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Abstract. Inference-based optimization via simulation, which substitutes Gaussian
process (GP) learning for the structural properties exploited in mathematical program-
ming, is a powerful paradigm that has been shown to be remarkably effective in problems
of modest feasible-region size and decision-variable dimension. The limitation to “modest”
problems is a result of the computational overhead and numerical challenges encountered
in computing the GP conditional (posterior) distribution on each iteration. In this paper, we
substantially expand the size of discrete-decision-variable optimization-via-simulation
problems that can be attacked in this way by exploiting a particular GP—discrete
Gaussian Markov random fields—and carefully tailored computational methods. The
result is the rapid Gaussian Markov Improvement Algorithm (rGMIA), an algorithm that
delivers both a global convergence guarantee and finite-sample optimality-gap inference
for significantly larger problems. Between infrequent evaluations of the global conditional
distribution, rGMIA applies the full power of GP learning to rapidly search smaller sets of
promising feasible solutions that need not be spatially close. We carefully document the
computational savings via complexity analysis and an extensive empirical study.
Summary of Contribution: The broad topic of the paper is optimization via simulation,
which means optimizing some performance measure of a system that may only be esti-
mated by executing a stochastic, discrete-event simulation. Stochastic simulation is a core
topic and method of operations research. The focus of this paper is on significantly
speeding-up the computations underlying an existing method that is based on Gaussian
process learning, where the underlying Gaussian process is a discrete Gaussian Markov
Random Field. This speed-up is accomplished by employing smart computational linear
algebra, state-of-the-art algorithms, and a careful divide-and-conquer evaluation strategy.
Problems of significantly greater size than any other existing algorithm with similar
guarantees can solve are solved as illustrations.
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Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2020.0971.

Keywords: design of experiments • efficiency • statistical analysis

1. Introduction
Stochastic simulation is a standard tool for designing
complex systems that are subject to uncertainty, where
a natural goal is to optimize system performance with
respect to controllable decision variables. The focus of
this paper is minimizing the expected value of a sto-
chastic simulation output of interest, which is often re-
ferred to as optimization via simulation (OvS). Within
OvS, algorithms have been created that provide various
theoretical or practical guarantees. The algorithm we
present in this paper has a global convergence guaran-
tee as well as finite-time optimality-gap inference for
OvS problems whose decision variables assume integer-
ordered values. Such discrete OvS (DOvS) problems ap-
pear frequently in operations research when whole units

of a resource (e.g., machines on an assembly line, beds in
a hospital, or agents in a call center) need to be allocated.
We are specifically interested in problems whose fea-

sible solutions are defined on afinite subset of the integer
lattice, and the number of feasible solutions, combined
with the execution time of the simulation, implies that
only a small fraction of the feasible solutions can be sim-
ulated. Nevertheless, we desire strong finite-time global
inference, such as that provided by ranking and selection
(R&S)—which simulates all feasible solutions—and
a global convergence guarantee in the limit, such as
that provided by adaptive random search.
What we refer to as inference-based optimization

represents the unknown objective function surface
as a realization of a random (typically Gaussian)
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process, sequentially updates the conditional (posterior)
distribution of the objective function as the search
progresses, and uses the conditional distribution to
guide the search and indicate when it is safe to stop
with some statistical guarantee on the optimality gap,
which is the difference between themean of the chosen
solution and the optimal solution. This remarkably ef-
fective approach isusually credited to Jones et al. (1998);
in their setting, the computer simulation was deter-
ministic but so computationally expensive that only a
small numberof simulation runs couldbe completedand
therefore each one needed to be deployed as produc-
tively as possible. Inference-based optimization strate-
gies are a staple of the Bayesian optimization literature.

Inference-based optimization employs a more so-
phisticated and computationally expensive search step
than adaptive random search: updating the conditional
distribution. The computational overhead needed to
provide this inference has sometimes been ignored be-
cause the simulations were so computationally expen-
sive that the time saved by not simulating poor solutions
overwhelmed the inference overhead. In our setting, the
output is stochastic, and the number of feasible solutions
is huge, but individual replications of a solution may be rel-
atively cheap compared with a deterministic computer exper-
iment. In combination, the computational overhead for infer-
ence is no longer negligible compared with the simulation cost.

An example of the class of problems we consider is
condition-basedmaintenance-policy optimization, as
studied in Hoffman et al. (2018): The objective is to
minimize the expected cost of operation by assigning a
condition number to each machine in a preventative
maintenance (PM) queue to avoid more expensive cor-
rective action if it fails. Each machine has a degrading
health index ofL (perfect health), L − 1, . . . , 0 (complete
failure). The PM condition is assigned based on the
health index, and thus there are L − 1 feasible con-
ditions for each machine excluding 0 and L. For a
system with d machines in total, the size of the fea-
sible solution space is (L − 1)d, which explodes as the
number of machines d increases. A single simulation
replication of this problem is relatively cheap (a few
seconds) but has large stochastic error variance, which
makes it computationally impossible to apply R&S.
The computational cost of inference-based optimi-
zation also increases with d.

Obviously the effectiveness of inference-based opti-
mization depends critically on how well the chosen
Gaussian process (GP) provides insight into the un-
known objective function. A GP is defined by its mean
function and most critically its covariance function
(Santner et al. 2003). Salemi et al. (2019) showed that
the continuous-decision-variable covariance functions
that are often employed in Bayesian optimization may
fail spectacularly when applied to discrete-decision-variable
problems, particularly when used for optimality-gap

inference.AdiscreteGaussianMarkovrandomfield(GMRF),
on the other hand, provided excellent search guidance
and stopping inference. Our primary contribution is to
greatly extend the reach of GMRF-based optimization by
dramatically reducing the computational cost of inference.
We achieve our speed-up without resorting to any

approximations and therefore obtain the full benefits
of this powerful inference-based approach. Our rapid
Gaussian Markov Improvement Algorithm (rGMIA)
combines infrequent evaluations of the full conditional
distribution for global inference,with rapid learning on a
smaller, adaptive subset of promising solutions. The fact
that these small subsets need not be spatially close is key
to rGMIA making per-iteration search progress that is
nearly the same as would be obtained by computing the
full conditional distribution on each iteration.
The remainder of the paper is structured as follows.

In Section 2, we review the use of GPs in DOvS al-
gorithms. Section 3 provides the necessary back-
ground on GMRFs and complete expected improve-
ment, a functional of the conditional distribution of
the GP that guides the search. Section 4 restates GMIA
as presented in Salemi et al. (2019). In Section 5, we
introduce rGMIA and delve into its computational
details in Section 6. In particular, we analyze the
computational complexity of rGMIA relative to GMIA
and prove its global convergence. Section 7 shows
numerical results, evaluating rGMIA against GMIA
on carefully selected test problems, and Section 8
contains concluding remarks.

