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1. Introduction
Screening experiments are designed to investigate the con-
trollable factors in an experiment with a view toward elim-
inating the unimportant ones. According to the sparsity
of effects principle, in many cases only a few factors are
responsible for most of the response variation (Myers and
Montgomery 2002). A good screening procedure should
correctly and efficiently identify important factors. This is
especially useful when the system is complicated and many
factors are being considered.
In this paper, we focus on factor-screening methods for

discrete-event simulations. Simulation experiments are dif-
ferent from physical experiments in at least three ways:
1. Screening problems in simulation can involve many

more factors than real-world problems. In typical physical
experiments it is difficult to control more than 15 factors,
while in simulation experiments it is easy to control and
simulate many decision variables because the experiment
can be automated (Bettonvil and Kleijnen 1997; Kleijnen
et al. 2005; Trocine and Malone 2000, 2001; Morris 2006).
2. In physical experiments, switching from one factor

setting to another can be costly (time and money). In simu-
lation, however, switching decision variable values is com-
paratively easy. This makes sequential methods especially
attractive in simulation.
3. In simulation experiments, common random numbers

(CRN) can be implemented to reduce the variance of esti-
mated effects as compared to independent simulations (Law
and Kelton 2000). Controlling random number seeds is not

applicable in physical experiments, although the concept is
similar to “blocking.”
These differences suggest that screening strategies for

simulation experiments will be different from those for
physical experiments.
Many screening strategies have been developed to iden-

tify important factors with an economical number of design
points and replications (Trocine and Malone 2000, 2001;
Morris 2005). For instance, the first stage of response sur-
face methodology is usually factor screening, which is
often based on a first-order design, such as a Plackett-
Burman design. There has been considerable research in
this area (e.g., Myers and Montgomery 2002, Wu and
Hamada 2000). However, most of these experiment-design
strategies emphasize physical experiments and do not take
advantage of the highly sequential nature of simulation
experiments. In fact, recent research has gone in the oppo-
site direction by combining the screening experiments and
a follow-up response exploration into one design to screen
out the important factors and build the model simultane-
ously (Cheng and Wu 2001).
Group-screening methods have been widely used for sit-

uations with large numbers of factors. The fundamental
idea is to identify the important/unimportant factors as a
group to save experimental effort (Lewis and Dean 2001).
If a group is considered to be important, then subgroups
or individual factors within the group should be further
screened; if a group is not considered to be important,
then the whole group can be classified as unimportant. In
group screening, the effects of the factors that are grouped
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together must have the same sign to avoid cancellation,
and a main-effects model is typically assumed (Trocine and
Malone 2001, Dean and Lewis 2005).
Other screening methodologies for simulation include

one-factor-at-a-time designs (Campolongo et al. 2000);
fold-over designs (Myers and Montgomery 2002); methods
based on frequency domain analysis (Morrice and Bardhan
1995); edge designs (Elster and Neumaier 1995); iter-
ated fractional factorial designs (Campolongo et al. 2000);
and the Trocine screening procedure (Trocine and Malone
2001). These methods will not be discussed in this paper.
The interested reader should refer to Trocine and Malone
(2000, 2001) or Campolongo et al. (2000) for reviews.
We concentrate on a specific method called sequen-

tial bifurcation (SB), which is a combination of group
screening and a sequential step-down procedure (Bettonvil
and Kleijnen 1997). A sequential design is one in which
the design points (factor combinations to be studied) are
selected as the experiment results become available. There-
fore, as the experiment progresses, insight into factor
effects is accumulated and used to select the next design
point or group of design points.
SB is a series of steps. In each step, the cumulative effect

of a group of factors is tested for importance. The first step
begins with all factors of interest in a single group and
tests that group’s effect. If the group’s effect is important,
indicating that at least one factor in the group may have an
important effect, then the group is split into two subgroups.
The effects of these two subgroups are then tested in subse-
quent steps and each subgroup is either classified as unim-
portant or split into two subgroups for further testing. As
the experiment proceeds, the groups become smaller until
eventually all factors that have not been classified as unim-
portant are tested individually. This method was first pro-
posed for deterministic computer simulations by Bettonvil
and Kleijnen (1997). Later the method was extended to
cover stochastic simulations (Cheng 1997, Kleijnen et al.
2005). Kleijnen et al. (2005) also proposed SB using fold-
over designs to eliminate the bias of two-factor interactions.
The sequential property of the method makes it well suited
for simulation experiments. Examples have shown that the
method is highly efficient when important factors are sparse
and clustered (Cheng 1997, Bettonvil and Kleijnen 1997,
Kleijnen et al. 2005), but no one has provided a perfor-
mance guarantee in the stochastic case.
In this paper, we propose a modified SB procedure,

called controlled sequential bifurcation (CSB), for stochas-
tic simulations. The contribution of CSB is that it controls
the Type I error and power simultaneously. A two-stage
testing procedure is introduced to guarantee the power of
each step, and at the same time the step-down property of
SB implies Type I error control for each factor. The new
methodology is an extension of the work of Kleijnen et al.
(2005) and Cheng (1997).
This paper is organized as follows: In §2, we define

the underlying metamodel that we will use. Section 3

describes the procedure (and a two-stage hypothesis-testing
approach) and discusses its performance. In some special
situations, a more efficient, fully sequential testing pro-
cedure can be implemented, which is discussed in §4.
Section 5 presents an empirical evaluation comparing CSB
to a number of competitors. In §6, CSB is implemented
to solve a realistic problem. Section 7 provides concluding
remarks.

2. Response Model
In this section, we introduce the underlying response model
that will guide our new CSB procedure.

2.1. Main-Effects Model

Suppose that there are K factors in the simulation exper-
iment. The simulation output of interest is denoted by Y ,
and Y is represented by the following metamodel:

Y = �̃0 + �̃1z1 + �̃2z2 + · · ·+ �̃KzK + �� (1)

where z= �z1� z2� � � � � zK	 are the K factors, and �̃= 
�̃1�
�̃2� � � � � �̃K� are the effect coefficients. This is a multiple
linear regression model with K + 1 regression variables
including a dummy variable z0 = 1 and main effects only.
The setting of the factors is deterministic and under the
control of the experimenter. On the other hand, the error
term, �, is a random variable; in this paper, we assume
that it is a Nor�0��2�z		 random variable, where �2�z	 is
unknown and may depend on z.
There are two situations in which the main-effects model

is appropriate. When there is little prior knowledge about
the system and a gross level of screening is desired, then
all factors are varied across extremes of their range of oper-
ability. In this case, all factors identified as important will
be carried to the second stage for a more detailed study
and a main-effects model is usually sufficient to identify
the candidates for further analysis. However, it should be
noted that the main-effects model usually does not hold
across the entire range of the factors, so it is possible to
miss factors that have large interactions with other factors
or have a nonlinear effect on the response.
On the other hand, when the goal of screening is to iden-

tify which factors have important local effects (one form
of sensitivity analysis), a small disturbance to the nominal
level of each factor will be introduced. In this case, the
main-effects model is often a good local approximation for
modest deviations from a nominal level, typically the cen-
ter of the design space. CSB is appropriate for both types
of screening, but our presentation will focus on the latter
application.

