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Abstract. When input distributions to a simulation model are estimated from real-world
data, they naturally have estimation error causing input uncertainty in the simulation output.
If an optimization via simulation (OvS) method is applied that treats the input distributions
as “correct,” then there is a risk ofmaking a suboptimal decision for the realworld, whichwe
call inputmodel risk. This paper addresses a discreteOvS (DOvS) problemof selecting the real-
world optimal from among a finite number of systems when all of them share the same
input distributions estimated from common input data. Because input uncertainty cannot
be reduced without collecting additional real-world data—which may be expensive or
impossible—a DOvS procedure should reflect the limited resolution provided by the
simulation model in distinguishing the real-world optimal solution from the others. In light
of this, our input–output uncertainty comparisons (IOU-C) procedure focuses on comparisons
rather than selection: it provides simultaneous confidence intervals for the difference between
each system’s real-world mean and the best mean of the rest with any desired probability,
while accounting for both stochastic and input uncertainty. Tomake the resolution as high as
possible (intervals as short as possible) we exploit the common input data effect to reduce
uncertainty in the estimated differences. Under mild conditions we prove that the IOU-C
procedure provides the desired statistical guarantee asymptotically as the real-world sample
size and simulation effort increase, but it is designed to be effective in finite samples.

Funding: This study was supported by the National Science Foundation [Grant CMMI-1068473].
Supplemental Material: The electronic companion of this paper is available at https://doi.org/10.1287/
opre.2018.1796.
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1. Introduction
Because of the flexibility of simulation, optimization
via simulation (OvS) is a widely accepted tool to im-
prove system performance. Real-world problems typi-
cally involve stochastic processes (e.g., demand for
a new product or arrivals of patients to an emergency
room), which are often modeled by probability dis-
tributions. Stochastic simulation is driven by random
variates generated from these input models to produce
outputs that mimic real-world performance. Therefore,
when we make decisions based on the simulation out-
puts, we are subject to the risk of making suboptimal
decisions when the input models do not faithfully
represent the real-world stochastic processes; this is
known as input model risk. Most standard OvS methods
do not take into account input model risk and instead
optimize under the assumption that the input models
are accurate representations of the real-world ran-
domness. However, the best system chosen conditional
on the input models may not be the best system with
respect to real-world performance when implemented.

We refine this point below and illustrate it further using
an inventory management example with estimated
input demand distribution in Section 2. Of course, there
may also be a logical discrepancy between the simu-
lation model and the real-world system, but that is
beyond the scope of this paper.
The problem of interest is to compare k systems,

where the ith system’s performance measure is its
simulation output mean, E[Yi(Fci )], under real-world
input distribution Fci (c for correct), where Yi(·) is the
stochastic output performance that depends on the
chosen input distribution. When there are many input
processes in the system, Fci represents the joint distri-
bution of all of the input random variables. Our specific
goal is to find argmaxi E[Yi(Fci )] (or argmini E[Yi(Fci )])
with a statistical guarantee (e.g., 95%) that the selected
system is the real-world optimal. As mentioned earlier,
in most cases Fc1,F

c
2, . . . ,F

c
k are unknown, which forces

us to use estimates, F̂1, F̂2, . . . , F̂k, to run simulations
and implicitly target E[Yi(̂Fi)|̂Fi] instead of E[Y(Fci )] to
evaluate the ith system’s performance. Typically, F̂i

1
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is estimated from finite real-world observations from
Fci and therefore is subject to estimation error. Input
model risk arises as E[Yi(̂Fi)|̂Fi] depends on random F̂i,
and thus the conditional optimal, argmaxi E[Yi(̂Fi)|̂Fi],
may not be the same as argmaxi E[Yi(Fci )]. In this paper
we show that it is possible to provide a meaningful sta-
tistical guarantee with respect to the real-world optimal,
rather than the conditional optimal.

To accomplish this we first need to understand how
much uncertainty in E[Yi(̂Fi)|̂Fi] is caused by the esti-
mation error in F̂i. This is referred to as input uncertainty
and is formally defined as Var(E[Yi(̂Fi)|̂Fi]), where the
variance is taken with respect to the sampling distri-
bution of F̂i. Typically, we have only one “observation”
of F̂i estimated from the real-world data, which makes
it difficult to evaluate the variance. Another challenge
is that the functional form of E[Yi(̂Fi)|̂Fi] is generally
unknown and can only be estimated via simulations.
Several methods have been developed to quantify the
marginal impact of input uncertainty on a single sim-
ulated system; see Barton (2012), Song et al. (2014), and
Lam (2016) for surveys.

Unlike simulation stochastic error, which can be
reduced by increasing the number of simulation rep-
lications, input uncertainty can only be reduced by
collecting more real-world data. However, real-world
data collection is typically much more expensive than
simulation replications, or it may be impossible if an
implementation decision has to be made before having
another chance to collect data (e.g., logistics decisions
for a natural disaster). Our discrete OvS (DOvS) pro-
cedure is designed to provide statistical inference on the
real-world optimal solution in the presence of input model
risk that will not be further reduced by collecting more real-
world data.

Optimization under input model risk is more chal-
lenging than conditional DOvS because even with an
infinite number of simulation replications we may not
be able to distinguish the real-world best from the
others owing to the remaining input uncertainty. But
effective DOvS under input model risk requires more
than just quantifying the marginal input uncertainty in
each system’s simulation output; instead we need to com-
pare how systems are affected jointly by input uncertainty.

Recently, several DOvS procedures that incorporate
input model risk have been proposed; they can be
categorized into three groups in terms of what they
promise to deliver: the first group of procedures selects
a system that best hedges input model risk by iden-
tifying the worst-case input distributions given real-
world data for each system marginally, and then
selects the system with the best worst-case performance.
For a maximization problem this becomes selecting
argmaxi minF̂i∈8i

E[Yi(̂Fi)|̂Fi], where 8i is the uncer-
tainty set that contains the candidates for Fci inferred

from the real-world data. Such a formulation is used in
the distributionally robust optimization literature
(Scarf 1958, Delage and Ye 2010, Ben-Tal et al. 2013).
The robust selection of the best procedure of Fan et al.
(2013) and the optimal computational budget alloca-
tion scheme of Gao et al. (2017) belong in this category.
A benefit of this formulation is that we can always
select a single solution no matter how large input
uncertainty is. However, the selected system may, and
often will, perform poorly under the true real-world
input distributions. See Section 2.
The second category selects a system with the best

performance averaged over input uncertainty, that is,
argmaxi E(E[Yi (̂Fi) | F̂i]), where the outer expectation is
taken with respect to the sampling or posterior dis-
tribution of F̂i. Corlu and Biller (2015) propose a subset
selection procedure that averages both stochastic and
input uncertainties to find a subset of optimal/near-
optimal systems in which F̂i is a Bayesian posterior
distribution given real-world data. Even if the input
uncertainty, Var (E[Yi (̂Fi)|̂Fi]), is large the variance of an
estimate of E(E[Yi(̂Fi) | F̂i]) may be reduced by more
simulation replications. Hence, with a sufficiently large
simulation budget the size of the subset may be as small
as one provided that E(E[Yi(̂Fi) | F̂i]) is distinct for each i.
However, E(E[Yi(̂Fi) | F̂i]) �� E[Yi(Fci )] in general, and
therefore argmaxi E(E[Yi(̂Fi) | F̂i]) may not be argmaxi
E[Yi(Fci )]. The bias of E(E[Yi(̂Fi) | F̂i]) is larger when the
number of real-world observations is smaller, causing this
formulation to pose greater input model risk.
The last category of procedures directly attacks the

problem of finding argmaxi E[Yi(Fci )]. Corlu and Biller
(2013) present a subset selection procedure that in-
cludes the real-world best system in the subset as-
suming that maxi E[Yi(Fci )] is at least δ> 0 better than
the rest of the systems’ true means. This procedure is
distinguished from the subset selection procedure in
Corlu and Biller (2015) in that it does not average
E[Yi(̂Fi)|̂Fi] over the distribution of F̂i but rather uses δ
to control the resolution to which the procedure can
successfully separate the real-world best from the rest
with a given statistical guarantee. Under the same
indifference-zone (IZ) setting, Song et al. (2015) discuss
a ranking-and-selection approach that guarantees the
probability of correctly selecting argmaxi E[Yi(Fci )] in
the presence of input model risk. Both Corlu and Biller
(2013) and Song et al. (2015) find that δ has an unknown
nonzero lower bound, which is an increasing function
of input uncertainty reflecting the fact that the pro-
cedures may not distinguish the real-world best system
from the rest if the mean difference is too small relative
to input uncertainty. To put it differently, for δ below
an unknown threshold the probability of correctly
selecting the optimal (or including the optimal in the
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subset) has an upper bound less than 1 so that even
with infinite simulation effort we may not achieve the
desired statistical guarantee. Further, assuming an IZ
mean configuration makes both procedures conserva-
tive, because they are designed to provide the statistical
guarantee for the case in which all suboptimal systems’
means are argmaxi E[Yi(Fci )] − δ. When Fc1,F

c
2, . . . ,F

c
k

are assumed known, this only makes us spend more
simulation budget than necessary to correctly select the
optimal solution with the target probability. In the
presence of input model risk, however, the problem is
much more severe, and we may conclude that we
cannot provide the target probability guarantee at all
when in fact we could if we did not assume an IZ
configuration.