2. Gaussian Processes in DOvS
GPs are stochastic processes with the property that
any finite collection of the constituent random vari-
ables are jointly normal. GPs are in common use in the
design and analysis of computer experiments to model
an unknown response surface (Santner et al. 2003). Of
interest to us is their use in search algorithms where
they play the role of known mathematical properties
of the objective function surface. As feasible solutions
are evaluated (deterministic computer model) or simu-
lated (stochastic simulation), the conditional distribution
of the GP is updated and employed to guide the search
for improved solutions. Choosing the covariance func-
tion of a GP is important as it implies certain properties
of the objective function surface it models, and this
has consequences both on the validity of the statistical
learning and on the computations. Calculating the con-
ditional distribution usually requires inverting a large,
dense, and sometimes ill-conditioned covariance ma-
trix, and this is the essential bottleneck for applyingGP
optimization to large-scale problems.
The use of GPs in OvS problems, with both con-

tinuous and discrete decision variables, often results
in algorithms that choose a solution to simulate xt at
iteration t where the selection criterion is prescribed
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by the acquisition function a(µt,Σt). We use (µt,Σt) to
represent the posterior mean and variance, respec-
tively, of the GP Y(·) that represents the unknown
surface y(·) at iteration t. This notation will be defined
more precisely later. In the following, we review GP
methods devised for solving DOvS problems.

Frazier et al. (2009) consider a Bayesian R&S prob-
lemwith independent normal responses and use a GP
model with correlation among alternatives as a prior
on themean values of the response. They then treat the
problem of finding the alternative with the smallest
mean as a dynamic programming problem to opti-
mally allocate computer effort. Because this problem is
intractable, they myopically approximate an optimal
allocation by simulating the alternative that maximizes
the benefit received as if each iteration were the last
iteration of the dynamic program. They term this ac-
quisition function the knowledge gradient (KG). Xie
et al. (2016) address the same setting where a multi-
variate normal prior is used to represent the means of a
finitenumberof alternatives. Theyextend the acquisition
function found in Frazier et al. (2009) by considering
pairwise sampling using common random numbers
(CRN). Our GMRF-based approach can be considered a
form of Bayesian R&S where there is a prior distri-
bution exhibiting strong correlation among solutions,
as in Xie et al. (2016). Therefore, not all solutions need
to be simulated to make optimality-gap inference.

Employingaverydifferent approach, Sun et al. (2014)
model the simulation output at a solution, x, as
G(x) � M(x) + ε(x), where M(x) is a stationary, mean-
zero GP and ε(x) is an error term that models the
stochastic noise in the simulation output. The “sto-
chastic kriging”model,G, is updated as the algorithm
proceeds and used to construct a distribution from
which the next solution to simulate will be sampled.
The use of a sampling distribution as the acquisition
function to guide the search distinguishes this method
from the others discussed above. None of the prior
work cited above considers problems on the scale that
we address here in terms of the number of feasible so-
lutions in a discrete space.

3. Optimization Using GMRFs
Consider the global DOvS problem: minx∈- y(x) �
E[Y(x)], where the feasible region- is a finite subset of
the d-dimensional integer lattice Zd; let n � |-| be the
number of feasible solutions. In particular, we assume
- is a d-dimensional hyperrectangle. At each feasible
solution x, the objective function y(x) is the unknown
mean of the simulation output, Y(x), which can be
estimated via simulation. For any feasible solution x,
we observe the output Yj(x) � y(x) + εj(x) on replica-
tion j � 1, 2, . . . , where {εj(x)} are assumed i.i.d. nor-
mal with mean 0 and finite (unknown) variance σ2(x)
that may depend on x. In this section, we present the

underlying stochastic process for our inference-based
optimization procedure to solve the DOvS problem.

3.1. Gaussian Markov Random Fields
A GP-based optimization method for a finite feasible-
solution space starts bymodeling the unknownobjective
function values y � [y(x1), y(x2), . . . , y(xn)]� as a mul-
tivariate normal random vector Y � [Y1,Y2, . . . ,Yn]�
with mean µ and covariance matrix Σ. A GMRF, a
special case of GP, is a nondegenerate n × 1 Gaussian
randomvectorY that is associatedwith an undirected
and labeled graph & � (9,%), where 9 denotes the
set of nodes and % denotes the set of edges; see Rue
and Held (2005). Each node in 9 is associated with a
unique element of Y. Two nodes in the graph are
called neighbors if they are connected by an edge. As
described below, the graph & determines the struc-
ture of the precision matrix,Q, which is the inverse of
the covariance matrix Σ of Y.
In general, the diagonal entries Qii of a precision

matrix are such that Var(Yi | Y9\{i}) � 1/Qii, where
Y9\{i} is the vector of values of the GMRF observed
at the nodes in 9 \ {i}. Thus, they are the reciprocals
of the conditional variances. The off-diagonal ele-
ments are proportional to the conditional correlations;
specifically, Corr(Yi,Yj |Y9\{i,j}) � −Qij/

̅̅̅̅̅̅̅̅
QiiQjj

√
, where

Y9\{i,j} is the vector of values of the GMRF observed
only at the nodes in 9 \ {i, j}.
The graph & determines the nonzero pattern of the

precision matrix Q, and vice versa, because for a
GMRF Qij �� 0 if and only if {i, j} ∈ %. Thus, the pre-
cision matrix is sparse if the set of edges is small.
GMRFs are “Markov” because they possess the local
Markov property:Yi ⊥ Y9\{i,1(i)} | Y1(i) for every i ∈ 9,
where 1(i) � {j : {i, j} ∈ %}. This local Markovian
property encapsulates the prior belief that if all of the
neighbors of a feasible solution have been observed,
then there is little additional information about that
solution remaining in non-neighboring solutions; this
regularity is often appropriate for DOvS problems
that tend to feature locally well-behaved objective
functions. By contrast, the Gaussian covariance func-
tion favored in Bayesian optimization implies an ob-
jective function that is infinitely continuously differ-
entiable, a much stronger condition.

3.2. Optimization
In a DOvS problem with integer-ordered decision
variables, the natural graph & � (9,%) defines the
nodes 9 to be -. Construction of % requires a neigh-
borhood. Salemi et al. (2019) show that a particu-
larly effective choice is based on the �2 distance,
1(x) � {x′ ∈ - : ‖x − x′‖2 � 1}, which implies that the
fraction of nonzero entries in the precisionmatrixQ is
bounded above by (2d + 1)/n for hyperrectangular -,
which makes Q very sparse for large n. This allows
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faster computations than when a dense precision
matrix is used.

We parameterize the entries of Q by θ � [θ0,
θ1, . . . , θd]�. For the neighborhood1(x), we letQij�θ0,
if xi � xj, and Qij � −θ0θj, if |xi − xj| � ej, where xi, xj ∈
-, ej is the jth standard basis vector and | · | is the
component-wise absolute value. In all other cases,
Qij � 0. Thus, θ0 is the conditional precision of each
solution, and θj is the conditional correlation between
solutions that differ by 1 in the jth coordinate direc-
tion, given their neighbors. Under this parametriza-
tionQ � Q(θ), butwe omitθ for notational simplicity.
Solutions on the boundaries of the feasible region,
or without neighbors in all coordinate directions,
would require adjusted parameters for the GMRF to
be stationary. We have chosen to ignore this, as the
impact seems negligible and, therefore, treat our
GMRF as nonstationary.