2.2. Determination of Factor Levels

In practice, when we consider whether a change in
the response is worth pursuing, the cost to achieve the
change is often critical. In global screening experiments,



Wan, Ankenman, and Nelson: Controlled Sequential Bifurcation
Operations Research 54(4), pp. 743–755, © 2006 INFORMS 745

management may account for costs by selecting low and
high settings of each factor to insure that the ranges of the
different factors are comparable. CSB will then code the
low settings as zeroes and the high settings as ones (Box
and Draper 1987, Chapter 4), and the rest of this section
is not relevant. In sensitivity analysis, however, when we
compare the effects of two different factors, the compari-
son may have little meaning if the cost to change the fac-
tors is very different. By scaling the effect coefficients with
respect to the cost of changing the factors’ settings, we can
insure that the results have a useful interpretation. In other
words, the disturbance to the nominal level for each factor
will depend on the cost to change the factor. We describe
one way to account for costs here.
Let ci be the cost per unit change of factor i for i =

1�2� � � � �K. Further, let c∗ =maxi∈� ci, where � is the set
of indices of all of the factors whose settings can only be
changed in discrete units (e.g., number of machines at a
workstation or number of cashiers at the checkout). Let
�0 be the minimum change in the expected response for
which we would be willing to spend c∗, and let �1 be a
change in the expected response that we would not want to
miss if it could be achieved for only a cost of c∗. If �=�,
then let �c∗��0	 be such that we are willing to spend c∗

for a �0 change in the expected response, and define �1 as
before.
Let

�i =


c∗/ci� i 	��


c∗/ci�� i ∈��

which is the maximum change in factor i that can be
achieved without exceeding a cost c∗; and let wi = �ici/c

∗

� 1, which is the fraction of a full-cost move, c∗/ci, that
can actually be made for factor i. If factor i can be changed
continuously (i 	�	, or i ∈� but c∗/ci is an integer, then
wi = 1. If i ∈� and c∗/ci is not an integer, then wi < 1.
For instance, suppose that there are K = 3 factors. The

setting of the first factor can be changed continuously, but
the other two are discrete. If c1 = 300, c2 = 400, and c3 =
1�000, then c∗ = 1�000, �1 = 10/3, �2 = 2, and �3 = 1,
giving w1 = 1, w2 = 0�8, and w3 = 1.
Recall that the main-effects model is

Y = �̃0 +
K∑
i=1

�̃izi + ��

For screening with a main-effects model, a two-level exper-
imental design is adequate. Let the nominal (low) set-
ting of zi be z0i and let the high setting be z0i + �i for
i = 1�2� � � � �K. Define the transformed variables xi =
wi�zi− z0i 	/�i = �ci/c

∗	�zi− z0i 	. Then, Y can be expressed
as a linear regression on xi, i= 1�2� � � � �K, as

Y = �0 +
K∑
i=1

�ixi + �� (2)

where the low setting of xi is 0, the high setting is wi,
and �i = �i�̃i/wi for i = 1�2� � � � �K. Now each �i, i > 0,
has a practical interpretation: it represents the change in
the expected response when spending c∗ to change the set-
ting of factor i, and this change can be compared with �0

and �1 (the thresholds of importance) without ambiguity.
The integration of cost and thresholds of importance into

the factor scaling is a general methodology which can be
used for any screening strategy. If, on the other hand, the
experimenter already knows the thresholds of importance
as well as the factor levels, then they do not need to use
the cost model. The CSB procedure described in this paper
is independent of how the factor levels and thresholds of
importance are determined.
In our proposed method, we will assume that the sign of

each factor effect is known so that we can set the levels of
the factors to have �i � 0 for all i > 0. Further, we assume
that for a fixed factor setting, x1� x2� � � � � xK , replications
of Model (2) are independent and identically distributed
(i.i.d.); dependence of outputs across different factor set-
tings due to CRN is permitted.

2.3. Objective of the Screening Procedure

In screening experiments, the primary objective is to divide
the factors into two groups: those that are unimportant,
which we take to mean �i ��0, and those that are impor-
tant, meaning �i > �0. Because we can never make these
determinations with certainty in a stochastic simulation,
we instead pursue a screening procedure that controls the
probability of incorrectly classifying each factor. More
specifically, for those factors with effects��0, we require
the procedure to control the probability of declaring them
important (Type I error) to be less than or equal to �; and
for those factors with effects � �1, we require the proce-
dure to provide power for identifying them as important
to be greater than or equal to �. Here, � and � are user-
specified parameters and �0 and �1 are defined as in §2.2
with �1 >�0. Those factors whose effects fall between �0

and �1 are considered important and we want the procedure
to have reasonable, although not guaranteed, power to iden-
tify them. Figure 1 is a generic illustration of the desired
performance of our screening procedure. In the figure, the
y-axis is P�DI	, the probability of declaring a given factor
important, and the x-axis is the size of the effect, �.
To illustrate, consider a simulated manufacturing system

where the response is the expected throughput of the sys-
tem. The controllable factors may include the number of
machines at each workstation, average processing time of
each machine, and the skill levels of the workers. The prac-
tical threshold �0 is set as the minimum change in expected
throughput that managers consider worth pursuing at a cost
c∗ of changing the most expensive factor by one unit. For
example, c∗ might be the cost of purchasing a very expen-
sive machine. In this illustration, screening experiments
would be used to identify each factor that influences the
expected throughput by more than �0 when spending c∗ to
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Figure 1. Illustration of desired performance of generic
screening procedures.
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change that factor. For each factor, the procedure should
have probability less than or equal to � of declaring that
factor important if it cannot influence the expected through-
put by at least �0 at a cost of c

∗. The procedure should also
have probability greater than or equal to � of identifying a
factor as important if its influence on the expected through-
put is greater than or equal to �1 at a cost of c

∗. Here, �1 is
a critical change in the expected throughput that the man-
agers do not want to ignore if it can be achieved for a cost
of only c∗. Factors whose effects are neither unimportant
nor critical will be identified with less power than �.