Our input–output uncertainty comparisons (IOU-C)
procedure belongs in the third category. However, we
focus on comparisons of systems, not selection, and we do
not assume any configuration for the system means, which
differentiates our approach from those of Corlu and
Biller (2013) and Song et al. (2015). By extending the
multiple comparisons with the best (MCB) framework
of Chang and Hsu (1992) to incorporate input model
risk, IOU-C provides k joint confidence intervals (CIs)
on the true mean differences between each system and
the best of the rest that account for both stochastic and
input uncertainties. With any given target probability
guarantee, the CIs that contain 0 indicate systems that
are statistically inseparable from the real-world optimal.

We restrict our attention to the case in which all
systems share the same input distributions, that is, Fci �
Fc and F̂i � F̂ for i � 1, 2, . . . , k, which is a common
setting for DOvS problems. For instance, we may
compare k scheduling rules for an emergency de-
partment given the same patient arrival process. In this
case, the estimation error of F̂ from the common real-
world data affects all k systems’ simulation outputs.
We call this the common-input-data (CID) effect. One of
the novel contributions of this paper is to model and estimate
the joint distribution of CID effects to devise an efficient
comparisons procedure that exploits it. The IOU-C pro-
cedure has the following strengths:

1. Because our focus is not on selection of a single
best system, we do not need to assume mean configu-
rations a priori to provide the desired statistical guar-
antee. Naturally, if the real-world systemmeans arewell
separated then the comparisons become easy and the
resulting subset may include only one system, which
is the real-world optimal; we do not need to settle for
a system that best hedges input model risk nor the
system with the best performance averaged over both
stochastic and input uncertainties.

2. MCB provides parsimonious comparisons: it is
more efficient than all pairwise comparisons of k sys-
tems, and k − 1 comparisons with a control is not
sufficient because we do not know the identity of the

real-world optimal system. Moreover, the MCB CIs
provide a confidence bound on how far each system’s
performance could be from the best of the rest. This is
useful when there is a secondary criterion to consider; if
the best system’s main performance measure is mar-
ginally better than the rest, but the secondary perfor-
mance measure is much worse than the next best, then
we may choose the next best. This applies to MCB in
general, not only to IOU-C.

3. Narrow MCB CI widths make the size of the
subset of systems that are indistinguishable from
the best small. When there is no input uncertainty, the
MCB CI widths can be reduced by simply increasing
the simulation effort. However, input uncertainty makes
the CI widths nonzero even with infinite simulation
effort. Our biggest contribution in this paper is to make
the comparisons as sharp as possible given the limited
real-world input data, and thereby to provide a small
subset even in the presence of input uncertainty, by
exploiting theCID effects and common randomnumbers.

4. A large subset size may indicate either (1) the
systems’ performancemeasures are not too different, so
any system in the subset could be selected (narrow
MCB CIs), or (2) input model risk is overwhelming, so
that it is difficult to separate the optimal system from
the rest (wide MCB CIs). In the former case we can
apply a procedure that selects a defensive best with
respect to input model risk among the remaining sys-
tems in the subset, which should be much less conser-
vative than choosing a defensive best from all k systems.
In the latter case, it may be appropriate to postpone the
decision until additional real-world data are available
(if possible) or approach the problem differently because
the defensive choice is likely to be very conservative.
The remainder of the paper is organized as follows.

In Section 2, we present a simple DOvS example to
illustrate the difficulties that arise when there is input
model risk and highlight the key factors for designing
sharp comparisons. In Section 3, we introduce the
general framework for IOU-C procedures. In Section 4,
we show how to account for the joint effect of input
model risk on all k systems’ outputs. We revisit the
IOU-C procedure in Section 5 to provide computa-
tion details for each step. In Section 6, we show under
mild conditions that the IOU-C procedure provides
the desired probability guarantee asymptotically as
the real-world sample size and simulation effort
increase. Performance of the procedure is tested in
Section 7.

2. Illustration
We use a modified version of the (s,S) inventory pro-
blem fromKoenig and Law (1985) to provide insights on
DOvS under input model risk. Suppose we have k � 4
candidate (s,S) inventory policies, (s,S)� (20,50),(20,55),
(20,60), and (20,65), where each solution is evaluated
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according to the expected cost of operation over a 30-day
period. Unknown to us, the true daily demand is in-
dependent and identically distributed (i.i.d.) Poisson
with mean λc � 26. Figure 1 shows the expected costs of
all four policies. Under λc, (20,55) is the optimal policy
that minimizes the real-world expected cost. Because in
reality λc is unknown, suppose we estimate it from real-
world observations of the demand. Figure 1 illustrates
how the expected costs of the four policies are affected by
the CID effects with four particular cases of estimated
mean demand λ̂� 24,25,27, and 28. When λ̂� 25 or 27,
the true optimal solution, (20,55), still minimizes the cost.
However, (20,50) is optimal under λ̂� 24, whereas
(20,60) is optimal under λ̂� 28. Note that (20,60) is
the defensive best solution given8� {24,25,26,27,28}.
Meanwhile, notice that (20,65) does not minimize the
expected cost at any value of λ̂, whichmeans that (20,65)
is ruled out as the true optimal solution even if λc is
unknown.

In a realistic DOvS problem we do not obtain mul-
tiple values of λ̂; we have only one value of λ̂ estimated
from the real-world data. If all solutions are affected ex-
actly the sameway by input uncertainty, then the cost plot
for any λ̂ would be parallel to that for λc, and for any
value of λ̂ the solution (20, 55) would minimize the ex-
pected cost. However, as depicted in Figure 1, the solu-
tions can be affected differently when λ̂ varies, especially
when λ̂ is far from λc, which makes the true optimal
solution no longer minimize the expected cost given λ̂.

The insights obtained from this illustration are three-
fold. First, if we use a procedure that assumes all input
models are correct, then we may select a suboptimal
solution as the best and falsely provide a much higher
statistical guarantee than what is actually attained. In
a realistic DOvS setting, each system’s performance
measure is estimated via simulation replications, which
introduces stochastic error. This example shows that
even if we spend infinite simulation effort to eliminate
stochastic errors, input uncertainty may cause us to
select a suboptimal solution as the best if we select
a system conditional on the estimated λ̂.

Second, even in the presence of input uncertainty, we
may be able to provide the same level of statistical
guarantee as the DOvS procedure without input un-
certainty (perhaps with increased simulation effort) if
the CID effects are similar across systems. Therefore, it
is important to estimate the joint distribution of the CID
effects to make sharp comparisons.
Finally, some solutions are so inferior that we can

rule them out even in the presence of input model risk.
This corroborates the use of a CI procedure to identify
a subset of near-optimal solutions even if we are in-
terested in selecting a defensive system with respect to
input model risk.
Our IOU-C procedure provides a set of solutions that

are statistically inseparable from the real-world optimal
solutionwhereby the size of the set depends on theMCB
CIwidths. Hence, if the systems are affected similarly by
input uncertainty, the procedure should take advantage
of it to provide CIs as narrow as possible. In the next
section we introduce the basic framework of IOU-C,
followed by a model to capture the joint effects of input
uncertainty on systems’ outputs in Section 4.

3. Framework for IOU Comparisons
In this section, we provide a high-level framework for
IOU-C procedures by extending MCB to account for
input model risk. Without loss of generality, we con-
centrate on a maximization problem in the remainder of
the paper.
Asmentioned in Section 1, when the simulation is run

using estimated distribution F̂, the conditional mean of
the output, E[Yi(̂F)|̂F], is a functional of F̂. To simplify
the notation, we define ηi(̂F) � E[Yi(̂F)|̂F], so ηi(Fc) �
E[Yi(Fc)|Fc]. Thus, Yi (̂F) can be represented as

Yi(̂F) �E[Yi (̂F)|̂F]+εi(̂F) � ηi(Fc)+bi(̂F,Fc)+εi(̂F), (1)

where bi(̂F,Fc) ≡ ηi(̂F) − ηi(Fc) and εi(̂F) has mean 0 and
finite variance σ2

i (̂F). We do not require normality of
the simulation output. Notice that bi(̂F,Fc) captures the
CID effect on system i. If we knew that bi(̂F,Fc) �
b(̂F,Fc),∀i, then we could simply ignore input model
risk because all systems are affected exactly the same.
Much as common random numbers (CRNs) make

stochastic errors ε1(̂F), ε2(̂F), . . . , εk (̂F) correlated, the
CID effects cause η1(̂F), η2 (̂F), . . . , ηk (̂F) to be correlated.
However, CRNs and CID are different in nature. CRNs
are used across different systems as a variance re-
duction technique; we typically assume Corr(εi(̂F),
ε� (̂F)) ≡ ρi,� (̂F)>0, which sharpens the comparison of
systems i and � by reducing the variance of the dif-
ference in simulation outputs,Yi(̂F) − Y� (̂F). Hence, if in
fact CRN causes ρi,� (̂F)< 0, then we can choose not to
use CRN and run independent simulations. However,
the CID effect is a property of the problem itself; we

Figure 1. Mean Cost of Inventory Policies for λc � 26 and
λ̂ � 24, 25, 27, and 28
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compare different system designs/policies under the
same real-world stochastic processes. Therefore, even if
the CID effect causes negative correlation between
bi(̂F,Fc) and b� (̂F,Fc), we cannot eliminate such corre-
lation. Our challenge is in accounting for the CID effect
and exploiting it when it is favorable.

The following theorem by Chang and Hsu (1992) lets
us obtain MCB CIs when Fc is known.