Because the conditional precisions must be posi-
tive, it follows that θ0 > 0. We also want neighbors
to have nonnegative conditional correlations, so θ1,
θ2, . . . , θd are chosen to be nonnegative. Additionally,
Q should be positive definite. With these conditions,
Q is a nonsingular M-matrix so its inverse is non-
negative (Johnson 1982). In other words, there are no
negative (unconditional) correlations among nodes
in the GMRF, a property that makes sense in many
DOvS problems as the objective-function values of
neighboring solutions should be similar to one an-
other. Notice that even though we construct Q to be
sparse, its covariance matrix, Σ � Q−1, is typically
dense, as it should be.

Based on our GMRF model, the prior joint distri-
bution of Y is N(µ,Q−1). We adopt noninformative
constant prior mean µ � μ1n×1, where 1n×1 is an n × 1
vector of 1s. In total,we have d + 2 parameters to specify a
GMRF for a d-dimensional decision variable x.

Suppose that we simulate a subset of solutions in-.
Let Ȳ be an n × 1 vector such that each element is
either the sample mean of the associated feasible
solution, if it has been simulated, or μ if it has not.
Consistent with the output model, we represent Ȳ
as a realization of the GMRF Yϵ � Y + ϵ, where the
entries of ϵ are jointly normally distributed, if the
corresponding solutions have been simulated, and
0s, otherwise. The composite prior distribution of Yϵ is
N(µ, (Q +Qϵ)−1). We choose to simulate all solutions
independently (no CRN), which makesQϵ a diagonal
matrix so that the sparsity pattern of Q is preserved
for Q +Qϵ. If solution x has been simulated, the cor-
responding diagonal element of Qϵ is estimated by
r(x)/S2(x), where r(x) is the number of replications that
have been obtained and S2(x) is the sample variance
estimate of σ2(x); otherwise, the corresponding ele-
ment in Qϵ is set to 0.

Salemi et al. (2019) prove that the conditional
distribution of Y|Yϵ � Ȳ is

N µ + Q̄−1Qϵ Ȳ − µ
( )

, Q̄−1
( )

, (1)
where Q̄ � Q +Qϵ is the conditional precision matrix.
Notice that computing the conditional mean and
variance requires Q̄−1, and Q̄ changes as we simulate
additional feasible solutions. Efficiently calculating
quantities that depend on (1) for a large number of feasible
solutions is the principal topic of this paper. In practice,
parameters such as θ and µ are unknown but are
estimated via maximum likelihood after simulating an
initial set of feasible solutions. The intrinsic precision
matrix,Qε, on the other hand, is often directly estimated
from simulation output by using the sample variances at
simulated solutions, as described above.
Both the GMIA algorithm of Salemi et al. (2019) and

our rGMIA guide their search and (possibly) termi-
nationusing complete expected improvement (CEI), which
is defined in Salemi et al. (2019). At any iteration, the
estimated optimal solution is x̃ � argmin{x∈-:r(x)>0}Ȳ(x),
where Ȳ(x) is the component of Ȳ associated with
solution x. TheCEIof each candidate solution,x ∈ - \ x̃,
is the expected improvement in the objective function
offered by solution x compared with x̃, where the
expectation is with respect to the current conditional
distribution of the GMRF. Thus, the CEI of a candidate
solution x relative to x̃ is CEI(x̃, x) � E[max(Y(x̃) −
Y(x), 0)|Yϵ � Ȳ], where the expectation is conditional
on Yϵ � Ȳ, the simulation output that has been col-
lected. CEI is an extension of the EI acquisition
function (Jones et al. 1998) tailored for stochastic
simulation (Salemi et al. 2019). The joint conditional
distribution ofY(x̃) and Y(x), x̃ �� x is bivariate normal
with parameters taken from the mean and the co-
variance matrix of (1) corresponding to x̃ and x. We
denote the conditional mean and conditional variance
at x asM(x) andV(x), respectively, and the conditional
covariance between x̃ and x as C(x̃, x). For a given
solution, x, the variance of the difference of Y(x̃) −
Y(x) is V(x̃, x) ≡ V(x̃) + V(x) − 2C(x̃, x).
Salemi et al. (2019) show that the CEI of x can be

expressed as

CEI x̃, x( ) � M x̃( ) −M x( )( )Φ M x̃( ) −M x( )̅̅̅̅̅̅̅̅̅
V x̃, x( )√( )

+ ̅̅̅̅̅̅̅̅̅
V x̃, x( )√

φ
M x̃( ) −M x( )̅̅̅̅̅̅̅̅̅

V x̃, x( )√( )
, (2)

where φ and Φ are the density and cumulative dis-
tribution functions, respectively, of a standard nor-
mal random variable. Both GMIA and rGMIA use CEI
for search guidance (simulate next the solution with
the largest CEI) and as a stopping criterion (stop
when maxx∈-\x̃ CEI(x̃, x) ≤ δ, where δ is user-specified
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acceptable optimality gap). CEI has been shown to have
desirable properties. For instance, Chen and Ryzhov
(2019) prove that under simplified conditions (R&S
with independent and normally distributed simula-
tion output with known variances), CEI satisfies the
conditions found inGlynn and Juneja (2004) that ensure
that the probability of incorrect selection converges to
zero at the fastest possible exponential rate as the total
simulation budget increases to infinity. Such asymptotic
properties, along with the impressive empirical perfor-
mance shown in Salemi et al. (2019), argue that CEI is a
goodacquisition function for inference-basedoptimization.

Let M(x-)�[M(x1),M(x2),...,M(xn)]�, V(x-)�[V(x1),
V(x2),. . .,V(xn)]�, and C(x̃, x-) � [C(x̃, x1),C(x̃, x2), . . . ,
C(x̃, xn)]�. From a computational point of view, to
obtain V(x̃, x),∀x ∈ -, we need to compute the diag-
onal of Q̄−1 to obtain V(x-) and the column of Q̄−1
corresponding to x̃ for C(x̃, x-). The latter operation
requires solving the linear system Q̄z � ex̃ for z, where
ex̃ is an n-dimensional basis vector consisting of zeroes,
except for a 1 in the position corresponding to x̃. The
former is more expensive to compute; a naive ap-
proach is to compute the full inverse Q̄−1 and extract
its diagonal. Both operations require factorizing Q̄
at every iteration. Although sparsity of Q̄ helps, it
is increasingly expensive for large n. Such compu-
tational challenges serve as our motivation to sub-
stantially extend GMIA’s reach to larger numbers of
feasible solutions in higher dimensions.

Salemi et al. (2019) introduced a multiresolution
framework in which the feasible solution space is
divided into nonoverlapping regions. Each region is
represented by a solution-level GMRF, and the av-
erage objective function values of the regions are repre-
sented by a region-level GMRF. Their approach provides
global and local search guidance as well as stopping
inference while reducing the size of the solution-level
GMRFs. Of course, any such multiresolution approach
will eventually be limited by the largest solution-level
GMRF it can handle. Thus, we concentrate on extending
the solution-level algorithm in this paper.

Semelhago et al. (2017) propose an efficient way to
compute the diagonal elements of Q̄−1 without full
inversion when Q̄ is sparse. PARDISO (Schenk and
Gärtner 2018), a linear solver specialized for parallel
computation using state-of-the-art algorithms, was em-
ployedtoperformthiscalculation.However,theSemelhago
et al. (2017) algorithm still requires factorizing Q̄ on
every iteration.Our approach not only avoids fully updating
Q̄−1, but also factorizing Q̄ on every iteration, and it
employs exact, rapidly computed CEIs on all iterations.