3. Controlled Sequential Bifurcation
Our CSB procedure inherits the basic structure from the SB
procedure proposed by Bettonvil and Kleijnen (1997), and
addresses the same problem as the SB-under-uncertainty
procedure proposed by Cheng (1997). Specifically, like
other SB procedures, CSB is a series of steps in which
groups of factors are tested. If a group of factors is con-
sidered unimportant, then every factor in the group will be
considered unimportant. If the group is considered impor-
tant, then it is split for further testing. When the algorithm
stops, each of the original K factors will be classified as
either important or unimportant. The unique feature of CSB
is that each step contains a testing procedure to insure the
desired power. In addition, CSB preserves the step-down
nature of SB so that Type I error can be controlled (a prop-
erty not noted in previous research on SB; see Hochberg
and Tamhane 1987, Theorem 2.6, p. 370). The two-stage
procedure is explained in detail in the following sections.

3.1. Notation

The notation that we use to define CSB is given here.
It is slightly different from that used in Bettonvil and
Kleijnen (1997). (See Appendix A in the online companion

at http://or.pubs.informs.org/Pages.collect.html for a com-
plete list of notation used in this paper.)
There are in total K indexed factors. Let xi represent the

setting of factor i. An experiment at level k is defined by
the following factor settings, where wi = �ici/c

∗ � 1:

xi�k	=
{
wi� i= 1�2� � � � � k�

0� i= k+ 1� k+ 2� � � � �K�

Thus, “level k” indicates an experiment at which factors
1�2� � � � � k are set at their high settings, and factors k+ 1,
k+ 2� � � � �K are set at their low settings. Note that in this
paper, “setting” is used to describe a single factor’s value;
and “level” is used to describe all factors’ settings in an
experiment.
Let Yj�k	 denote the jth simulation replication of an

experiment at level k. Therefore, under our main-effects
model, Yj�k	 = �0 +

∑k
i=1wi�i + �j�k	. We require �j�k	

to be independent of �j ′�k
′	 when j �= j ′ (i.i.d. assumption

in §2.2). In the case of CRN, there will be positive correla-
tion between �j�k	 and �j�k

′	, k �= k′, which enables more
precise estimators of the effects.
When a level is selected for observation, N0 replications

will be initially taken, but more generally, nk denotes the
number of replications that have been taken at level k.
For k2 > k1, let Dj�k1� k2	= Yj�k2	− Yj�k1	, j = 1�2� � � � �
min
nk1� nk2�, and let the average of the differences of the
paired observations be

�D�k1� k2	=
min
nk1 � nk2 �∑

j=1
�Yj�k2	− Yj�k1		/min
nk1� nk2��

whose expected value is
∑k2

i=k1+1wi�i. The quantity
�D�k1� k2	 will be our test statistic for determining whether
or not the group 
�k1+1��k1+2� � � � ��k2

� is important. How-
ever, because different factors may have different weights,
we use w�k1� k2	 = min
wk1+1�wk1+2� � � � �wk2

�, the small-
est weight associated with factors �k1+1��k1+2� � � � ��k2

, to
scale the test statistic. Our test also requires

S2�k1� k2	=
1

N0 − 1

N0∑
j=1

�Dj�k1� k2	− �D�k1� k2		2�

the first-stage (initial N0 observations) sample variance
of the paired differences. The critical regions for CSB’s
hypothesis tests are defined by the following quantities:
• t"� #: the " quantile of the t-distribution with # degrees

of freedom.
• UA�k1� k2	=�0+t√1−��N0−1S�k1� k2	/�w�k1� k2	

√
nk	,

where nk = min
nk1� nk2�. The subscript A = I, II denotes
the first or second stage of the testing procedure,
respectively.
• L�k1� k2	=�0−t�1+�	/2�N0−1S�k1� k2	/�w�k1� k2	

√
nk	,

where nk =min
nk1� nk2�.• h: A constant such that P�TN0−1 � t√1−��N0−1 − h	 =
�1+ �	/2, where TN0−1 is a t-distributed random variable
with N0 − 1 degrees of freedom.
• N�k1� k2	 = �h2S2�k1� k2	/�w2�k1� k2	��1 −�0	

2
	�,

the total sample size at the end of Stage II.
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Figure 2. Structure of CSB.

Initialization: Create an empty LIFO queue for groups.
Add the group 
1�2� � � � �K� to the LIFO queue.

While queue is not empty, do
Remove: Remove a group from the queue.
Test:
Unimportant: If the group is unimportant, then classify all
factors in the group as unimportant.

Important �size= 1	: If the group is important and of size 1,
then classify the factor as important.

Important �size> 1	: If the group is important and size is
greater than 1, then split it into two subgroups such that all
factors in the first subgroup have smaller index than those
in the second subgroup. Add each subgroup
to the LIFO queue.

End Test
End While

In the next section, we show how the test is performed.

3.2. CSB Procedure

An overview description of CSB is shown in Figure 2.
The figure illustrates how groups are created, manipulated,
tested and classified, but does not specify how data are gen-
erated or what tests are performed. Detailed descriptions of
data collection and hypothesis testing follow. This section
is closed by an example.
Independent and identically distributed replications are

obtained whenever new groups are formed according to the
following rule: When forming a new group containing fac-
tors 
k1+1� k1+2� � � � � k2� with k1 < k2, check the number
of replications at levels k1 and k2:
If nk1 = 0, then collect N0 replications at level k1 and set

nk1 =N0.
If nk2 = 0, then collect N0 replications at level k2 and set

nk2 =N0.
If nk1 < nk2 , then make nk2 − nk1 additional replications

at level k1 and set nk1 = nk2 .
If nk2 < nk1 , then make nk1 − nk2 additional replications

at level k2 and set nk2 = nk1 .
Suppose that the group removed from the queue contains

factors 
k1 + 1� k1 + 2� � � � � k2� with k1 < k2. The Test step
in Figure 2 tests the following hypothesis to determine if
this group might contain important factors:

H0)
k2∑

i=k1+1
�i ��0 vs. H1)

k2∑
i=k1+1

�i > �0�

The procedure given below for testing this hypothesis guar-
antees that the probability of Type I error is less or equal
to � when

∑k2
i=k1+1�i � �0, and the power is greater or

equal to � if
∑k2

i=k1+1�i ��1.

Two-Stage Test

Stage I
1. If �D�k1� k2	/w�k1� k2	� UI�k1� k2	 and min
nk1� nk2�

�N�k1� k2	, then classify the group as unimportant.
2. Else if �D�k1� k2	/w�k1� k2	� L�k1� k2	, then classify

the group as unimportant.