Theorem 1 (Chang and Hsu 1992). Let η̂i(Fc) be an un-
biased estimator of ηi(Fc) for i � 1, 2, . . . , k, x+ � max(0, x),
and x− � max(0,−x). If for each i individually

Pr η̂i(Fc) − η̂�(Fc) − (ηi(Fc) − η�(Fc)) ≥ −wi�, for all � �� i
{ }
≥ 1 − α, (2)

then we can make the joint probability statement

Pr ηi(Fc) −max
� ��i

η�(Fc) ∈ [D−
i ,D

+
i ], for all i

{ }
≥ 1 − α,

where D+
i � min� ��i[̂ηi(Fc)− η̂�(Fc)+wi�]( )+

, (�{i :D+
i >0},

and

D−
i � 0, if ( � {i}

− min�∈(,� ��i[̂ηi(Fc) − η̂�(Fc) − w�i]( )−
, otherwise.

{

Theorem 1 states thatMCBCIs can be constructed from
multiple comparisons with a fixed control system—
that is, Equation (2)—by treating each system i as a con-
trol. Note thatD+

i is positive only if for all � �� i the upper
CI bound of ηi(Fc) − η�(Fc) from (2) is positive. We can
conclude that the systems with D+

i � 0 are inferior to the
best with probability ≥ 1 − α. If there is only one system
withD+

i > 0, then we can conclude that system is the best
with probability ≥ 1 − α. Otherwise, all systems i with
D+

i > 0 form a subset of the possible best, and the value of
D+

i is how much better than the best each one might be.
When Fc is known, η̂i(Fc) is simply Ȳi(Fc), where the

bar indicates a sample average from n replications.
Then the interval widths, wi�, depend only on the joint
distribution of {ε̄i(Fc)}ki�1. Hence, as n increases, wi�

decreases. In the presence of estimated input distri-
butions, wi� should depend on both stochastic and
input uncertainty; the interval widths are larger, and
the increase depends on how differently system i and �
are affected by input uncertainty. Clearly, more sys-
tems are likely to have D+

i > 0 when the wi� are larger,
making it more difficult to determine the inferior
systems. Therefore, we desire to make wi� as small as
possible given input uncertainty while still preserving
the statistical guarantee. Estimating the distribution of
CID effects helps greatly in this regard as opposed to
using a conservative probability inequality such as the
Bonferroni inequality. Even when the interval widths
are large, if ηi(Fc) is much smaller than some η�(Fc),
then we may still have D+

i � 0. Thus, the difficulty of

the comparisons depends on the true system means,
ηi(Fc), i � 1, 2, . . . , k, as well as input uncertainty. This
echoes the inventory example in Section 1: when input
uncertainty is small (i.e., λ̂ is closer to λc), the real-world
best solution is still optimal at λ̂ �� λc; on the other hand,
if a solution like (20, 65) is inferior by enough, it remains
suboptimal for any value of λ̂.
From (1), Ȳi(̂F) − Ȳ� (̂F) − (ηi(Fc) − η�(Fc)) � bi(̂F,Fc) −

b� (̂F,Fc) + ε̄i(̂F) − ε̄� (̂F). Therefore, if Ȳi (̂F) is used as
η̂i(Fc), then the left-hand side of (2) can be rewritten as

Pr Ȳi(̂F) − Ȳ� (̂F) − (ηi(Fc) − η�(Fc)) ≥ −wi�,∀� �� i
{ }

� Pr bi(̂F, Fc) − b� (̂F, Fc) + ε̄i(̂F) − ε̄� (̂F) ≥ −wi�,∀� �� i
{ }

.

If wi� � w(1)
i� + w(2)

i� for some w(1)
i� ,w

(2)
i� >0, then

Pr bi(̂F,Fc)−b� (̂F,Fc)+ ε̄i(̂F)− ε̄� (̂F)≥
{
−(w(1)

i� +w(2)
i� ),∀� �� i

}
≥Pr bi(̂F,Fc)−b� (̂F,Fc)≥−w(1)

i� ,
{

ε̄i(̂F)− ε̄� (̂F)≥−w(2)
i� ,∀� �� i

}
�E Pr bi(̂F,Fc)−b� (̂F,Fc)≥−w(1)

i� ,
{[

ε̄i(̂F)− ε̄� (̂F)≥−w(2)
i� ,∀� �� i

∣∣∣ F̂}]
�E 1 bi(̂F,Fc)−b� (̂F,Fc)≥−w(1)

i� ,∀� �� i
{ }[

Pr ε̄i(̂F)− ε̄� (̂F)≥−w(2)
i� ,∀� �� i

{ ∣∣∣ F̂}], (3)

where 1{·} is the indicator function. Note that (3) holds
because conditional on F̂, bi(̂F,Fc) − b� (̂F,Fc) is constant.
Given the conditional distribution of ε̄i(̂F) − ε̄� (̂F), sup-
pose for any F̂ and 0<α2 < 1/2 we can find w(2)

i� ,∀� �� i,
such that

Pr ε̄i(̂F) − ε̄� (̂F) ≥ −w(2)
i� ,∀� �� i

{ ∣∣∣̂F} � 1 − α2. (4)

Then term (3) becomes Pr bi(̂F,Fc) − b� (̂F, Fc) ≥ −w(1)
i� ,

{
∀� �� i

}
· (1 − α2). Therefore, by finding w(1)

i� , i �� �, that
satisfy Pr{bi(̂F, Fc) − b� (̂F,Fc) ≥ −w(1)

i� ,∀� �� i} � 1 − α1

for 0 <α1 < 1/2, we have Pr{Ȳi(̂F) − Ȳ� (̂F) − (ηi(Fc) −
η�(Fc)) ≥−(w(1)

i� +w(2)
i� ),∀� �� i} ≥ (1−α1)(1−α2). Hence,

the overall statistical guarantee of the IOU-C proce-
dure is (1−α1)(1−α2) fromTheorem 1. The following is
a general framework for IOU-C procedures.

IOU-C Procedure
1. Select 0 <α1, α2 < 1/2 such that 1 − α � (1 − α1)(1 −

α2) for given 0<α<1/2.
2. Collect real-world observations from Fc and com-

pute its estimator F̂.
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3. For each system i, use F̂ as an input model and run
n replications,Yi1(̂F),Yi2 (̂F), . . . ,Yin(̂F). Compute Ȳi (̂F) �
Σn
j�1Yij(̂F)/n.
4. (Interval widths due to CID effects) For each

system i, find w(1)
i� >0,∀� �� i that satisfy Pr{bi(̂F,Fc) −

b� (̂F,Fc) ≥ −w(1)
i� ,∀� �� i} � 1 − α1.

5. (Interval widths due to stochastic error) For each
system i, findw(2)

i� >0,∀� �� i that satisfy Pr{ε̄i(̂F)−ε̄� (̂F)≥
−w(2)

i� ,∀� ��i|̂F}�1−α2.
6. For each system i, set wi� � w(1)

i� + w(2)
i� ,∀� �� i. Use

Theorem1 toderive 1 − α simultaneous comparisonsCIs.

Accounting for stochastic error in an MCB procedure
has been well studied (Hsu 1996). Estimating the dis-
tribution of bi(̂F,Fc) marginally has been addressed in
the input uncertainty quantification literature. However,
to find intervalwidthsw(1)

i� , i �� �,we need to estimate the
joint distribution of bi (̂F, Fc), i � 1, 2, . . . , k focusing on
how differently the systems are affected by F̂; this is new.

In the following section, we introduce a model to
represent ηi(̂F) that enables us to estimate the unknown
distributions of the stochastic errors and the CID ef-
fects. In Section 5, we use it to obtain interval widths
that fully account for the estimation errors.

4. Model of CID Effects
From this section on, we focus on the case in which Fc

has a known parametric distribution family, F, with an
unknown parameter vector, θc. Nonparametric Fc or
unknown parametric distribution family is relevant
future work. Thus, F̂ � F(·|θ̂) with estimated parameter θ̂
based on real-world observations. Similarly,Yi(̂F) � Yi(θ̂),
bi(̂F,Fc) � bi(θ̂,θc), and εi(̂F) � εi(θ̂). Note that F may
be a collection of distributions of all input processes.
For instance, q independent real-world input pro-
cesses can be represented by a set of parametric dis-
tributions F � {^1,^2, . . . ,^q}with parameter vector
θ � {ϑ1,ϑ2, . . . ,ϑq}. If we use p to denote the dimension
of θc, then p ≥ q. Suppose we collectm1,m2, . . . ,mq real-
world observations from each of q input processes and
compute the maximum likelihood estimator (MLE) θ̂ �
{ϑ̂1, ϑ̂2, . . . , ϑ̂q} of F. We use m � (m1 +m2 + · · · +mq)/q
to represent the average number of observations from
the q input processes.