4. Gaussian Markov
Improvement Algorithm

In this section, we provide a quick review of GMIA.
AspresentedinAlgorithm 1,GMIAbeginsbysimulatinga

small number, n0, of well-placed initial design points
(feasible solutions) and uses the outputs to compute
the maximum-likelihood estimators (MLEs) of µ and
θ. Then, it updates the conditional distribution in (1)
given the simulation outputs from the initial de-
sign and computes the CEIs of all solutions in -.
Although the stopping criterion is not satisfied, GMIA
simulates the current sample-best solution, x̃, and the
solution with the largest CEI, xCEI, at each iteration.
If Y(x) is discrete-valued, then argmin{x∈-:r(x)>0}Ȳ(x)
and argmaxx∈-\x̃CEI(x̃, x) may be sets of size greater
than 1. When this occurs, we randomly select a single
solution in the set to be x̃ and xCEI, respectively.
There are two stopping paradigms in OvS: fixed-

precision and fixed-budget (Hunter and Nelson 2017).
For the former, the algorithm terminates when the
inferred optimality gap of the current best solution
falls below a user-defined δ. Using CEI to terminate,
as discussed in Section 3.2, is an example of a fixed-
precision approach. In this paradigm, theperformance of
an algorithm is evaluated bywhether it actually achieves
the inferred optimality gap at termination, as well as the
computational effort required to terminate. On the other
hand, for a fixed-budget paradigm an algorithm termi-
nates when a predefined computational budget is expen-
ded and the performance of the algorithm is evaluated by
how small the achieved optimality gap is at termination.
Typically for an R&S procedure, the computational
budget is specified as the allowable number of simu-
lation replications, because other computational over-
head is negligiblewhen the number of feasible solutions
is small. For large-scale, inferential optimization, how-
ever, the budget should encompass both simulation time
and nonsimulation time.

Algorithm 1 (GMIA)
1 Choose n0 � n initial design points. Simulate r

replications for each design point and use the
simulation output to compute MLEs for the
GMRFparameters (µ,θ). Construct Q̄ � Q +Qϵ

and Ȳ;
2 while Stopping criterion not reached do
3 Find x̃ � argmin{x∈-:r(x)>0}Ȳ(x);
4 Compute Cholesky factor of Q̄ : LQ̄;
5 Compute V(x-) � diag(Q̄−1), using LQ̄;
6 Compute C(x̃, x-) � Q̄−1ex̃, using LQ̄;
7 Compute M(x-) � µ + Q̄−1Qϵ(Ȳ − µ), using LQ̄;
8 Calculate CEI(x̃, x),∀x ∈ -;
9 Find xCEI � argmaxx∈-\x̃CEI(x̃, x);

10 Simulate at x̃ and xCEI. Update Ȳ, Qε, and Q̄ by
incorporating the new simulation outputs;

11 end
12 Return x̃ � argmin{x∈-:r(x)>0}Ȳ(x) as the estimated

optimal solution;
InAlgorithm 1, Steps 4 and 5 are themost expensive

in terms of nonsimulation overhead. As mentioned in
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the previous section, Semelhago et al. (2017) pro-
pose extracting the diagonal elements of Q̄−1 with-
out computing the inverse entirely. Although this
approach greatly reduces the cost of Step 5, Step 4
remains a bottleneck. Because of the sparsity of Q̄, the
cost of the Cholesky factorization is much cheaper
than it is for a dense matrix. Nonetheless, it still be-
comes costly when the problem size is large, limit-
ing the scope of GMIA. In GP-based optimization
algorithms, a common trick is to update the con-
ditional distribution efficiently using the Sherman–
Morrison–Woodbury (SMW) formula to avoid fac-
torizing Q̄ every iteration. InAppendix C of the online
supplement, we show that this approach results in
greater computational burden than our rGMIA.

5. Overview of rGMIA
Computing the CEIs for all feasible solutions enables
GMIA to exploit global optimality-gap inference, but
it comes at a computational cost. Moreover, when -
is large, most solutions’ CEIs are largely unaffected by
the new simulation outputs at x̃ and xCEI. If we knew
that amuch smaller subset of solutionswould contain
those with the largest CEIs over the next, say, p − 1
iterations, then we could update the CEIs for only
those solutions in the subset. Of course, we do not
know such a subset, but this insightmotivates restricting
CEI computation to a small subset of promising solu-
tions for several iterations. Because we only require
the diagonal elements of Q̄−1 corresponding to those
solutions in the subset, this strategy will greatly reduce
the computational overhead in Step 5 of Algorithm 1.
Furthermore, as shown in the following sections, this
scheme avoids an expensive factorization in Step 4 by
replacing it with much cheaper, lower-dimensional
linear algebra. Accomplishing this in a way that signifi-
cantly reduces computation without hampering search
progress is our key contribution.

Algorithm 2 illustrates the steps of rGMIA in-
cluding the necessary computation required at each
step. We defer discussion of the derivation of these
results to Section 6 and provide a high-level de-
scription here. There are three stages to rGMIA: ini-
tialization, rapid search, and global search. In the
initialization stage, rGMIA estimates the GMRF pa-
rameters and updates its conditional distribution.
Then, it proceeds to Step 27 of global search.

rGMIA alternates between many rapid-search iter-
ations and a single global-search iteration, as long as
the global-search termination criterion is not met.
For a fixed-budget setting, this would be the constraint
on the algorithm run-time. For a fixed-precision setting,
the CEI stopping criterion, maxx∈-\x̃ CEI(x̃, x) ≤ δ, is
used. At each global-search iteration (Steps 14–31),
rGMIA partitions the feasible region into a search set

6 ⊂ - and a fixed set ^ ≡ - \ 6. The former contains
the best simulated solution, x̃ � argmin{x∈-:r(x)>0}Ȳ(x),
and promising candidate solutions that need not be
spatially close. The intermediate matrices, A and B,
and vector, a, required for fast linear algebra during
the rapid-search iterations are also computed. Then,
rGMIA proceeds to rapid search (Steps 7–12), checking
the rapid-search termination criterion along the way,
which allows the algorithm to escape from simulating
the solutions in 6 and return to a global-search iter-
ation when the benefit from additional rapid search is
marginal. We discuss candidates for the rapid-search
termination criterion in Section 6.1. During rapid-
search iterations, rGMIA computes the CEIs of so-
lutions in 6 exactly and selects the next solution to
simulate within 6. In the following global-search it-
eration, 6 and ^ are updated reflecting cumulative
simulation results.
We let M(x6), V(x6), and C(x̃, x6) represent the

vectors of conditional means, conditional variances,
and conditional covariances with respect to x̃, respec-
tively, of solutions in6;M(x^),V(x^), andC(x̃, x^) are
defined similarly for ^. During rapid-search itera-
tions, we choose x̃ to be the best simulated solution
within 6—i.e., x̃ � argmin{x∈6:r(x)>0}Ȳ(x). This ensures
that we only need to update the conditional distri-
bution of solutions in 6 during the rapid-search it-
erations. BecauseCEI is relative to the current sample-
best solution, if we allowed x̃ to be in ^, then we
would need a full conditional-distribution update to
compute the exact CEIs. We do a full update only on a
global-search iteration.
Computational savings per iteration for rGMIA