3. Else if �D�k1� k2	/w�k1� k2	 > UI�k1� k2	, then classify
the group as important.
4. Else go to Stage II.

Stage II
5. Make �N �k1� k2	 − nk1	

+ replications at levels k1
and k2 (recall that nk1 = nk2 ). Then set nk1 = nk2 =
max
N �k1� k2	� nk1�. The sample variance S2�k1� k2	 and
the degrees of freedom do not change, but �D�k1� k2	 is
updated.

(a) If �D�k1� k2	/w�k1� k2	 � UII�k1� k2	, then classify
the group as unimportant.

(b) If �D�k1� k2	/w�k1� k2	 > UII�k1� k2	, then classify
the group as important.
Note that because wi � 1 ∀ i,

E* �D�k1� k2	+=
k2∑

i=k1+1
wi�i �

k2∑
i=k1+1

�i�

Therefore testing �D�k1� k2	 against �0 would sacrifice
power and be conservative for Type I error. Thus, we
use �D�k1� k2	/w�k1� k2	 because E* �D�k1� k2	/w�k1� k2	+�∑k2

i=k1+1�i. Type I error is controlled by testing singleton
groups in the final steps. Because E* �D�k1� k2	/w�k1� k2	+=
�k2

when k1 + 1 = k2, experimentwise Type I error con-
trol will not be compromised even though the Type I error
for nonsingleton group testing is no longer conservative
(see Appendix B in the online companion at http://or.pubs.
informs.org/Pages.collect.html).
As an illustration, consider the case of K = 10 factors

and the first pass through the algorithm. Initially, we make
N0 replications at level 0 (all factors at their low settings)
and N0 replications at level 10 (all factors at their high
settings). The group removed from the queue contains all
factors and w�0�10	=min
w1�w2� � � � �w10�.
Next, we evaluate �D�0�10	, UI�k1� k2	, and L�k1� k2	.

If �D�0�10	/w�0�10	 � L�k1� k2	, then we conclude that
none of the factors is important because the sum of
all effects is not important, and the algorithm stops. If
�D�0�10	/w�0�10	 > UI�k1� k2	, then the factors are sepa-
rated into two groups, 
�1��2��3��4��5� and 
�6��7��8�
�9��10�, and N0 replications are made at level 5 (which
means that xi, i= 1�2� � � � �5, are at their high settings and
xi, i = 6�7� � � � �10, are at their low settings). Both groups
are added to the queue.
If, on the other hand, �D�0�10	/w�0�10	 is between

L�k1� k2	 and UI�k1� k2	, then we calculate N�0�10	. If
N�0�10	�N0, then we conclude that no factors are impor-
tant and the algorithm stops. If N�0�10	 > N0, then we
collect N�0�10	 − N0 replications at both level 0 and
level 10, reevaluate �D�0�10	, and calculate UII�k1� k2	. If�D�0�10	/w�0�10	 > UII�k1� k2	, then the factors are sepa-
rated into two groups as described above and N0 replica-
tions are made at level 5. Both groups are added to the
queue. Otherwise, all factors will be considered to be unim-
portant and the algorithm stops.
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3.3. Implementation Issues

The following are key issues in our implementation of CSB.
Other choices could be made, and these are the subject of
future research.

Group Splitting. Our current version of CSB splits an
important group in the middle. When the number of fac-
tors in the group is odd, the group containing factors with
smaller indices will get one more factor. So for a group
containing factors 
k1 + 1� k1 + 2� � � � � k2� with k1 < k2,
we split at the point k = ��k1 + k2	/2� and the two new
groups contain factors 
k1 + 1� k1 + 2� � � � � k� and 
k+ 1�
k+ 2� � � � � k2�, respectively. There are other policies avail-
able (see Kleijnen et al. 2005).

Number of Replications at Each Level. In our current
version of CSB, we always make enough replications to
insure that nk1 = nk2 before performing the hypothesis test.
This is to make sure that the response from high and low
levels of the testing group are paired, which is mandatory
when CRN is implemented.
If we are willing to store each observation instead of

merely their summary statistics, a modified strategy is to
conduct the test based on the first min
nk1� nk2� paired
observations from low and high levels. If it turns out that
more observations are needed, take �N �k1� k2	−nk1	

+ and
�N �k1� k2	− nk2	

+ more observations from low and high
levels, respectively. This usually decreases the total number
of replications required for screening, but also increases the
memory requirement.

Indexing of the Factors. It is preferable to index the
factors monotonically by their effect size so that the unim-
portant factors are likely to be eliminated together at early
stages (Bettonvil and Kleijnen 1997). However, most of the
time the relative size of the effects is not known. Another
option is to have the factors indexed monotonically by wi

so that the small wi are grouped together. Consider a group
containing factors 
k1+1� k1+2� � � � � k2�, 0� k1 < k2 �K.
It is desirable to have the wi in the group as close in value
as possible so that E* �D�k1� k2	/w�k1� k2	+ will be close to∑k2

i=k1+1�i. Both strategies improve the efficiency of the
procedure, but they may be in conflict. If we suspect that
there are large differences between effect sizes and we
know the order, then the factors should be indexed by their
effect size. When we have no such knowledge (the usual
case), then the factors should be indexed by wi.

Early Stopping. Because both the number of steps
required for screening and the number of replications
required at each step are automatically adjusted in CSB, the
experimenter has little control over the computational effort
that will be used for screening. However, early stopping
is possible when time or resources are limited. If stopped
in the middle of the screening process, CSB will give one
or more subgroups, possibly containing important factors,
and a group of factors that have already been classified as
unimportant. The unclassified factors can be carried to the
next stage for further testing. Specifically, if the number

of factors we are willing to carry to the next stage has
been pre-specified as K ′, then as soon as K−K ′ (or more)
factors have been eliminated, the CSB procedure can stop.
Early termination can save substantially on the number of
runs required.

3.4. Performance of CSB

The performance guarantees for the CSB procedure are
stated in following theorems that are proved in Appendix B
in the online companion.

Theorem 1. If Model (2) holds with normally distributed
error and all �i � 0, i > 0, then CSB guarantees that

P�i��0

declare factor i important�� �

for each factor i individually.

Theorem 2. Let the group containing the factors denoted

kl + 1� � � � � km� be represented by 
kl → km� for 0� kl <
km �K. If Model (2) holds with normally distributed error
and all �i � 0, i > 0, then the two-stage test guarantees that

P∑km
i=kl+1 �i��1


declare 
kl → km� important�� �

for each group 
kl → km� tested.