Further suppose ηi is a smooth function of θ̂ that is
continuously differentiable at θc. Then, using the first-
order Taylor series approximation

ηi(θ̂) ≈ ηi(θc) + β	i (θ̂ − θc), (5)

where βi ≡ ∇ηi(θc). If we assume (5) to be exact, then
bi(θ̂,θc) � β	i (θ̂ − θc), and βi represents how much
ηi(θ̂) is affected by each element of θ̂. This model is
also used in Cheng and Holland (1997, 1998) and Lin
et al. (2015) to quantify marginal input uncertainty

in simulation output. Under (5), the distribution of
bi(θ̂,θc) is characterized by the sampling distribution of
θ̂ − θc and βi. Typically, knowing the exact sampling
distribution of θ̂ − θc is difficult, but under some
regularity conditions we can approximate it with the
asymptotic distribution of θ̂ (Amemiya 1985):

���
m

√ (θ̂ − θc) −→D N(0,Σ(θc)) as m → ∞, (6)

where Σ(θc) is the asymptotic variance–covariance
matrix of θ̂. When Fc is a set of q>1 input distributions,
we can define the asymptotic distribution in (6) by
assuming the ratios of the numbers of observations,
m1/m,m2/m, . . . ,mq/m, converge to positive constants
as m → ∞ (Cheng and Holland 1997). In this case,
Σ becomes a function of the limiting ratios as well
as θc.
Given {β1, β2, . . . , βk}, we can approximate the joint

distribution of {β	i (θ̂ − θc)}ki�1 by the following multi-
variate normal distribution:

N 0,
1
m

β	1 Σ(θc)β1 β	1 Σ(θc)β2 · · · β	1 Σ(θc)βk
β	2 Σ(θc)β1 β	2 Σ(θc)β2 · · · β	2 Σ(θc)βk

..

. ..
. . .

. ..
.

β	k Σ(θc)β1 β	k Σ(θc)β2 · · · β	k Σ(θc)βk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(7)

This joint distribution is key because it includes the CID
effects across all k systems. Under Model (5), bi(θ̂,θc) −
b�(θ̂,θc) � (βi − β�)	(θ̂ − θc), which captures how dif-
ferently two systems i and � are affected by the common
inputmodelF(·|θ̂). The joint distribution of (βi − β�)	(θ̂ −
θc),∀� �� i can be derived from (7). For instance, if i � 1,
the joint distribution of (β1 − β2)	(θ̂ − θc), (β1 − β3)	

{
·(θ̂ − θc), . . . , (β1 − βk)	 (θ̂ − θc)

}
is shown in Figure 2.

Clearly, Model (5) is an approximation because it drops
terms nonlinear in (θ̂ − θc) and therefore does not fully
capture the thefinite-sample bias in Ȳi(θ̂) in general. Ifwe
assume that ηi(θ̂) is twice differentiable in θc, then the
remainder not captured by Model (5) is Op(||θ̂ − θc||2) �
Op(m−1), which converges faster than input uncertainty
as m increases and therefore does not affect our as-
ymptotic argument for the IOU-C procedure in Section 6.
We also need the joint distribution of the stochastic

errors across all k systems to form the CIs. To make the
overall interval widths as narrow as possible, we adopt
CRNand run the same number of replications, n, for all k
systems using F(·|θ̂). Because IOU-C is based on MCB
and MCB CIs are constructed from Equation (2), the
variance–covariancematrix of {εi(θ̂) − ε�(θ̂)}k��1,� ��i, which
we denote by Vi(θ̂), is of interest.
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For the traditional MCB problem without input un-
certainty, Nelson (1993) shows that we can obtain the
exact coverage probability for MCB CIs under a nor-
mality assumptionwhen the variance–covariancematrix
of the stochastic errors has the following property, known
as sphericity:

V(θ̂)

�

2ψ1(θ̂)+τ2(θ̂) ψ1(θ̂)+ψ2(θ̂) · · · ψ1(θ̂)+ψk(θ̂)
ψ1(θ̂)+ψ2(θ̂) 2ψ2(θ̂)+τ2(θ̂) · · · ψ2(θ̂)+ψk(θ̂)

..

. ..
. . .

. ..
.

ψ1(θ̂)+ψk(θ̂) ψ2(θ̂)+ψk(θ̂) · · · 2ψk(θ̂)+τ2(θ̂)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(9)
where τ2(θ̂)>

����������������
k
∑k

i�1 ψi(θ̂)
√

−∑k
i�1 ψi(θ̂) to ensure that

V(θ̂) is positive definite. Sphericity causes the structure
of Vi(θ̂) to simplify so that all k − 1 variance terms
become 2τ2(θ̂) and all pairwise covariances are τ2(θ̂),
which reduces estimating the full V(θ̂) to estimating
τ2(θ̂). Nelson (1993) shows mathematically and em-
pirically that the MCB procedure assuming sphericity
provides robust coverage even when the true variance–
covariance matrix of the simulation outputs departs
significantly from the sphericity assumption. More-
over, Nelson and Matejcik (1995) propose an MCB
procedure that provides exact finite-sample coverage
when sphericity and normality are assumed.

The IOU-C procedure introduced in the following
sections allows V(θ̂) to have a general structure. The
procedure can be simplified under the sphericity as-
sumption.We comment on these changeswhen relevant.

5. Computing Confidence Interval Widths
In this section, we provide the details of steps 4 and 5
of the IOU-C procedure in Section 3. We start by esti-
mating the joint distributions of the CID effects and
stochastic errors using Model (5) in Section 4 and com-
putew(1)

i� andw(2)
i� from them. In Section 6, we show these

CI widths provide the desired statistical guarantee as-
ymptotically as m and n increase under mild conditions.

5.1. Interval Widths Due to CID Effects
As derived in Section 3, w(1)

i� is determined by the
distribution of the difference between CID effects
of two systems, bi(θ̂,θc) − b�(θ̂,θc). Under Model (5),

bi(θ̂,θc) − b�(θ̂,θc) � (βi − β�)	(θ̂ − θc), and therefore
w(1)

i� is the α1-quantile of (βi − β�)	(θ̂ − θc). However, it
turns out to be difficult to find a pivotal quantity that
provides the distribution of (βi − β�)	(θ̂ − θc). On the
other hand, there are several methods to estimate
gradients β1, β2, . . . , βk (Fu 2015), and the distribution
of θ̂ − θc can be approximated by its asymptotic dis-
tribution (6). We propose two variations of IOU-C
procedures in the following.
One way to approximate the joint distribution of

the CID effects is to plug estimates, β̂1, β̂2, . . . , β̂k, into (7)
and compute w(1)

i� by finding multivariate normal quan-
tiles. We call this the plug-in IOU-C procedure and show
that it provides the desired statistical guarantee as-
ymptotically in Section 6 given our choice of gradient
estimator.
The plug-in procedure ignores the estimation errors

of β̂1, β̂2, . . . , β̂k. Although this does not affect the as-
ymptotic guarantee, it may result in lower coverage
probability than desired for small m and n. Alterna-
tively, we propose the all-in IOU-C procedure that
solves k

2( ) optimization problems to obtain interval
widths that incorporate the estimation errors of the
gradients.
Let @	

i � {(βi − β1)	, (βi − β2)	, . . . , (βi − βi−1)	, (βi−
βi+1)	, . . . , (βi − βk)	}. We denote the following opti-
mization problem as 3i�:

min (βi − β�)	(θ̂ − θc) (10)

subject to @i ∈ CR1,α11 , (11)

(θ̂ − θc) ∈ CR2,α12 , (12)

where CR1,α11⊂R(k−1)p contains @i with probability
1 − α11, and CR2,α12 ⊂ Rp includes θ̂ − θc with proba-
bility 1 − α12. Note that θ̂ in (10) and (12) is a random
variable rather than the particular realization of θ̂ es-
timated from the m real-world observations. Thus, we
treat θ̂ − θc as a p-dimensional vector of decision
variables for 3i�. In words, 3i� finds the smallest
inner product, (βi − β�)	(θ̂ − θc), given separate confi-
dence regions for βi − β� and θ̂ − θc. Clearly, Pr{@i ∈
CR1,α11 , (θ̂ − θc) ∈ CR2,α12} ≥ 1 − α11 − α12. Suppose we
choose α11, α12 > 0 such that α1 � α11 + α12. Then, by

Figure 2. The Approximate Joint Distribution of
{(β1 − β2)	(θ̂ − θc), (β1 − β3)	(θ̂ − θc), . . . , (β1 − βk)	(θ̂ − θc)}
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equating the optimal solution of 3i� with −w(1)
i� for all

� �� i for each i we achieve

Pr{(βi − β�)	(θ̂ − θc) ≥ −w(1)
i� ,∀� �� i} ≥ 1 − α1. (13)

Note that the joint confidence region for @i in (11) is
shared by all 3i� for all � �� i, which is essential to
provide the joint probability guarantee in (13). If for
each 3i� we use a confidence region just for βi − β�
instead of (11), then we cannot guarantee (13).

In the development in Sections 5.1.1–5.1.2, we pro-
vide asymptotically valid CR1,α11 and CR2,α12 and use
a tool for incorporating the effect of CRN to reformulate
3i� as

min (βi − β�)	(θ̂ − θc)
subject to (@i − @̂i)	9−1

i (@i − @̂i) ≤ χ2
(k−1)p,α11

,
(14)

m(θ̂ − θc)	Σ−1(θ̂)(θ̂ − θc) ≤ χ2
p,α12

, (15)

where 9i is a consistent estimator of the variance–
covariancematrix of @̂i. Here, χ2

ν,β is the (1 − β)-quantile
of the χ2 distribution with ν degrees of freedom.