come largely from |6| � |^| ≈ |-|. That is, the rela-
tively small cardinality of 6 is the key factor. How-
ever, effective search, which is per-iteration progress
toward the optimal solution, depends on the content
of 6. Our proposal is to select solutions with the
largest CEIs with respect to x̃ at each global-search
iteration. This is based on the premise that the CEIs of
solutions change incrementally in subsequent itera-
tions unless they are very close to a solution chosen
for simulation. Other choices are possible. There is no
computational advantage for the solutions in 6 to be
close to each other in-, which allows the rapid search
to remain global even though only considering a
subset of solutions. We have observed that the resulting
6 includes solutions near x̃, other solutions with fa-
vorable sample means, as well as solutions in unex-
plored regions of -. However, savings in the form of
per-iteration computational overhead do not depend
on this choice of 6.
The idea of restricting inference to a smaller sub-

set to reduce computational cost appears in other
work as well. For instance, for their GP-based search,
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Xie et al. (2016) propose forming a smaller set of can-
didate solutions in some randomized fashion or ap-
plying a local gradient search on the KG surface by
relaxing the integrality condition. Unlike our ap-
proach, these subsets or local search perimeters are
altered and the GP conditional distribution is updated
for a different set of solutions at every iteration. By
contrast, concentrating on the same 6 for several
rapid-search iterations allows rGMIA to exploit the
savings from cheap computational linear algebra to a
greater extent.

6. Properties of rGMIA
In this section, we provide computational complexity
analysis of rGMIA. We analyze the computational
costs of rapid search and global search in Sections 6.1
and 6.2, respectively. Section 6.3 then compares rGMIA
to GMIA and proves global convergence.
Partitioning Q̄ into block matrices corresponding

to ^ and 6 as

Q̄ � Q̄^^ Q̄^6

Q̄�̂
6 Q̄66

[ ]
,

Algorithm 2 (rGMIA)
1 Choose n0 � n initial solutions. Simulate at each solution and compute MLEs for

the GMRF parameters (µ,θ). Construct Q̄ � Q +Qε;
2 Find x̃ � argmin{x∈-:r(x)>0}Ȳ(x);
3 Compute Cholesky factor of Q̄ : LQ̄;
4 Compute V(x-) � diag(Q̄−1), C(x̃, x-) � Q̄−1ex̃, M(x-) � µ + Q̄−1Qε(Ȳ − µ),

using LQ̄. Go to Step 27;
5 while global-search termination criterion not reached do
6 while rapid-search termination criterion not reached do
7 Simulate at x̃, xCEI. Update simulation information by updating Ȳ(x̃),

Ȳ(xCEI), Qε, Q̄, Q̄66;
8 Find x̃ � argmin{x∈6:r(x)>0}Ȳ(x);
9 Compute V(x6), C(x̃, x6) by computing Σ66 � (Q̄66 − B)−1;

10 Compute M(x6) � µ6+ Σ66([Qε]66(Ȳ(x6) − µ6) − a);
11 Calculate CEI(x̃, x),∀x ∈ 6 ;
12 Find xCEI � argmaxx∈6\x̃CEI(x̃, x);
13 end
14 Simulate at x̃, xCEI. Update simulation information by updating Ȳ(x̃), Ȳ(xCEI),

Qε, Q̄, Q̄66;
15 Find x̃ � argmin{x∈-:r(x)>0}Ȳ(x);
16 Compute V(x6) from Σ66 � (Q̄66 − B)−1;
17 Compute M(x6) � µ6+ Σ66([Qε]66(Ȳ(x6) − µ6) − a);
18 Compute V(x^) � diag(Q̄−1

^^) + diag(AΣ66A�), using LQ̄^^
;

19 Compute M(x^) � µ^ + Q̄−1
^^[Qε]^^(Ȳ(x^) − µ^) −A(M(x6) − µ6), using

LQ̄^^
;

20 if x̃ ∈ 6 then
21 Compute C(x̃, x6) � [Σ66]·x̃;
22 Compute C(x̃, x^) � −A[Σ66]·x̃;
23 else
24 Compute C(x̃, x6) � −Σ66[A�]·x̃;
25 Compute C(x̃, x^) � Q̄−1

^^ex̃ +AΣ66[A�]·x̃, using LQ̄^^
;

26 end
27 Calculate CEI(x̃, x),∀x ∈ -;
28 Find xCEI � argmaxx∈-\x̃CEI(x̃, x);
29 Construct {^,6} partition of Q̄ into Q̄^^, Q̄^6, Q̄66;
30 Compute Cholesky factor of Q̄^^: LQ̄^^

;
31 Compute A � Q̄−1

^^Q̄^6, using LQ̄^^
, B � Q̄�̂

6A, a � A�([Qε]^^(Ȳ(x^) − µ^));
32 end
33 Return x̃ as the estimated optimal solution;

g Global search

g Initialization

g Rapid search
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we obtain the following expression for Σ via standard
block-matrix inversion:

∑ �

∑
^^

∑
^6∑�

^6

∑
66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
Q̄−1

^^ + Q̄−1
^^Q̄^6

∑
66

Q̄�̂
6Q̄

−1
^^ −Q̄−1

^^Q̄^6

∑
66

−∑
66

Q̄�
^6Q̄

−1
^^

∑
66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(3)

where Σ66 � (Q̄66 − Q̄�
^6Q̄

−1
^^Q̄^6)−1 is the covariance

matrix of the search set. Our focus is onΣ66 during the
rapid-search iterations. Recall that before beginning
rapid search, rGMIA computes intermediate matrices
A and B. These contain information to computeV(x6)
and C(x̃, x6) during rapid-search iterations without
updating V(x^) and C(x̃, x^). Because only solutions
in 6 are simulated, B � Q̄�

^6Q̄
−1
^^Q̄^6 remains un-

changed during rapid search and needs to be com-
puted only once at the end of the previous global-
search iteration. In addition, we retain the Cholesky
factor of Q̄^^ (that is, LQ̄^^

such that Q̄^^ � LQ̄^^
L�̄
Q^^

),
as well as A � Q̄−1

^^Q̄^6 because they are needed to
update the exact conditional means and variances of the
solutions in ^ efficiently in the next global iteration.

Like the conditional covariance matrix, we parti-
tion the conditional mean vector M(x-):

M x-( ) � µ^

µ6

[ ]
+ Q̄^^ Q̄^6

Q̄�̂
6 Q̄66

[ ]−1
Qε[ ]^^ 0n6×n^
0n^×n6 Qε[ ]66

[ ]

× Ȳ x^( )
Ȳ x6( )

[ ]
− µ^

µ6

[ ]( )
, (4)

where n6 � |6|,n^ � |^|, [Qε]^^ and [Qε]66 are block
matrices ofQε corresponding to ^ and 6, and {Ȳ(x^),
Ȳ(x6)} and {µ^,µ6} are subvectors of Ȳ and µ, re-
spectively. Thus,

M(x6) � µ6 +∑
66

Qε[ ]66 Ȳ x6( ) − µ6

( )(
−A� Qε[ ]^^ Ȳ x^( ) −µ^

( ))
. (5)

During the rapid search, only [Qε]66 and Ȳ(x6) change,
whereas a�A�[Qε]^^(Ȳ(x^)−µ^) remains unchanged;
A,B, LQ̄^^

, and a are intermediate matrices that we
store in memory at the end of each global-search it-
eration. In the following sections, we discuss the
computational details of rapid-search and global-
search iterations.