In summary, the CSB procedure controls the Type I error
for each factor individually and guarantees the power for
each step. The procedure does not require an equal variance
assumption, and is valid with or without CRN. At the end
of the procedure the factors are separated into two groups,
those that are classified important and those that are classi-
fied not important. For each unimportant factor, the proba-
bility that it will be classified as important is less than or
equal to �. The power to detect effects greater than or equal
to size �1 (the critical effects) is controlled at each testing
step, but not experimentwise. However, because in all but
the last step,

∑km
i=kl+1�i is likely to be greater than �1 if any

one factor has an effect of size �1, the power should not
be seriously compromised. An empirical evaluation will be
discussed in §5.
More generally, if CSB employs any testing procedure

that guarantees:
1. P∑km

i=kl+1 �i��0

declare 
kl → km� important�� �; and

2. P∑km
i=kl+1 �i��1


declare 
kl → km� important�� �,
then the conditions of Theorems 1 and 2 will still be satis-
fied. On the other hand, if a testing procedure only fulfills
requirement 1, then Theorem 1 will hold, but we lose the
power control. For example, if we eliminate the second
stage of the two-stage testing procedure described above,
and make only a one-sided hypotheses test in the first stage,
then the procedure is very similar to the approach of Kleij-
nen et al. (2005). Theorem 1 will still hold, but Theorem 2
will not.
The Type I error control, described in Theorem 1, is for

each factor individually. We will briefly discuss the exper-
imentwise Type I error control of CSB by evaluating the
expected number of factors that are falsely classified as
important, denoted E*FK+, for two extreme cases.
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To simplify the analysis, we assume that there are
K = 2L factors, where L is an integer. Therefore, CSB
needs L tests to get down to a group of size 1 (a singleton
group), and a singleton group must be declared important
for a factor to be declared important. Also, we assume that
all tests are independent. Then, we have the following two
theorems:

Theorem 3. If Model (2) holds with normally distributed
error, all �i � 0, i > 0, and

∑K
i=1�i ��0, then for �� 1/2,

CSB guarantees that

E*FK+� ��

In this case, no factor or group of factors is significant.
The upper bound for E*FK+ is scale-free and the bound
decreases with decreasing �.

Theorem 4. If Model (2) holds with normally distributed
error, all �i � 0, i > 0, and �i � �0, i = 1�2� � � � �K, but
�i +�j ��1 for all i �= j , then CSB guarantees that

E*FK+�K��

Theorem 4 examines the worst case for controlling the
Type I error because all factors should be carried to the last
step and tested separately, but none of the factors is impor-
tant. The upper bound for E*FK+ is linear in the number
of factors. Realistic problems should be between these two
extreme cases, but closer to Theorem 3. Therefore, CSB
provides strong control of the “false positive” rate, regard-
less of the number of factors.

4. CSB with a Fully Sequential Testing
Procedure

In the two-stage testing procedure introduced in §3, the
determination of the second-stage sample size is based on
a worst-case scenario. Specifically, the test assumes that
all important effects are on the boundary of critical impor-
tance, �1. Even if the effect size is much larger than �1, the
test requires just as much data to guarantee the power. In
the special case where �= 1− � (Type I error is equal to
one minus the power), a fully sequential test can be imple-
mented in CSB that gives the same error control as the
two-stage testing procedure. The test adds one replication
at a time to both the upper and lower levels of the group
being tested until a decision is made. In most cases, the
sequential test is more efficient than the two-stage testing
procedure. The test is adapted from Kim (2005), and we
refer the reader to that paper for the proof of its validity.
When we use this test, the structure of CSB remains the
same as in Figure 2; only the Test step is changed.
Kim’s sequential test has three critical constants which

in our context are set as follows:
/= �exp0− 1	/2 with 0=−2 ln�2�	/�N0 − 1	,
a�k1� k2	= 2/�N0 − 1	S2�k1� k2	/�w

2�k1� k2	��1−�0		,
2= ��1 −�0	/4.
Let r�k1� k2	 denote the current number of replications

at levels k1 and k2. The fully sequential test takes paired
observations from each level, one pair at a time, and checks

Figure 3. Fully sequential test.
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r (k1,k2)(D(k1,k2)/w (k1,k2)–(∆1+∆0)/2)

TB1

TB2

whether �D�k1� k2	 crosses one of two termination bound-
aries, which are functions of /, a�k1� k2	, and 2. The max-
imum number of paired observations that will be taken is
one more than M�k1� k2	 = 
a�k1� k2	/2�. As illustrated
in Figure 3, if the group effect is significantly larger (or
smaller) than the threshold of importance, the conclusion
can be made with a smaller number of observations than
the two-stage testing procedure which requires N�k1� k2	.
In the figure, the dots represent the value of the test statistic
as a function of the number of paired observations. Note
that N�k1� k2	 � M�k1� k2	, meaning the maximum num-
ber of observations the fully sequential test could take is
greater than the number of observations the two-stage test
will take. If the effect is on the boundary of importance,
it is possible that the fully sequential test will continue
until M�k1� k2	 + 1 observations have been collected. In
this case, the test is not as efficient. Fortunately, the for-
mer case usually happens more often than the latter, which
makes the fully sequential testing procedure more efficient
than the two-stage test. After the initial N0 observations
(r�k1� k2	=N0), the test works as follows:

Fully Sequential Test

1. If r�k1� k2	 >M�k1� k2	, then
(a) If r�k1� k2	� �D�k1� k2	/w�k1� k2	−��0+�1	/2	�

0, then stop and classify the group as unimportant.
(b) Else stop and classify the group as important.

2. Else (i.e., r�k1� k2	�M�k1� k2		
(a) If r�k1� k2	� �D�k1� k2	/w�k1� k2	−��0+�1	/2	�

−a�k1� k2	 + 2r�k1� k2	 (termination boundary 1), then
classify the group as unimportant.

(b) Else if r�k1� k2	� �D�k1� k2	/w�k1� k2	 − ��0 +
�1	/2	 � a�k1� k2	− 2r�k1� k2	 (termination boundary 2),
then classify the group as important.

(c) Else take one more replication at both levels k1
and k2, set r�k1� k2	= r�k1� k2	+ 1, and go to Step 1.