Although 3i� is a nonconvex optimization problem
and difficult to solve to optimality in general, it has a
bilinear objective function with separable convex con-
straints for @i and θ̂ − θc. Once θ̂ − θc is fixed, the re-
sulting problem has a quadratic constraint with a linear
objective function, which can be solved to optimality
easily; givenθc − θ̂, the optimal valueof@i obtained from
the Karush-Kuhn-Tucker conditions for the modified
problem is @̂i−9iν�

�����������������������
χ2
(k−1)p,α11

/ν	� 9iν�
√

, where ν� � e�⊗
(θ̂−θc) for (k−1) × 1 �th unit directional vector e� and
A⊗B represents the Kronecker product of matrices A
and B. Thus, the corresponding optimal objective
function value is

(̂βi − β̂�)	(θ̂ − θc) −
����������������������
χ2
(k−1)p,α11

ν	� 9iν�

√
� (̂βi − β̂�)	(θ̂ − θc)
−

��������������������������������������������
χ2
(k−1)p,α11

(θ̂ − θc)	9i(�, �)(θ̂ − θc)
√

, (16)

where the equality is obtained by plugging in ν� � e� ⊗
(θ̂ − θc) and given 9i(�, �), the p × p block diagonal
matrix of 9i corresponding to β̂i − β̂�.

In the following section we propose a gradient es-
timation method that we use for both plug-in and all-in
IOU-C procedures as well as the confidence regions for
3i� derived from the gradient estimators. Readers may
skip Sections 5.1.1–5.1.2 without loss of continuity.

5.1.1. Gradient Estimation and Confidence Regions

of 3i�. From (6), we have CR2,α12 � θ̂ − θc : m(θ̂−
{

θc)	Σ−1(θ̂)(θ̂ − θc) ≤ χ2
p,α12

}, which provides 1− α12

asymptotic coverage probability as m increases un-
der mild conditions (Amemiya 1985). Notice that Σ(θc)
in (6) is replaced with its plug-in estimator, Σ(θ̂).

Defining CR1,α11 that provides the correct asymptotic
probability coverage requiresmore effort.WefitModel (5)
by linear regressions to obtain β̂1, β̂2, . . . , β̂k as well as
CR1,α11 . Suppose we sample the regression design

points, θ̂
(1)
, θ̂

(2)
, . . . , θ̂

(B)
, from N(θ̂,Σ(θ̂)/m), which is

the estimated asymptotic distribution of θ̂ in (6) where

θc is replaced by θ̂. For each θ̂
(b)
, we run one replication

from each system to obtain Y1(θ̂(b)),Y2(θ̂(b)), . . . ,Yk(θ̂(b))
using CRN. For each system i, we fit a linear regression

model with response vector Yi � Yi(θ̂(1)),
(

Yi(θ̂(2)), . . . ,
Yi(θ̂(B)))	 and design matrix X� [1B :C], where 1B is
a B-dimensional column vector of 1’s and C is the B×p

matrix whose rows are (θ̂(1) − θ̂)	,(θ̂(2) − θ̂)	, . . . , (θ̂(B)−
θ̂)	. From the least squares method, the estimator of βi
is β̂i � (C	(IB−1B1	B )C)−1C	Yi, where IB is the B×B
identitymatrix. Note that (C	(IB−1B1	B )C)−1 is the lower

p×p submatrix of (X	X)−1, which we denote by Spp.

For finite m and B, β̂i is a biased estimator of βi ≡
∇ηi(θc) because the design points of the regressions are
centered at θ̂ instead of θc. The following proposition
states the asymptotic normality and consistency results
of our gradient estimator when m and B increase at the
right rate under Assumption 1 in Section 6; this result is
of independent interest.

Proposition 1. As m → ∞, for all i (1)
������
B/m

√ (@̂i −@i)|θ̂
converges weakly uniformly to N 0,Vi(θc) ⊗ Σ−1(θc)( )

in
probability, if B � mγ for 0 <γ<2, and (2) β̂i −→

p
βi, if B �

mγ for γ>1.

The proof of Proposition 1 can be found in Section
EC.5 of the electronic companion of this paper. In general,
a sequence of distributions {Fm(·)} is said to converge
weakly uniformly to Fc(·) if supx |Fm(x) − Fc(x)| → 0.
Suppose we replace Fm(·) with conditional distribution
F(·|θ̂). If supx |F(x|θ̂) − Fc(x)| −→p 0, then F(·|θ̂) is said
to converge weakly uniformly to Fc(·) in probability.
Proposition 1 applies this convergence scheme for
@̂i whose distribution is conditional on θ̂ guaranteeing
that for any θ̂ estimated from the real-world sample of size
m, the confidence region for βi provides the same coverage.
Notice that different rates are required for B to obtain

asymptotic normality of
������
B/m

√ (@̂i −@i) and consis-
tency of β̂i, respectively. Design points for the regres-
sion sampled from N(θ̂,Σ(θ̂)/m) become more and
more concentrated near θ̂ as m increases. Therefore, if
we increase B too slowly, then X	X becomes singular
and we cannot achieve consistency of β̂i. On the other
hand, asymptotic normality of

������
B/m

√ (@̂i −@i) holds for
smaller B than consistency because of the scaling fac-
tor,

������
B/m

√
. At the same time, if we increase B too fast

relative tom, then the bias in β̂i due to the nonlinearity of
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ηi(θ̂) does not fade away fast enough as m increases;
therefore

������
B/m

√ (̂βi − βi) no longer has a finite mean.
Although consistency of β̂i is of independent interest, the
normality result in Proposition 1 is what provides the
asymptotic probability guarantee for the plug-in and all-
in IOU-C procedures. See Section 6 for further discussion.

The proposed gradient estimator is not a typical
choice of stochastic gradient estimator; however,
it is particularly advantageous for IOU-C because it
is easy to form confidence region CR1,α11 for @i.
Lemma 2 in Section EC.5 shows Spp is a consistent
estimator of Σ−1(θc) under Assumption 1. Let eib�
Yi(θ̂(b)) − β̂	i (θ̂

(b) −θ̂) for i�1,2,. . .,k and b�1,2,. . .,B
and e−i,b�(e1b,e2b,...,e(i−1)b,e(i+1)b,...,ekb)	− eib1k−1, where
1k−1 is (k−1)×1 vector of ones. From these we
can compute V̂i, the sample variance–covariance
matrix of e−i,1,e−i,2,..., e−i,B. Lemma 5 in Section EC.5

shows that V̂i is a consistent estimator of Vi(θc) under
Assumption 1. Thus, CR1,α11�{@i :(@i−@̂i)	 9−1

i (@i−
@̂i)≤χ2

(k−1)p,α11
} is an asymptotic 1−α11 confidence region

for @i, where 9i≡V̂i⊗Spp. Therefore, 9i(�,�) in (16) is
V̂i(�,�)Spp, where V̂i(�,�) is the �th diagonal element of V̂i.

If we assume sphericity for V(θ̂), then

9i � 2τ̂2

1 1/2 · · · 1/2

1/2 1 · · · 1/2

..

. ..
. . .

. ..
.

1/2 1/2 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ Spp, (17)

where τ̂2 �∑k
i�1

∑B
b�1(eib− ēi· − ē·b+ ¯̄e)2/(k−1)(B−p−2)

given ēi· �B−1∑B
b�1 ei(θ̂

(b)) for i� 1,2, . . . ,k, ē·b �
k−1∑k

i�1 ei(θ̂
(b)) for b� 1,2, . . . ,B, and ¯̄e� k−1∑k

i�1 ēi·.
Therefore, 9i does not depend on i and 9i(�,�) � 2τ̂2Spp

for any � �� i, which further simplifies (16).
Note that using the same design points, θ̂

(1)
, θ̂

(2)
, . . . ,

θ̂
(B)
, or applying CRN for the linear regressions is not

necessary; the framework of IOU-C procedure allows
fitting k regressions completely independently to
obtain the joint confidence region for @i. However,
doing so makes wi�, i �� �, wider, causing the pro-
cedure to be less efficient.

Remark 5.1. In fact, the joint asymptotic coverage prob-
ability of CR1,α11 and CR2,α12 is greater than 1 − α11 − α12.
In Lemma 6 in Section EC.5, we show that the two events
{@i ∈ CR1,α11} and {θ̂ − θc ∈ CR2,α12} are asymptotically
independent, therefore, their joint asymptotic coverage
probability is actually (1 − α11)(1 − α12).
Remark 5.2. The sample size B required for consistency
of our gradient estimator β̂i is smaller than that of the
simultaneous perturbation stochastic approximation
gradient estimator (SPSA, Spall 1992). The SPSA gra-
dient estimator converges to the true gradient in

Op(B−1/3) when θc is known by choosing the optimal
perturbation constant. Because θc is unknown for our
problem, we estimate βi using an estimator of ∇ηi(θ̂)
whose bias cannot be improved from O(m−1). By
selecting the perturbation constant to match the bias,
the variance of the SPSA estimator becomesO(m/B). As
a result, B � O(m3) to balance the variance and bias,
which is larger than our choice for B.

5.1.2. Reformulation of 3i�. Using our choices for the
confidence regions, constraints (11) and (12) of 3i� are
replaced by (14) and (15). Because CR2,α12 is a sym-
metric hyper-ellipsoid with respect to the origin,

−inf
@i∈CR1,α11 ,(θ̂−θc)∈CR2,α12

(βi−β�)	(θ̂−θc)

� sup
@i∈CR1,α11 ,(θ̂−θc)∈CR2,α12

(βi−β�)	(θ̂−θc).