6.1. Rapid Search
During the rapid-search iterations, we replace sparse-
matrix inversions of very large Q̄ with dense inver-
sions of very small Σ66. From (3), Σ66 � (Q̄66 − B)−1,
which is performed in Step 9 of Algorithm 2. By

construction, Q̄66 is a sparse matrix, but B may be
dense. Hence, the floating point operation (flop) count of
computing Σ66 is 2(n36). Following directly from (5),
Step 10 computes M(x6) by multiplying the dense
n6 × n6 matrix Σ66 by a vector, which costs 2(n26).
Thus, the overall cost of a single rapid-search iteration
is 2(n36). Compared with a single iteration of GMIA,
this can bemademuch cheaper by choosing the size of
the search set n6 � n. Later we consider n6 ranging
from 50–200.
Rapid-search iterations continue until the termi-

nation criterion is reached in Step 6. We propose
two candidate termination criteria and evaluate their
performance empirically in Section 7. The first is to
employ a fixed p − 1 iterations of rapid search, im-
plying that global search is repeated every p itera-
tions. There is a trade-off between large versus small p.
The former brings greater computational savings for
inference by restricting the search to be within 6
longer; however, effectiveness of the search will di-
minish if p is so large that there is not much infor-
mation left to gain from this set. Determining the best
value of p is difficult without complete knowledge of
the response surface of the problem as well as the sto-
chastic error variance at the solutions. Also, the best p
may be different late in the search as opposed to earlier.
We show later that p � n6 is often a reasonable choice.
The second criterion is to stop simulatingwithin the

current search set 6 based on optimality-gap infer-
ence. Consider the following thought experiment: If
we also knew the CEIs of solutions in the fixed set^ at
every rapid-search iteration, thenwewould escape from
6 when all of the CEIs of solutions x6 fall below the
maximum CEI in x^. As an approximation of this ideal
choice,we instead escape6whenmaxx∈6\x̃CEI(x̃,x)< γ,
where γ is a small positive number. In words, we stop
searching within 6when the CEIs of solutions within
6 fall below a threshold, γ, as it implies that only
marginal reduction in the optimality gap is expected
by further exploring6. We refer to this criterion as the
adaptive scheme. A sensible choice for γ is the maxi-
mumCEI of the solutions in^ at the last global-search
iteration.Other choices of γ are possible, but our results
(Lemma 1 and Theorem 1) were developed with this
choice in mind. Clearly, this is not the same as the true
maximum CEI of the solutions in ^, as it does not
reflect the new simulation results obtained during the
rapid-search iterations, and it is calculated with re-
spect to the best solution at the time of the last global
iteration,whichmayhave changed.Nevertheless, this
threshold is a strong indicator that greater improve-
ment might be obtained by exploring solutions in ^.

6.2. Global Search
When the rapid-search termination criterion is met,
rGMIA switches to global search, first selecting x̃
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among all simulated solutions in - in Step 15, then
proceeding to compute the CEIs for all solutions.
Although one might be tempted to compute CEIs of
all solutions as in Steps 3 and 4 in the initialization
phase of rGMIA, this involves factorizing Q̄ and
computing diag(Q̄−1). Then, after choosing 6 and ^,
we would once again need to factorize Q̄^^ and
diag(Q̄−1

^^) to set up the rapid-search iterations. To
avoid doing these expensive computations twice,
rGMIA computes the CEIs of all solutions without
factorizing Q̄, but using the matrices computed in the
previous global-search iteration and the last rapid-
search iteration. In the following, we explain this
scheme in detail.

Steps 16and17 computeV(x6) andM(x6) in the same
way as in Steps 9 and 10 of rapid search. Steps 18
and19computeV(x^) andM(x^), respectively. From(3),∑

^^

� Q̄−1
^^ +A Q̄66 − Q̄�

^6A
( )−1A�

� Q̄−1
^^ +A

∑
66

A�. (6)

BecauseV(x^)�diag(Σ^^), wehaveV(x^)�diag(Q̄−1
^^)+

diag(AΣ−1
66A

�). Recall that A � Q̄−1
^^Q̄^6 is computed

and saved from the previous global-search iteration.
Further, diag(Q̄−1

^^) can be computed by performing a
selected inverse, as discussed in Semelhago et al. (2017),
using the Cholesky factor of Q̄^^ saved from the
previous iteration. Moreover, diag(AΣ66A�) can be
obtained efficiently without computing the entire
matrix by exploiting that the ith diagonal element
ofAΣ66A� is equal to the sum of squared elements of
the ith column vector of ALΣ66

, where LΣ66
is the

lower Cholesky factor of Σ66. This operation costs
2(n36) flops, whereas fully computing AΣ66A� re-
quires 2(n26n). From (4),

M x^( ) � µ^ + Q̄−1
^^ Qε[ ]^^ Ȳ x^( ) − µ^

( )
−A M x6( ) − µ6

( )
. (7)

Notice that Q̄−1
^^[Qε]^^(Ȳ(x^) − µ^) can be computed

efficiently by solving Q̄^^z � [Qε]^^(Ȳ(x^) − µ^) for z
using the Cholesky factor of Q̄^^. Thus, the only
remaining pieces needed for CEI computation are
the covariance vectors.

Because x̃ is selected globally in the global-search
iteration, x̃ can be in either6 or^. This does not affect
the way conditional variances and conditional means
are calculated; however, it does affect the way the
covariance vectors, C(x̃, x6) and C(x̃, x^), are com-
puted. When x̃ ∈ 6, C(x̃, x6) is simply [Σ66]·x̃, the
column of Σ66 corresponding to x̃. Also, from (3),∑

^6

� −Q̄−1
^^Q̄^6 Q̄66 − Q̄�

^6A
( )−1� −Q̄−1

^^Q̄^6

∑
66

� −A∑
66

.

Therefore, C(x̃, x^) � −A[Σ66]·x̃. These are computed
in Steps 21 and 22.
When x̃ ∈^,C(x̃,x6) is a columnofΣ6^ corresponding

to x̃. Because Σ6^ �−Σ66A�, C(x̃, x6) � −Σ66[A�]·x̃.
Similarly, C(x̃, x^) is a column of Σ^^ corresponding
to x̃. From (6), C(x̃, x^) � Q̄−1

^^ex̃ + AΣ66[A�]·x̃. Again,
Q̄−1

^^ex̃ can be computed efficiently by solving Q̄^^z�
ex̃ for z. Steps 24 and 25 perform these computations.
Combining these pieces, rGMIA computes the CEIs

for all solutions in - and constructs a new {^,6}
partition in Steps 28 and 29. Finally, the intermediate
matrices are recomputed according to the new partition
and stored for the next global-search iteration.
The most expensive calculations during a global-

search iteration are the Cholesky factorization of Q̄^^,
performing a selected inverse to compute diag(Q̄−1

