e., μ(x c ) = E [ ρT · λ] . 

We focus on the cases with m = 3 , 6 , 20 and let m � = m for � =
 , 2 , . . . , L . The total simulation budget is set to be N = 40 0 0 repli-

ations. We compare the performance of our proposed framework 

ith direct bootstrap approach under the same computational 

udget. For the proposed metamodel-assisted uncertainty analysis 

ramework, we set the number of design points k = 20 , 40 , 80 . The

ame number of replications is assigned to each design point, i.e., 

 j = n = N/k for j = 1 , 2 , . . . , k . The number of bootstrap resam-

led moments is set as B = 10 0 0 . In the direct bootstrap approach,

he number of replications allocated at each bootstrapped moment 

ample is n d = N/B = 4 . To assess the coverage of CIs, we conduct

 side experiment with 10 6 batches and 20 replications to estimate 

he true mean response and obtain μ(x c ) = 17 . 32 ± 0 . 004 . 

Table 5 records the mean and standard deviation (SD) re- 

ults of width and coverage of 95% CIs, quantifying the overall 

stimation uncertainty of the expected productivity, obtained by 

he proposed metamodel-assisted uncertainty analysis framework 

nd the direct bootstrap approach. We also record the ratio of 
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Table 5 

The CIs results (SD) of the expected productivity and ̂  σ 2 
I / ̂  σ 2 

T when N = 40 0 0 . 

m = 3 Metamodel-Assisted Uncertainty Analysis Direct Bootstrap 

k = 20, n = 200 k = 40, n = 100 k = 80, n = 50 

Coverage of CI 0 83.20% 86.20% 84.40% 99.80% 

Coverage of CI + 90.20% 91.20% 90.80% 

CI 0 Width 4.67 (2.11) 4.23 (2.42) 4.13 (2.45) 7.12 (3.75) 

CI + Width 5.03 (2.75) 5.36 (2.76) 5.21 (2.52) ̂ σ 2 
I / ̂  σ 2 

T 86.17% 90.23% 87.32% 87.21% 

m = 6 Metamodel-Assisted Uncertainty Analysis Direct Bootstrap 

k = 20, n = 100 k = 40, n = 50 k = 80, n = 25 

Coverage of CI 0 89.60% 89.00% 89.20% 100.00% 

Coverage of CI + 92.80% 93.40% 91.60% 

CI 0 Width Mean 2.99 (1.86) 3.14 (1.76) 3.25 (1.78) 5.35 (2.52) 

CI + Width Mean 3.34 (1.91) 3.42 (1.82) 3.43 (1.84) ̂ σ 2 
I / ̂  σ 2 

T 86.34% 90.41% 91.02% 74.83% 

m = 20 Metamodel-Assisted Uncertainty Analysis Direct Bootstrap 

k = 20, n = 100 k = 40, n = 50 k = 80, n = 25 

Coverage of CI 0 93.40% 94.00% 93.60% 97.80% 

Coverage of CI + 95.40% 95.00% 95.20% 

CI 0 Width Mean 1.68 (1.05) 1.72 (1.09) 1.74 (1.12) 3.84 (1.72) 

CI + Width Mean 1.79 (1.10) 1.83 (1.12) 1.86 (1.15) ̂ σ 2 
I / ̂  σ 2 

T 81.20% 85.16% 84.65% 80.14% 
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odel uncertainty to total variance ̂ σ 2 
I 
/ ̂  σ 2 

T 
. All results are based 

n 500 macro-replications. The coverage of CI + is much closer 

o the nominal value of 95%, when compare with CI 0 . The direct 

ootstrap again exhibits overcoverage and provides much wider 

onfidence interval width means and standard deviations. Given 

he fixed computational budget, as the number of real-world data 

 increases, the mean and SD of the interval widths decrease, and 

he coverage becomes closer to the nominal value. 

. Conclusions 

To efficiently develop a simulation model to improve the assess- 

ent of the mean response for flexible and integrated biomanu- 

acturing systems with modular design, we propose a metamodel- 

ssisted bootstrapping uncertainty quantification and sensitivity 

nalysis framework. Process model uncertainty is approximated 

y the bootstrap and an equation-based stochastic kriging meta- 

odel is used to propagate the model uncertainty to the output 

ean. The simulation uncertainty is derived using properties of 

tochastic kriging. This framework delivers an interval quantify- 

ng the system mean response estimation accuracy accounting for 

oth simulation and model uncertainties. The asymptotic consis- 

ency of this interval is proved under the assumption that the true 

esponse surface is a realization of a Gaussian process and certain 

arameters are known. Given very limited real-world observations 

nd high stochastic uncertainty, the model uncertainty often domi- 

ates, especially for personalized bio-drug manufacturing. We pro- 

ide a variance decomposition quantifying the relative contribution 

rom each source of model uncertainty, as well as simulation un- 

ertainty. While the asymptotic analysis shows correctness for the 

roposed framework, the empirical study on multiple biomanufac- 

uring and service examples demonstrates that it also has good 

nite-sample performance. 
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