In other words, [−w(1)
i� ,w

(1)
i� ] provides a symmetric two-

sided (1 − α11)(1 − α12) CI for (βi − β�)	(θ̂ − θc). Be-
cause we only need one-sided CIs for our procedure,
we can set Pr

{(̂βi− β̂�)	(θ̂−θc) ≥−w(1)
i� ,∀� �� i

}� 1−
(α11+α12−α11α12)/2, that is, α1 � (α11+α12−α11α12)/2,
which makes w(1)

i� smaller.
The following proposition lets us focus on the

boundary points of the feasible region of 3i� to obtain
its optimal solution.

Proposition 2. For all i �� �, the optimal objective function
value of

min (βi − β�)	(θ̂ − θc)
subject to (@i − @̂i)	9−1

i (@i − @̂i) � χ2
(k−1)p,α11

,

m(θ̂ − θc)	Σ−1(θ̂)(θ̂ − θc) � χ2
p,α12

,

is the same as the optimal objective function value of 3i�.

The proof of Proposition 2 can be found in Section
EC.1, which relies on showing that an optimal solution of
3i� is found at the boundary of two hyperellipsoidal
constraints on @i and θ̂ − θc. From Proposition 2 we
devise a random search algorithm for3i� in Section EC.2.

5.2. Interval Widths Due to Stochastic Error
In Section 3, we showed that the interval widths due to
input uncertainty and the interval widths due to sto-
chastic error can be obtained separately if we find
w(2)

i� ,∀� �� i that satisfy (4) for any given F̂ � F(·|θ̂).
Because we focus on the asymptotic coverage of the
IOU-C intervals as n,m → ∞, the joint distribution of
{ε̄i(θ̂) − ε̄i(θ̂)}k��1,� ��i converges to N(0,Vi(θc)) under
Assumption 1. Similar to V̂i in Section 5.1,we can compute
the estimator, V̂i(θ̂), of Vi(θc) by computing the sample

variance–covariance matrix of Y−i,j � Yij(θ̂) −Y1j(θ̂),
(

Yij(θ̂) −Y2j(θ̂), · · · ,Yij(θ̂) −Yi−1,j(θ̂),Yij(θ̂) −Yi+1,j(θ̂), · · · ,
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Yij(θ̂) −Ykj(θ̂)
)	

for j� 1,2, . . . ,k. Given V̂i(θ̂), (w(2)
i1 ,

w(2)
i2 , . . . ,w

(2)
i,i−1,w

(2)
i,i+1, . . . ,w

(2)
ik ) is a (k−1)-dimensional 1−α2

vector quantile of N(0,V̂i(θ̂)/n), which can be obtained
via the Multidimensional Quantile Estimation algo-
rithm in Section EC.3. Because

��
n

√
ε̄i(θ̂), i� 1,2, . . . ,k con-

verges weakly to a normal distribution conditional on
θ̂ under Assumption 1, w(2)

i� ,∀� �� i, satisfy (4) for any θ̂

as n increases.
Both V̂i(θ̂) and V̂i are consistent estimators of Vi(θc).

However, the former is obtained from n replications of
each system, and the latter is from the regression re-
siduals. To provide a correct statistical guaranteewith our
procedure, the replications should be run independently
from the regressions using different random numbers
so that w(1)

i� and w(2)
i� are independent conditional on θ̂.

Under the sphericity assumption onV(θc), estimating
Vi(θc) simplifies to estimating τ2(θc) from n replications
of the k systems. Nelson and Matejcik (1995) provide
an MCB procedure with fixed interval lengths by
assuming normality of simulation outputs and sphe-
ricity ofV(θc)whenθc is known.Applying theirmethod,

we can set w(2)
i� �

��
2
n

√
sTk−1,(k−1)(n−1),1/2,α2 ,∀� �� i, where

Tk−1,(k−1)(n−1),1/2,α2 is the 1−α2 quantile of amultivariate-t
distribution of dimension k−1 with (k−1) (n−1) de-
grees of freedom and common correlation 1/2 and

s2 � 1
(k−1)(n−1)

∑k
i�1

∑n
j�1

Yij(θ̂)− Ȳi(θ̂)− Ȳ·j(θ̂)+ ¯̄Y(θ̂)
( )2

,

(18)

given Ȳ·j(θ̂) � k−1 ∑k
i�1 Yij(θ̂) for j � 1, 2, . . . ,n, and

¯̄Y(θ̂)� k−1∑k
i�1 Ȳi(θ̂).

Another benefit of the sphericity assumption is that
we can account for the estimation error in s2. For any
finite n, V̂i(θ̂) has estimation error. If we assume normality
of simulation output, then w(2)

i� �
��
2
n

√
sTk−1,(k−1)(n−1),1/2,α2

gives the exact 1 − α2 coverage for the interval widths
due to stochastic error for any finite n.

5.3. Plug-In and All-In IOU Comparison Procedures
We first present the all-in IOU-C procedure that in-
corporates the interval width computation discussed in
Sections 5.1–5.2. See Assumption 1(ii) for the definition
of Σ(·) in step 3(b).

All-In IOU-C
1. Select 0<α1,α2<1/2 such that 1−α�(1−α1)(1−

α2) for given 0<α<1/2.
2. Compute θ̂. Using F(·|θ̂) as the common input

model, run n replications of all k systems with CRN,
Yi1(θ̂),Yi2(θ̂), . . . ,Yin(θ̂), for i � 1, 2, . . . , k. Compute
Ȳi(θ̂) � Σn

j�1Yij(θ̂)/n.
3. (Interval widths due to CID effects)

(a) Select 0 <α11, α12 < 1 such that α1 � (α11 + α12 −
α11α12)/2.

(b) Generate θ̂
(1)
, θ̂

(2)
, . . . , θ̂

(B)
from N(θ̂,Σ(θ̂)/m).

(c) For each b � 1, 2, . . . ,B, use CRN to simulate

all k systems to obtain Y1(θ̂(b)),Y2(θ̂(b)), . . . ,Yk(θ̂(b)).
(d) For each i, fit a linear regression to compute β̂i

using responseYi �
(
Yi(θ̂(1)),Yi(θ̂(2)), . . . ,Yi(θ̂(B))

)	
and

design matrix [1B : C], where the bth row of C corre-
sponds to θ̂(b)	.

(e) From the residuals of the regressions in (d), com-
pute V̂i for i � 1, 2, . . . , k.

(f) For each combination (i, �), i �� �, solve 3i� and
set −w(1)

i� equal to its optimal solution.
4. (Interval widths due to stochastic error) From the

replications in step 2, compute V̂i for i � 1, 2, . . . , k and
apply the Multidimensional Quantile Estimation al-
gorithm in Section EC.3 to find w(2)

i� ,∀� �� i.
5. For each combination (i, �), i �� �, set wi� �

w(1)
i� +w(2)

i� . Use Theorem 1 to derive 1 − α simultaneous
comparisons CIs.
As mentioned in Sections 5.1–5.2, we can simplify

steps 3(e) and 4 by assuming sphericity of V(θc).
The plug-in procedure has the same steps as the all-in

IOU-C, except that steps 3(e) and 3(f) are replaced by
the following step:

Plug-In IOU-C
3. (e) For each i, plug in β̂1, β̂2, . . . , β̂k to (8) (by

replacing 1 with i). Compute the (k − 1)-dimensional
(1 − α1) quantile w(1)

i� of the plug-in distribution.
We can once again apply the Multidimensional

Quantile Estimation algorithm in this step.
As pointed out in Section 3, the CIs obtained from

IOU-C are wider than MCB CIs because we have the
interval widths due to input uncertainty added to
those due to stochastic error. Not surprisingly, the
CIs from all-in IOU-C are wider than those from
plug-in IOU-C because the former account for the
estimation error in the gradients. Splitting 1 − α into
1 − α1 and 1 − α2 to obtain the interval widths due to
input and stochastic uncertainty independently
makes the combined interval widths from the all-in
procedure larger. Moreover, the optimal solution to
3i� tends to provide conservative w(1)

i� . In fact, solving
3i� for all � �� i for fixed θ̂ − θc has the same impli-
cation as obtaining 1 − α11 simultaneous CIs for
(θ̂ − θc)	(̂βi − β̂�) for all � �� i given CR1,α11 , which is
known as Scheffé’s method (Seber and Lee 2003).
Scheffé’s method tends to be conservative because it is
designed to provide valid simultaneous CIs for any set
of linear combinations of the regression coefficients. This
conservatism also affects the CIs obtained from IOU-C.
We empirically compare the performance of both all-in
and plug-in IOU-C procedures in Section 7.
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6. Asymptotic Validity
In this section, we provide the conditions under which
the plug-in and all-in IOU-C procedures provide an
asymptotic 1 − α probability guarantee as m,B and n
increase.

As mentioned in Section 5.1.1, β̂i is not an unbiased
estimator of βi for finite m because the design points of
the regression are centered at θ̂. Moreover, Model (5)
approximates ηi(θ̂)with a linear function of θ̂, whereas

ηi(θ̂) is typically nonlinear in θ̂. Therefore, for both
plug-in and all-in procedures we need (1) asymptotic
normality ofMLE θ̂, (2) consistency of β̂i, and (3)Model (5)
to be an exact representation of ηi(θ̂) in the limit
(m → ∞) to prove an asymptotic guarantee. For the all-
in procedure, we need not only consistency of β̂i but
also its asymptotic normality stated in Proposition 1
to ensure w(1)

i� , i �� �, provide CIs with the correct asymp-
totic coverage. For both procedures, the Central Limit
Theorem for Ȳi(θ̂), i � 1, 2, . . . , k, as n →∞ provides the
correct asymptotic coverage ofw(2)

i� , i �� �. Belowwe state
a list of assumptions under which we show the asymp-
totic probability guarantee of plug-in and all-in IOU-C.