^^)
and solving a linear system of equations with Q̄^^.
We use the PARDISO software (Schenk and Gärtner
2018) to perform these calculations, which improves
their efficiency by preprocessing large matrices such
as Q̄^^. Unfortunately, this makes it difficult to char-
acterize the flops required by these calculations. There-
fore, we conducted timing experiments to estimate how
the computation times scale as the number of feasible
solutions and problem dimension grow; see Appendix B
of the online supplement for the results.
Despite the lack of explicitflop counts for PARDISO

calculations, we can still characterize the computa-
tional savings attained by rGMIA compared with
GMIA by parameterizing the flop counts for computing
LQ̄^^

, the Cholesky factor of Q̄^^, for performing a
selected inverse to obtain diag(Q̄−1

^^) given LQ̄^^
, and

for solving a single-column right-hand-side linear
system involving Q̄^^ given LQ̄^^

; we denote these by
CF � CF(&^), CI � CI(&^), and CL � CL(&^), respec-
tively. Note that &^ is the induced graph of solutions
in^ associatedwith the GMRF that uniquely specifies
the sparsity pattern of Q̄^^ and thus determines the
cost of performing these matrix operations.
As previously characterized for rapid-search iter-

ations, computing V(x6) and M(x6) costs 2(n36) flops.
To compute V(x^), it costs CI for diag(Q̄−1

^^) and 2(n36)
flops for diag(AΣ−1

66A
�). For M(x^), it costs CL for

solving a system of linear equations and 2(n6n) for the
matrix-vector multiplication in (7). The cost for co-
variance vector computation depends on whether x̃ is
selected in6or^; the latter case is themost expensive,
costing CL + 2(n6n) flops. In our numerical experi-
ments, we observed that x̃ tends to remain in6 in later
iterations. Finally, computing the intermediate ma-
trices requires CF + n6CL + 2(n26n).
To summarize, a single global-search iteration in-

curs a cost of CF + CI + (n6 + 2)CL + 2(n26n) flops. See
Appendix B of the online supplement for a more
detailed analysis.
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6.3. rGMIA vs. GMIA
To illustrate the computational savings of rGMIA, we
analyze how the number of flops grows for both
GMIA and rGMIA as n increases. Recall that GMIA
factorizes Q̄ at every iteration to compute diag(Q̄−1) and
M(x-). Thus, per-iteration cost of GMIA is 2(CF(&) +
CI(&) + CL(&) + n), where 2(n) comes from comput-
ing Qε(Ȳ − µ) in Step 7 of Algorithm 1. Although
CF(&^) �� CF(&), their difference is negligible as ^
includes most of the solutions in -.

In rGMIA, for a cycle of p − 1 rapid-search iterations
and one global-search iteration, the per-iteration cost
grows as 2(n36 + (CF + CI + n6CL + n26n)/p). Recall that
n6 is small by construction of 6 and CF, CI , CL, and n
are relatively large. In fact, CF, CI , and CL grow at a
rate at least as fast as, and often faster than, n (see
Appendix B of the online supplement for evidence),
suggesting that p should be chosen large to mitigate
the per-iteration cost. Immediately, we see that per-
forming p − 1 rapid-search iterations amortizes the
cost of performing the expensive operations during
the global-search iteration. As the problem size grows, if
we allow p to grow as quickly as CF, CI , and CL grow,
then we can control the cost of expensive matrix
operations in global-search iterations by performing
many rapid-search iterations cheaply. No such con-
trol is available in GMIA, and the number of flops
simply grows without bound. From a computational
standpoint, this explains the power of rGMIA.

To give a sense of the relative time cost of rapid-
search versus global-search computations, consider
Q̄ associated with a two-dimensional DOvS problem
having a 1000 × 1000 feasible region and a randomly
selected search set 6 with n6 � 100. The global cal-
culations of matrix factorization, selected inverse to
obtain the diagonal elements, and solving a single-
column right-hand-side linear system, performed
by PARDISO over 100 trials, took on average 31.17
seconds (0.16 seconds), 44.55 seconds (0.27 seconds),
and 1.09 seconds (0.02 seconds), respectively, with
standard errors in parentheses. Compare this to the
rapid-search operation of computing the inverse of
a dense n6 × n6matrix. UsingMATLAB,withn6 � 100,
such an operation took on average 0.2203 seconds
(0.0087 seconds) over 100 trials. Clearly, global-search
operations are the bottleneck, and they become even
more significant as problem size and dimension in-
creases. More results demonstrating this are found in
Appendix B of the online supplement.

Salemi et al. (2019) show that GMIA without a
stoppingcriterion simulates eachsolutionx ∈ - infinitely
often with probability 1 as the number of iterations
goes to infinity. This establishes global convergence via
the strong lawof largenumbers.Here,weshowthatwith

far superior computational efficiency—demonstrated
empirically in Section 7—rGMIA still achieves global
convergence for either the fixed-p or adaptive schemes;
see Appendix A of the online supplement for the
proofs. To begin, we introduce the following lemma:

Lemma1. At any iteration of GMIA or global-search iteration
of rGMIA, CEI(x̃, x) > 0,∀x ∈ - \ x̃ with probability 1.

This lemma guarantees that, in the adaptive scheme,
our choice of γ � maxx∈^ CEIt(x̃, x) will be positive
with probability 1 after any finite number of iterations
of rGMIA. With the aid of Lemma 1, we establish
global convergence of rGMIA using only the as-
sumptions presented in Salemi et al. (2019) to prove
convergence of GMIA as stated below.

Theorem 1. Assume (i) y(x)>−∞,∀x ∈ -, (ii) 0 < Var
[Y(x)]<∞, ∀x ∈ -, and (iii) the initially estimated Q(θ̂) is
positive definite and not updated, where θ̂ are parameter es-
timates. Given assumptions (i)–(iii), rGMIA, implemented
with either the adaptive or fixed-p < ∞ scheme and without a
stopping condition, simulates each solution x ∈ - infinitely
often with probability 1 as the number of iterations goes
to infinity.

7. Empirical Evaluation
We use three test problems to evaluate different as-
pects of the performance of rGMIA. Thefirst is an (s, S)
inventory optimization problem from Koenig and
Law (1985), which has characteristics of a practical
DOvS problem and has already been used to test the
behavior of GMRF-based optimization algorithms in
Salemi et al. (2019). The objective function is the ex-
pected average cost per period of the inventory system
over 30 periods. To obtain a rectangular feasible region,
we choose thedecisionvariables to be s and S − s. We test
two different sized feasible regions: inventory_100 cov-
ering solutions s×(S−s) � [1,2, . . . ,100]×[1,2, . . . ,100],
and inventory_150 covering solutions s × (S − s) �
[1, 2, . . . , 150] × [1, 2, . . . , 150]. The optimal solution in
both cases is s � 17 and S − s � 36 with an estimated
expected average cost per period of $106.14 based on
500,000 replications at each feasible solution.
The second problem is based on a modified Grie-

wank function; see Bingham and Surjanovic (2017)
for a description. The Griewank function is a popular
test problem because of its many local minima. We
slightly modified the parameters of this function to
make the range larger and the global minimum more
distinguishable. We chose the domain of the Grie-
wank function to be [−5, 5] × [−5, 5] in which it has 5
local minima with the global minimum at (0, 0). The
range of the function is [0, 2.5490]. The four local
minima have response values of 0.6828, compared
with 0 for the global minimum. To create DOvS
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problems based on this surface we project it onto
lattices of varying resolution, resulting in four problems
with feasible regions of increasing size: griewank_101
(101 × 101 � 10,201 solutions), griewank_201 (201 ×
201 � 40,401 solutions), griewank_301 (301 × 301 �
90,601 solutions), and griewank_401 (401 × 401 �
160,801 solutions). To make it stochastic, we added
independent N(0,10−4) simulation noise to the re-
sponse function, mimicking the behavior of a DOvS
problem. Much of the variability in this problem is
driven by the nature of the surface rather than that of the
stochastic simulation noise.