This test is a special case of a more general fully sequen-
tial ranking-and-selection procedure due to Kim (2005).
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Kim’s procedure handles the problem of comparing m sim-
ulated systems with a standard system. If the designated
standard is system 0 and i = 1�2� � � � �m are the alterna-
tive systems, then the goal is to identify the system with
the largest expected performance provided it is significantly
better than the standard. Suppose that system i has expected
performance 5i; without loss of generality, we can assume
that 51 � 52 � · · · � 5m. Kim’s procedure guarantees the
probability of correct selection to be �1−� given a prac-
tically significant difference �> 0 worth detecting:

P
select system 0�� 1−� whenever 50 �5m�

P
select system m�

� 1−� whenever 5m �max
5m−1�50�+ ��

We have only two “systems” at each given step. To adapt
Kim’s procedure to our setting, we identify system 0 with
the threshold of importance �0, identify system m= 1 with
the group effect, set �=�1−�0, and let �= 1−�. If sys-
tem 0 is “selected,” then the group is classified as unimpor-
tant; if system 1 is “selected,” then the group is classified
as important. The performance guarantee of Kim’s proce-
dure implies that Lemma 3 of Appendix B in the online
companion and Theorems 1–4 still hold. Therefore, CSB
with the fully sequential test has the same error control as
CSB with the two-stage test discussed in §3.

5. Empirical Evaluation
In this section, we discuss the numerical results that com-
pare CSB with the two-stage testing procedure proposed
in §3 to Cheng’s method (Cheng 1997), an enhance-
ment of the SB procedure for stochastic responses that
assumes equal variances. We also compare the efficiency
of the two-stage and fully sequential testing procedures,
and demonstrate the advantages of CSB relative to tradi-
tional fractional factorial designs when the number of fac-
tors is large and the number of important factors is small.
Finally, we compare CSB to the SB procedure of Kleijnen
et al. (2005).

5.1. Comparison of CSB and Cheng’s Method

The idea behind Cheng’s (1997) method is to determine
whether a group of two or more factors is unimportant by
constructing a one-sided confidence interval for the group’s
effect. For a group containing a single factor, replications
are added one at a time until a two-sided confidence inter-
val for the factor effect shows that the effect is important
or unimportant. When a single factor is tested, the method
employs an indifference parameter a. In our notation, all
the factors with effects smaller than �0 + a can be clas-
sified as unimportant. Cheng’s method does not guarantee
the control of Type I error for each factor or control of
the power at any step, and has no concept like �1 for a
critically important factor. In this section, the CSB method
refers to CSB with the two-stage testing procedure.

5.1.1. Summary of Results. Rather than employ sys-
tem simulation models in this test, we chose to generate
data from a main-effects model in which we control the
size of the effects and the variances at different design
points; a realistic example is given in §6. Normal errors
are assumed with mean 0 and standard deviation � =m ∗
�1 + � ∗ size of the group effect	, where � is 0 if we
are running an equal-variance case, and 1 for an unequal-
variance case. Thus, in unequal variance cases, the stan-
dard deviation is proportional to the size of the effect of
the group being screened. The parameter m determines
the magnitude of the variance. CRN were not employed
because Cheng’s procedure is not valid under CRN because
it assumes independence and equal variance for each obser-
vation.
For each case considered, the CSB procedure using the

two-stage test of §3.2 is applied 1,000 times and the per-
centage of time factor i declared important is recorded;
this is an unbiased estimator of P{factor i is declared
important}.
To compare CSB to Cheng’s (1997) method, we set the

indifference parameter, a, such that the number of repli-
cations required by Cheng’s method is approximately the
same as the number used by CSB for that case. Therefore,
we can compare the estimated probability of Type I error
and power of the two methods with equal simulation effort.
The performance of Cheng’s method depends on the

case considered. When the variances are large and unequal,
Cheng’s method loses control of both the Type I error and
the power. The CSB method, on the other hand, controls
the Type I error and power across all cases (although the
number of replications required to achieve this does differ
substantially by case).
In the following subsections, we provide some illustra-

tive numerical results that emphasize the key conclusions.

5.1.2. Unequal-Variance Cases. We set the parame-
ters as in Table 1. We considered two different settings for
the factor effects:
1. In Case 1, we set ��1��2� � � � ��10	 = �2�2�44�2�88�

3�32�3�76�4�2�4�64�5�08�5�52�6	, spanning the range
from �0 to �0+�1. For CSB, the observed frequency that
�1 is declared important should be smaller than 0.05, but
for �6��7� � � � ��10 it should be near 0.95. Letting P�DI	
mean “probability of being declared important,” Figure 4
plots P�DI	 against effect size for Cheng’s method and

Table 1. Parameters for main effects
experiments.

Parameter Value

K 10
�0 2
�1 4
� 0.05
� 0.95
m 0.1, 1
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Figure 4. Case 1 with unequal variances.
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CSB with large (m = 1) and small (m = 0�1) variances.
We can see that when variance is small, the two meth-
ods have similar performance although CSB attains greater
power earlier. When the variance is large, however, Cheng’s
method loses control of both Type I error and power.
2. In Case 2, we set ��1��2� � � � ��10	 = �2�2�2�2�2�

2�2�2�2�2	, so that all effects are �0. This set is designed
to study the control of Type I error for the two methods.
The other parameters are the same as in the previous case.
Figure 5 shows the box plots of the Type I error control

of both methods. The frequency of Type I error is large for
Cheng’s method when the variance is large. Even for the
small-variance case, the largest frequency of Type I error
is still more than 0.2 for Cheng’s method. By design, CSB
controls the probability of Type I error to be �� in all
cases.

5.1.3. Equal-Variance Cases. The parameter settings
are the same as the unequal variance cases except that
� =m, which is the same across all responses. We consid-
ered two different settings for the factor effects:
1. In Case 1, we set ��1��2� � � � ��10	 = �2�2�44�2�88�

3�32�3�76�4�2�4�64�5�08�5�52�6	. The results are summa-

Figure 5. Case 2 with unequal variances.
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Figure 6. Case 1 with equal variances.
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rized in Figure 6. This time the two methods perform sim-
ilarly, although CSB has somewhat larger power.
2. In Case 2, we set ��1��2� � � � ��10	 = �2�2�2�2�2�

2�2�2�2�2	. As shown in Figure 7, CSB has a better con-
trol of Type I error for both large and small variances.
To summarize, CSB has performance superior to Cheng’s

method in large and unequal variance cases. CSB has guar-
anteed performance with different parameter and factor
configurations, which makes it attractive for problems with
limited prior knowledge. Cheng’s method, on the other
hand, assumes variance homogeneity to gain advantages of
increased degrees of freedom and it can be effective when
this assumption is satisfied.