Assumption 1.
(i) For F(·|θ), we have θc, θ̂ ∈ Θ, whereΘ is a compact

set in Rp.
(ii) All of the necessary regularity conditions are sat-

isfied for θ̂ to have, as m → ∞,
(a) (Consistency) θ̂−→a.s. θc.
(b) (Asymptotic normality)

���
m

√ (θ̂ − θc) −→D N(0,
Σ(θc)), where Σ(θc) � I−1(θc) and I(·) is the Fisher infor-
mation matrix of F(·|θc).

(iii) For each i, ηi(·) is twice continuously differentiable
in a neighborhood of θc.

(iv) For any θ ∈ Θ, εi(θ)|θ ∼ (0, σ2i (θ)), where 0 <
σ2i (θ)<∞, and σ2i (θ) is a continuous function of θ at
θ � θc.

(v) For each i and θ̂
(b) i.i.d.∼ N

(
θ̂,Σ(θ̂)/m)

given θ̂ ∈ Θ

(a) All elements of E
���
m

√
σ2i (θ̂

(b))(θ̂(b) − θ̂)
∣∣∣θ̂][

are
bounded in Θ.

(b) All elements of E mσ2i (θ̂
(b))(θ̂(b) − θ̂)(θ̂(b)−

[
θ̂)	|θ̂] are bounded in Θ.

(c) E ε4i (θ̂
(b))

[ ∣∣∣θ̂]
is bounded in Θ.

(d) There exists u� ∈ R such that

E ε3i (θ̂
(b))

{
Var εi(θ̂(b))

( )−1[

+ (θ̂(b) − θ̂)	Cov εi(θ̂(b))(θ̂(b)− θ̂)
( )−1

(θ̂(b)− θ̂)
}3/2∣∣∣∣θ̂

]
<u�

for all θ̂ ∈ Θ.

(vi) For each (i, �), i �� �, we have an oracle to solve3i� to
optimality.

(vii) Given probability 0 < δ< 1 and the distribution of
a D-dimensional multivariate normal random vector
Z � {Z1,Z2, . . . ,ZD}, we find an exact δ-quantile q(δ) �
{q1(δ), q2(δ), . . . , qD(δ)} such that Pr{Zd ≤ qd(δ),∀d} � δ.

Assumption 1(i) is one of the regularity conditions
required for Assumption 1(ii); however, we state it
separately because it is frequently referred to in other
conditions and the proofs in Section EC.5. The regu-
larity conditions in Assumption 1(ii) can be found in
Amemiya (1985). Assumption 1(iii) provides smooth-
ness conditions on ηi(θ̂) to guarantee consistency of β̂i.
The continuity of σ2i (θ̂) in Assumption 1(iv) causes the
dependence of the distribution of εi(θ̂) on θ̂ to fade
away as θ̂ converges to θc, making V̂i and V̂i(θ̂) con-
sistent estimators of Vi(θc).
One challenge to show asymptotic validity of both

plug-in and all-in IOU-C is that the resulting interval
widths are conditional on the particular θ̂ computed
from the real-world sample in step 2. Thus, we need
to show that the procedures provide the desired
probability guarantee uniformly over θ̂ as m → ∞.
Assumption 1(v) enables us to obtain such consistency
over θ̂ ∈ Θ. In particular, Assumption 1(v) (a)–(c) ensure
the conditional moments of (θ̂ − θc) and εi(θ̂) on θ̂ to
be bounded for any θ̂ ∈ Θ so that they converge to the
right moments in the limit. Assumption 1(v) (d) is
a sufficient condition to apply the Berry-Esseen theorem
in the proof of Lemma 4 (in the electronic companion),
which is an intermediate step to prove Proposition 1. The
conditions in Assumption 1(v) are fairly mild: for in-
stance, these moment conditions are satisfied if σ2i (θ̂) is
a polynomial in θ̂.
Assumption 1(vi) may appear strong because we

solve 3i� by the random search algorithm in Section
EC.3. We show that the random search algorithm’s
probability of finding a solution within an ε optimality
gap converges to 1 exponentially as its sample size L
increases in Section EC.3. Nevertheless, we are not too
concerned with the optimality gap of the random
search algorithm owing to the inherent conservatism of
the all-in procedure discussed in Section 5.3. Even if
it finds a suboptimal solution of 3i� and therefore
makesw(1)

i� smaller than at optimality, the all-in procedure
shows good empirical performance. In fact, the results in
Section 7 show that the all-in procedure is still conser-
vative even if we use the random search to solve 3i�.
Assumption 1(vii) states that given the plug-in

distribution of CID effects and Vi(θ̂), we can find the
exact multidimensional quantile vectors for −w(1)

i� and
−w(2)

i� , respectively. The Multidimensional Quantile
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Estimation algorithm in Section EC.3 samples Q
points from the plug-in distribution to find the Monte
Carlo estimator of the quantile. As Q → ∞, the Monte
Carlo estimator converges to the true 1 − δ quantile of
the given multivariate normal distribution. If desired,
one could use an upper confidence bound for this value.

Theorem 2 states that both plug-in and all-in pro-
cedures provide an asymptotic 1 − α probability
guarantee under Assumption 1. The proof of the the-
orem can be found in Section EC.3.

Theorem 2. Under Assumption 1, if B � mγ, 0 <γ<2, then
as m →∞,n →∞ Pr

{
Ȳi(θ̂)− Ȳ�(θ̂) − (ηi(θc)− η�(θc)) ≥

−wi�,∀� �� i}→ (1 − α1)(1 − α2) given (1) wi�, i �� �, from
the plug-in IOU-C procedure, or (2) wi�, i �� �, from the all-
in IOU-C procedure.

Theorem 2 requires B � mγ for 0 <γ< 2, which is the
condition for asymptotic normality of

������
B/m

√ (@̂i −@i)
in Proposition 3 in Section EC.5. In fact, we do not need
consistency of @̂i itself for either the all-in or plug-in
IOU-C procedure. For the former, asymptotic normality
is sufficient to provide confidence region for@i with the
correct asymptotic probability of coverage. For the plug-
in procedure,we essentially approximate the asymptotic
distribution of β	i (θ̂ − θ) by N(0, β̂	i Σ(θ̂)̂βi/m). Hence,

even if β̂i has op(m1/2) error, β̂	i Σ(θ̂)̂βi/m�β	i Σ(θc)βi/m+
op(1) and β	i (θ̂−θ)−→D N(0,β̂	i Σ(θ̂)̂βi/m) by the contin-
uous mapping theorem as m→∞. Note that β̂i�
βi+op(m1/2), if B�mγ, 0 < γ< 2.

Both procedures require k(B + n) simulations in total.
Because γ can be arbitrarily close to 0, B need not be
too large to provide the asymptotic probability guar-
antee. For the plug-in procedure, a different gradient
estimation method may be used as long as it has
op(m1/2) error. An alternative approach to estimate the
gradients is to use the method of Wieland and
Schmeiser (2006), which uses the MLE computed
from the input random variates generated from F(·|θ̂)
within each replication of Yi(θ̂) as the corresponding
design point to fit the regression models, and therefore

does not require additional simulation effort beyond
the n replications spent for each of k systems.

7. Experiment Results
In this section, we demonstrate the performance of the
plug-in and all-in IOU-C procedures using an (s, S)
inventory problem modified from Koenig and Law
(1985) and compare them with the results from the
conditional MCB procedure, which ignores input un-
certainty by assuming θ̂ � θc and only accounts for the
stochastic error representing the current state of practice.
We present the results from these experiments graphi-
cally, deferring the detailed numerical results to Section
EC.4. We also summarize application of IOU-C to a series
of test cases with known ηi(θc) in which we controlled
mean and CID effect configurations of the systems as
well as the nonlinearity of ηi(θc).
The objective function for the (s, S) inventory prob-

lem is the expected average cost per period over 30
periods. The problem has three stochastic input pro-
cesses: demand per period, lead time, and yield of the
delivered order. The demand per period is a sequence
of i.i.d. Poisson random variables with a commonmean
of 10. The order and unit shipping costs are $50 and
$0.5, respectively, and the holding cost of inventory
and the back-order cost are $1 and $3 per unit, per
period, respectively. The lead time until the placed order
arrives follows a geometric distribution with proba-
bility of success 0.5. The actual number of units that
arrive has a binomial distribution whereby the prob-
ability that each unit in the order arrives is 0.95.
Therefore, θc � (10, 0.5, 0.95).
We consider k � 23 (s, S) inventory policies: {(s,S) :

s ∈ {10, 20, 30, 40, 50, 60, 70},S ∈ {50, 60, 70, 80}, s< S} ∪
(25, 35). Table 1 shows the expected cost of each solu-
tion. Note that the expected cost of the optimal solu-
tion, i � 1: (25, 35), is $0.21 lower than that of the second
best, i � 2: (10, 50), which makes this example more in-
teresting because the two lowest objective function values
are close. Each replication of the simulator is a batch
mean of 100 iterations of the 30-period simulation.

Table 1. Expected Cost per Period of 23 (s, S) Inventory Policies Estimated from Monte Carlo Simulations

i 1 2 3 4 5 6 7 8 9 10 11 12

s 25 10 20 30 40 10 20 30 40 50 10 20
S 35 50 50 50 50 60 60 60 60 60 70 70
E [cost] 56.28 56.48 63.25 74.92 90.75 72.04 80.26 92.79 108.74 129.64 90.37 99.94

(0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.03) (0.02) (0.02)
i 13 14 15 16 17 18 19 20 21 22 23
s 30 40 50 60 10 20 30 40 50 60 70
S 70 70 70 70 80 80 80 80 80 80 80
E [cost] 113.79 130.90 152.46 176.32 114.67 126.11 141.38 159.94 182.32 207.23 236.52

(0.02) (0.03) (0.03) (0.04) (0.02) (0.02) (0.03) (0.03) (0.04) (0.04) (0.05)

Note. Standard errors are presented in parentheses.
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This enhances the performance of IOU-C because it
makes the joint distribution of Yi(θ̂(b)) and θ̂

(b)
close to

multivariate normal. We consider the negative of
expected cost as the objective, which results in a max-
imization problem.

We assume that the distribution families are known,
but θ̂ is estimated from data using MLEs. At each run
of IOU-C, m � 100 or m � 400 “real-world” observa-
tions from the true demand, lead time, and yield dis-
tributions are collected to estimate θ̂. This is impossible
in a real-world problem because we only have one set
of real-world observations.

We set γ � 1.1, which gives B � m1.1
⌈ ⌉ � 159 for m �

100 for the number of design points to fit the linear
regressions. A total of L � 1,000 values of (θ̂ − θc)were
sampled in the random search algorithm (see Section
EC.2) to approximate the optimal solutions of3i�, i �� �.
Each system was simulated n � 100 times using θ̂ to
obtain the interval widths due to stochastic uncertainty.
The target probability guarantee is set to 1 − α � 0.9,
where 1 − α1 � 0.92/3 and 1 − α2 � 0.91/3 are used to
obtain the interval widths due to CID effects and
stochastic uncertainty, respectively. We set α11 � α12 �
0.0703 for the confidence regions in 3i� by solving
(α11 + α12 − α11α12)/2 � α1 as discussed in Section 5.1.2.
We also did not assume sphericity of the simulation
error variance–covariance matrix for the experiments
presented in this section.

Figure 3 shows the results averaged across 1,000 runs
of all three procedures when the number of “real-
world” observations is m � 100. When creating the
“real-world” data, we resampled the yield observations
for six runs when all 100 yield observations were equal
to 1, corresponding to the case in which there is no
evidence of input uncertainty based on the observations.
The x-axis of Figure 3 represents ηi(θc) −max� ��i η�(θc)
for i � 1, 2, . . . , 23. Sorted in increasing order, the x-axis
marks ηi(θc) −max� ��i η�(θc) of i � 1, 2, 3, 6, 4, 7, 11, 5, 8,
12, 9, 13, 17, 18, 10, 14, 19, 15, 20, 16, 21, 22, and 23 from

left to right. The right-hand side of the y-axis represents
the joint coverage probability of the IOU-C (or MCB)
CIs, and the left-hand side shows the probability that
each system is in 60, which is the set of solutions
containing 0 in their IOU-C (or MCB) CIs.
Figure 3 shows that i � 1 is included in 60 in all runs

of the all-in IOU-C procedure; however, several sys-
tems other than i � 1 are also frequently included in60.
On average, the all-in IOU-C procedure includes 7.30
systems in 60, and its estimated simultaneous cover-
age probability of CIs is 1.000 (solid line), which in-
dicates that the all-in procedure is conservative as the
desired coverage was set to 0.9. On the other hand, the
plug-in IOU-C procedure only contains i � 1 and 2 in
60 while all other systems are correctly determined to
be inferior in all 1,000 runs. The average subset size of
the plug-in procedure is 1.82, which is much smaller
than that of all-in IOU-C, yet the estimated simulta-
neous coverage probability of the plug-in procedure is
0.874 (dashed line). The true best system, i � 1, is in-
cluded in 60 in all 1,000 runs, which shows that the
plug-in IOU-C procedure has good performance de-
spite ignoring the estimation error in the gradients.
Figure 3 shows that the conditional MCB procedure
contains only i � 1 or 2 in60 in all 1,000 runs. However,
it includes i � 1 in 60 only 58.1% of the time; 41.9% of
the time i � 1 was ruled to be inferior to i � 2. This
demonstrates that, depending on the real-world sam-
ple, the conditional MCB procedure may conclude the
best system to be inferior. In a real-world experiment, it
is impossible to know that such a false conclusion is
made because all we have is the one set of real-world
data. The average size of 60 is 1.03 for this procedure,
which is the smallest among all three procedures be-
cause it ignores input uncertainty. Figure 3 also shows
that the simultaneous MCB coverage probability of the
conditional procedure is 0.235 (dotted line), which is far
lower than 0.9.
Figure 4 shows the results from all three procedures

when the “real-world” sample size is increased tom � 400

Figure 3. (Color online) Simultaneous Coverage Probability and Pr{i ∈ 60} for Each i When m � 100 from 1,000 Runs of
All-In IOU-C, Plug-In IOU-C, and Conditional MCB Procedures
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and B to 4001.1
⌈ ⌉ � 729. The all-in IOU-C procedure

still includes i � 1 and 2 in 60 in all 1,000 runs while
the average size of60 drops to 3.27 as input uncertainty
is smaller than when m � 100. The simultaneous
coverage probability of the all-in IOU-C CIs remains at
1.000. The average size of 60 for the plug-in procedure
is 1.84, and the simultaneous coverage probability of
the CIs is 0.872. The average size of 60 for the condi-
tional MCB procedure is 1.09 while i � 1 is still ruled as
an inferior system 33.7% of the time. The simultaneous
coverage probability of the CIs from conditional MCB
is 0.229, which is still much lower than 0.9, although
increased from the m � 100 case. Upper and lower
bounds from all three procedures for m � 100 and 400
are presented in Tables EC.2 and EC.3 in Section EC.4,
respectively.

From the results of the all-in procedure when
m � 400, i � 6 is never included in 60, whereas i � 4 is
included in 60 31.7% of the time, although i � 6 has
a smaller mean than i � 4. The averages of (̂β4 − β̂1)	
Σ(θ̂)(̂β4 − β̂1)/m and (̂β4 − β̂2)	Σ(θ̂)(̂β4 − β̂2)/m from
1,000 runs are 3.02 (standard error� 0.02) and 1.75(0.01),
respectively. On the other hand, the averages of (̂β6−
β̂1)	Σ(θ̂)(̂β6− β̂1)/m and (̂β6− β̂2)	Σ(θ̂)(̂β6− β̂2)/m are
0.393(0.005) and 0.795(0.012), respectively, which
shows that the CID effects for i� 6 is closer to those for
i� 1 or i� 2, making it easier to rule i� 6 to be inferior.

In this particular (s,S) inventory example, the plug-
in IOU-C procedure shows excellent performance by
including the best system in60 with probability greater
than 1 − α. However, for small m and B the plug-in
procedure may fail to include the best system in60 if its
gradient estimate is poor. The all-in IOU-C procedure
is protected against such an error by accounting for
the estimation error in the gradients at the price of its
conservatism. For small m and B, w(1)

i� from the all-in
procedure is large, reflecting that the gradient esti-
mator has large uncertainty and includes more systems

than the plug-in procedure for finite m and B. We also
tested versions of the all-in and plug-in procedures
under the sphericity assumption. Although the overall
trends remain the same, both all-in and plug-in pro-
cedures included more solutions in 60. Detailed results
can be found in Section EC.4.
We close this section by summarizing what we

learned from the controlled experiments in which we
applied the all-in IOU-C procedure to compare k � 10
systems with five-dimensional common multivariate
normal input models (p � 10). For each i, ηi(θ̂) �
ηi(θc) + bi1	p (θ̂ − θc) + ci(θ̂ − θc)	(θ̂ − θc), where ci was
adjusted relative to bi to control the nonlinearity of ηi(θc).
The case ci � 0,∀i was also tested to see the perfor-
mance when ηi(θc) is truly linear. We tested different
bi to examine the impact of equal, increasing, and
decreasing amounts of input uncertainty among
k systems. The true means of the systems, η1(θc),
η2(θc), . . . , η10(θc), were set to be increasing and equally
spaced, where the difference in means of systems i and
i + 1 was controlled relative to bi and ci to test the impact
of the relative size of input uncertainty to the mean
differences.
The size of 60 is smaller when input uncertainty is

relatively small compared with their mean differences.
Additionally, the procedure was robust to the non-
linearity of ηi(θc) compared with the linear case. When
all k systems are affected exactly the same by input
uncertainty (i.e., bi � b,∀i), all-in IOU-C effectively
rules out the inferior systems. When better systems
have higher input uncertainty (i.e., bi � b × i,∀i), all-in
IOU-C detects the inferior systems quite well because
they also have smaller input uncertainty. The systems
close to i � 10 are more frequently included in 60 be-
cause they have closer means to the best and higher
input uncertainty, which makes it difficult to tell them
apart from the best. When inferior systems have higher
input uncertainty, that is, bi � b × (k − i + 1),∀i, more
systems are included in 60 because it is difficult to rule

Figure 4. (Color online) Simultaneous Coverage Probability and Pr{i ∈ 60} for Each i When m � 400 from 1,000 Runs of
All-In IOU-C, Plug-In IOU-C, and Conditional MCB Procedures
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out the inferior systems with high input uncertainty.
All of these findings coincide with the results from the
(s,S) inventory problem.
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