5.2. Comparison of Two-Stage and Fully
Sequential Tests

CSB with the fully sequential test of §4 gives very similar
results for Type I error and power as in §5.1. The difference
lies in the number of replications required for screening.
To compare the efficiency of the two tests, the experi-
ments presented in §5.1 are repeated with CSB using the
fully sequential test, and the average number of replications

Figure 7. Case 2 with equal variances.
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Table 2. Efficiency comparison of CSB with two-stage
and fully sequential testing procedure.

Case Sequential Two-stage

Unequal variance case 1, m= 1 13�579 30�397
Unequal variance case 1, m= 0�1 306 302
Unequal variance case 2, m= 1 8�947 14�920
Unequal variance case 2, m= 0�1 285 290

Equal variance case 1, m= 1 275 275
Equal variance case 1, m= 0�1 275 275
Equal variance case 2, m= 1 275 275
Equal variance case 2, m= 0�1 275 275

required for each case is compared with CSB using the
two-stage test. The results are summarized in Table 2.
We can see that CSB using the fully sequential test is

more efficient in the unequal variance cases, especially
when the variance is large. For the particular equal vari-
ance cases in these examples, the number of replications
for each test is never more than the initial N0 replications
so the two tests have the same performance.
Although CSB using the fully sequential test typically

takes fewer replications than CSB using the two-stage test,
it does not necessarily mean that the fully sequential test-
ing procedure is always preferred. The cost of continually
switching between the settings of the factors can be high,
especially if done manually. The two-stage testing proce-
dure is also simpler to implement and does not require
�= 1−�.

5.3. Comparison of CSB and Fractional Factorial
Design for Large-Scale Problems

As discussed previously, CSB takes advantage of the highly
sequential nature of simulation experiments and is more
efficient than traditional methodologies when the number of
factors is large and only a small fraction of them is impor-
tant. In this section, we study screening problems with
200 factors and 500 factors and compare CSB to a standard
unreplicated fractional factorial design (i.e., an orthogonal
array). For each case, only 2% of the factors are important.
The important factors have effects equal to 5 and the unim-
portant factors have effects equal to 0. Normal errors are
assumed with mean 0 and standard deviation 1 (equal vari-
ance across different levels). The threshold of importance,
�0, is set to 2; and the critical threshold, �1, is set to 4. The
initial number of runs at each level, N0, is equal to 5 for the
200 factor case and 8 for the 500 factor case. The Type I
error is set to be � = 0�05 and the power requirement is
� = 0�95.
For each case, there are two scenarios. The first scenario

has all important factors clustered together with the small-
est indices so that the number of important groups is as
small as possible at each step. The second scenario has the
important factors evenly spread so there are the maximum
number of important groups remaining at each step. CSB is

Table 3. Comparison of CSB and fractional factorial
design.

Number of runs
required

Scenarios CSB FFD

200 factors, 
1�2�3�4� Important 79 256
200 factors, 
1�51�101�151� Important 282 256
500 factors, 
1�2�3�4�5�6�7�8�9�10� 148 512
Important

500 factors, {1�51�101�151�201�251�301� 573 512
351�401�451} Important

more efficient with the first scenario than with the second
scenario.
For each case and scenario considered, CSB with the

fully sequential testing procedure is applied 1,000 times
and the average number of replications required for screen-
ing is recorded. The number of replications required for the
fractional factorial design is the number of design points
required to estimate 200 or 500 main effects with a Reso-
lution III design, which is not influenced by the scenario.
The comparison is shown in Table 3, where FFD represents
fractional factorial design.
We can see that for both the 200 and 500 factors cases,

CSB only takes approximately 1/4 to 1/3 of the replica-
tions required by fractional factorial designs in the clustered
scenario. In the other scenario, the fractional factorial
design requires fewer replications, but the difference is
small. Realistic problems are usually between the two sce-
narios. Thus, CSB is typically more efficient. In addition,
if the conditions of Theorem 3 or Theorem 4 are satisfied,
the expected number of factors that will be falsely classi-
fied as important �E*FK+	 for the fractional factorial design
always equals �K, which is greater than or equal to that of
CSB, especially for the conditions of Theorem 3. Further-
more, the fractional factorial design does not have power
control. Therefore, from the error-control point of view,
CSB is superior. Moreover, the typical test implemented in
a fractional factorial design assumes equal variance across
design points, which CSB does not require. However, the
fractional factorial design does not need �i � 0 �i > 0	.

5.4. Comparison of CSB to Sequential Bifurcation
with One-Stage Hypothesis Testing
Procedure

Kleijnen et al. (2005) have proposed using SB with a
one-stage hypothesis testing procedure (SB-One). At a
bifurcation step, suppose that the testing group contains
factors 
k1 + 1� k1 + 2� � � � � k2� with k1 < k2, and define
L′�k1� k2	 = �0 + t1−��N0−1S�k1� k2	/�w�k1� k2	

√
N0	. If

D�k1� k2	/w�k1� k2	� L′�k1� k2	, the group will be classi-
fied as unimportant; otherwise the group is split into two
subgroups for further testing, unless the group is single-
ton, in which case the factor will be classified as important.
This procedure is equivalent to CSB without the subsequent
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stage(s) of sampling to control the power. An upper bound
on the number of runs required for SB-One is �K + 1	N0.
The Type I error control for each factor still holds because
each bifurcation step controls the Type I error. This prop-
erty is not mentioned in Kleijnen et al. (2005) but clearly
follows from our Theorem 1. On the other hand, power is
not controlled.
We performed the same numerical study described in

§5.1 using SB-One. When variances are relatively small
(Cases 1 and 2 with m= 0�1), the performance of SB-One
is similar to CSB. However, if variances are relatively large
(m= 1), then for Case 1 where factor effects increase grad-
ually, SB-One loses control of power for large effects. For
example, P�DI	= 0�06 when �= 6, even though the size
of the effect is very large relative to �0.
In summary, incorporating a hypothesis test into SB only

guarantees control of Type I error; to control power and
mitigate the risk of missing important factors, an adaptive
test, such as our two-stage and fully sequential tests, is
required. The same can be said for other methods (factorial
design, for example) without explicit control of power.

6. Case Study
The case study discussed in this section is a simplified and
modified version of a real-world problem. Consider a semi-
conductor manufacturing system. In our simplified version,
the production process consists of two basic steps, diffu-
sion and lithography, each of which contains substeps as
indicated in Figure 8.
Raw material will be released in cassettes at the rate of

one cassette per hour, seven days per week, eight hours
per day. Product is moved and processed in single cassette
loads. The raw material will begin at the diffusion process,
and after diffusion it proceeds to the lithography process.
The diffusion and lithography then alternate until the prod-
uct completes processing. Movement within each process
is handled by robots; the handling time is negligible. The
movement of material from the end of diffusion to the start
of lithography (or vice versa) will be handled by an auto-
matic guided vehicle (AGV) or a conveyor. The release of
the raw material, the processing of material at each station,
and the transportation between diffusion and lithography
steps are all modeled as exponentially distributed random
variables. Management has provided the data on anticipated
product mix and material handling requirement in Table 4,
as well as the available machines and transporters (Table 5).
The current system was built five years ago; it con-

tains only slow machines at each station and has convey-
ors as transporters. Now management wants to improve
the performance of the system, which is measured by the
long-run average cycle time. The question is which sta-
tions/transporters are worthy of investment, and whether to
buy newer, faster machines that cost more, or additional
slower machines that are cheaper.
To solve the problem by CSB, we model the number

of fast/slow machines at each station and number of each

Figure 8. Production process of the semiconductor
manufacturing case study.

L
IT

H
O

G
R

A
PH

Y

D
IF

FU
SI

O
N

Raw material

CLEAN

LOAD
QUARTZ

OXIDIZE

UNLOAD
QUARTZ

TEST 1

COAT

STEPPER

DEVELOP

TEST 2

Out

T
R

A
N

SP
O

R
T

E
R

T
R

A
N

SP
O

R
T

E
R

Complete?
No

Yes

kind of transporter as factors. All of them are discrete. The
current number of each type of machine/transporter will
be taken as the low setting of each factor (therefore the
number of fast machines at each station and the number
of AGVs is 0); the high setting of each factor is deter-
mined by the cost of each machine/transporter, as discussed
in §2.2. The factors are indexed by their weight wi, i =
1�2� � � � �20, in ascending order to improve the efficiency of
CSB (see §3.3). The factors and levels are given in Table 6.
The simulation programming of the manufacturing sys-

tem is done in simlib, a collection of ANSI-standard
C-support functions for simulation (Law and Kelton 2000).
CRN is implemented by assigning each station a separate
stream of random numbers. CSB with the fully sequential
test is implemented in C++. For each replication, 365 days
of operation are simulated with a 300 hour warm-up period
to eliminate the influence of initial conditions. The perfor-
mance measure is the long-run average cycle time (hours)

Table 4. Production mix and passes.

Mix% Passes required for diffusion
Product types (%) and lithography process

A 15 20
B 35 15
C 30 10
D 20 12
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Table 5. Mean processing time per cassette for each step (hours) and cost of machines
($millions).

Stations Fast machine Cost per unit Slow machine Cost per unit

CLEAN 1�5 1.38 2�5 0.83
LOAD QUARTZ 0�19 0.63 0�31 0.38
OXIDIZE 3�5 3.25 5�4 1.95
UNLOAD QUARTZ 0�19 0.63 0�31 0.38
TEST 1 0�5 1.25 1�25 0.75
COAT 0�75 1.13 1�50 0.68
STEPPER 0�85 2.25 1�8 1.35
DEVELOP 0�38 0.25 0�63 0.15
TEST 2 0�5 1.25 1�25 0.75
AGV 0�028 1.05 NA NA
CONVEYOR NA NA 0�19 0.635

weighted by the percentage of different products. The quan-
tity c∗ is the price to buy one fast oxidizing machine,
which equals $3.25 million; �0 is the minimum acceptable
decrease in long-run cycle time that would justify a capi-
tal expenditure of $3.25 million, and �1 is the decrease in
long-run cycle time that we do not want to miss if it can be
achieved for $3.25 million. The screening results are given
in Table 7 with different combinations of �0 and �1.
To summarize, the bigger �0 and �1 are, the fewer fac-

tors are identified as important, and the fewer replications
are required. The factors identified as important are con-
sistent in these four cases. When �0 increases to 5 and
�1 increases to 8, the single most important factor is deter-
mined, which is the number of AGVs in the system.

7. Conclusion
CSB is a new factor-screening method for discrete-event
simulations. It combines a two-stage hypothesis-testing

Table 6. Factor description and levels (unit number).

Factor id Factor description Low level High level

1 Number of slow machines in OXIDIZE 92 93
2 Number of fast machines in STEPPER 0 1
3 Number of fast machines in COAT 0 2
4 Number of slow machines in CLEAN 42 45
5 Number of fast machines in TEST 1 0 2
6 Number of fast machines in TEST 2 0 2
7 Number of slow machines in STEPPER 30 32
8 Number of slow machines in COAT 25 29
9 Number of fast machines in CLEAN 0 2
10 Number of slow machines in TEST 1 21 25
11 Number of slow machines in TEST 2 21 25
12 Number of slow machines in LOAD QUARTZ 5 13
13 Number of slow machines in UNLOAD QUARTZ 5 13
14 Number of fast machines in LOAD QUARTZ 0 5
15 Number of fast machines in UNLOAD QUARTZ 0 5
16 Number of AGVs 0 5
17 Number of slow machines in DEVELOP 10 31
18 Number of CONVEYORS 6 9
19 Number of fast machines in OXIDIZE 0 1
20 Number of fast machines in DEVELOP 0 13

procedure with the SB method to control the power at each
bifurcation step and Type I error for each factor under
heterogeneous variance conditions. CSB is the first factor-
screening procedure to provide these guarantees. Under
some circumstances, a more efficient fully sequential test-
ing procedure is available with the same error control.
It should be noted that CSB is not universally best for

all factor-screening problems. When the number of fac-
tors is small or the fraction of important factors is high,
CSB is not as efficient as traditional screening strategies.
Also, for the tests discussed in this paper, the guarantees
of performance are only true if Model (2) holds, which
requires that the linear approximation is appropriate, the
random errors are normally distributed, and all �s are posi-
tive. Users should be aware that CSB will miss those factors
with large interactions if their main effects are not impor-
tant. Fortunately, research has demonstrated that the tests
are robust to moderate departures from normality (Nelson
and Goldsman 2001).
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Table 7. Screening results with different �0 and �1.


�0��1� Number of
(Hours) Important factors replications required


1�2� 2, 3, 5, 6, 12, 13, 15, 16, 17, 20 8�420

2�4� 3, 6, 12, 13, 16, 17, 20 1�439

2�5� 6, 12, 16 535

5�8� 16 289

Future research will concentrate on developing a more
robust procedure which allows for interactions between fac-
tors. Another topic worth considering is how to make the
procedure more adaptive to accumulated information as the
screening experiment progresses.
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