The third problem is “restaurant seating”modified
from a problem available in the SimOpt.org library
(Pasupathy and Henderson 2006): Suppose a res-
taurant has the objective of maximizing profit (or
minimizing negative profit). There are d different
sizes of tables, si, i � 1, 2, . . . , d, and we are to decide
how many of each size of table to make available, xsi .
Customers arrive in groups that range in size from1 to
sd and are seated instantly at the smallest available
table that can seat the entire group. Successfully
seating a group results in revenue r, in $1,000s, per
person. Groups that find no available table upon
arrival leave without waiting. Keeping a size-si table
costs csi × $1,000/hour. The restaurant runs continu-
ously for T hours. We consider three different prob-
lems, restaurant_125, restaurant_25, and restaurant_5,
each having 15,625 feasible solutions, but of different
dimensions: d � 2, 3, and 6, respectively. Table 5 in
Appendix D of the online supplement outlines the
parameters used for each problem.

For all experiments, 10 replications were obtained
at each simulated solution on first visit, and 2 addi-
tional replications on subsequent visits. MLEs of the
GMRF parameters were estimated using a Latin hy-
percube sample of 10d feasible solutions, where d is
the problem dimension. Experiments were run using a
high-performance computing cluster (HPCC) consisting
of three compute nodes, eachwith 40 cores and 256GBof
RAM, and a head node that has 20 cores and 256 GB
of RAM. For each experiment, we ran 30 macro-
replications, setting different random number streams
for each run and assigning a single core for each macro-
replication with sufficient memory to successfully per-
form the experiment.

7.1. Comparing rGMIA to GMIA
We compare the performance of rGMIA to GMIA
considering both fixed-precision and fixed-budget
paradigms. The version of GMIA used for compari-
son adopts the smart sparse linear algebra techniques
discussed in Semelhago et al. (2017). We use the in-
ventory and restaurant problems in the former set-
ting,wherewe evaluate the time until termination and
the resulting achieved optimality gap of the estimated

optimal solution givendesiredgaps of δ � 0.1, 0.05, 0.01.
We use the Griewank problem in the fixed-budget
settingwith a time budget of one hour, comparing the
achieved optimality gap after the budget has been
exhausted for problems of increasing size. To simplify
the comparisons, we ran rGMIA for a fixed search set
size n6 � 50 with p � 10, 25, 50, 100, 200 rapid-search
iterations per global-search iteration, and the adap-
tive scheme. Results in Tables 1–3 indicate that p � 50
performs especially well. For (favorable) compari-
sons of the GMIA approach with other Bayesian
optimization algorithms, see Salemi et al. (2019). The
focus of this paper is providing a computationally
superior way to achieve the same search progress
and inference.
Table 1 contains the results of fixed-precision GMIA

and rGMIA applied to the inventory problem. In each
sub-table, we record the mean and maximum run
times, mean andmaximum achieved optimality gaps,
and mean number of iterations until stopping across
30 macroreplications. “Optimality gap” here refers to
the difference between the true response at the esti-
mated optimal solution and the true minimum of the
response surface. Each column specifies an algorithm
and the desired acceptable optimality gap, δ. The
inventory problems are low-dimensional and have
smaller numbers of solutions compared with other
test problems. However, even in this setting with
relatively cheapcomputational overhead,Table 1 shows
that GMIA’s mean run time is almost an order of
magnitude greater than rGMIA across every choice of
p or the adaptive scheme. Such differences in mean
run time become larger as the problem size increases
(see inventory_100 versus inventory_150). Consider
the scenario where a user wishes to solve the in-
ventory_150 problem to fixed precision given δ � 0.01
and must purchase processor time on an HPCC at an
hourly rate. The user of GMIA would potentially be
required to purchase almost 3 hours of run time,
corresponding to the maximum observed run time
in our experiment (10,068.06 seconds). Whereas, for
rGMIA with p � 50, the maximum observed run time
is under 11 minutes; 16 times faster than GMIA. An
outlier macroreplication was removed from the in-
ventory_150 results. The design points placed in this
run resulted in MLEs that mischaracterized the sur-
face, highlighting a challenge in initial parameter
estimation for both GMIA and rGMIA; they completed
only a single iteration before attaining a maximum CEI
< 0.05, terminating with an achieved optimality gap
of 8.51.
Table 2 highlights the advantage rGMIA has in a

fixed-budget setting using the Griewank problems. For
each problem and algorithm, we examine the achieved
optimality gap at termination and number of itera-
tions that are performed across 30 macro-replications
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after the one-hour time budget has been exhausted.
Keeping dimension fixed (d � 2), as the number of
solutions increases, it becomes more difficult to find
the optimum, because (1) more simulations are re-
quired as there are more feasible solutions and (2)
computational overhead for inference at each itera-
tion increases. However, the latter affects GMIA far
more than rGMIA. For example, the mean number of
iterations GMIA performs within 1 hour in grie-
wank_401 is 1/23of that in griewank_101. The impact
is far milder for rGMIA; for example, the mean
number of iterations of rGMIAwith p � 200 decreases
by 1/2 comparing griewank_401 and griewank_101.
Performing more iterations given a time budget means
more simulations aremade,which ultimatelymanifests in
the optimality gap of the solution returned at termination.
Even thoughgriewank_401 was a difficult problem to
solve for all algorithms tested, we note that GMIA
had a mean optimality gap that was two orders of
magnitude larger than that ofmost settings of rGMIA.
To test the effect of increasing dimensions, we ran

GMIA and rGMIA on the restaurant problems under
the fixed-precision setting. Table 3 contains three sub-
tables corresponding to restaurant_125, restaurant_25,
and restaurant_5 problems. Recall that all three prob-
lems have 15, 625 solutions but have dimensions
d � 2, 3, 6, respectively. This affects both simulation
time as well as computational overhead. To ensure
that optimal solutions are located in the interior of the
feasible region, arrival rates were chosen to be dif-
ferent for each problem; see Table 5 in Appendix D of
the online supplement for details. As a result, the
simulation time per replication generally increases as
the problem dimension decreases. On the other hand,
the computational overhead increases as the preci-
sion matrix becomes denser in higher dimensions.
GMIA spent 50.52%, 8.53%, and 0.18% of its run time
for simulations in restaurant_125, restaurant_25, and
restaurant_5, respectively. This reflects that as the
problem’s dimension increases the precision matrix
becomesdenser and the linear algebra inGMIAbecomes
more costly. For the restaurant_125 problem, Table 3
shows that GMIA actually outperforms rGMIA by
terminating sooner. In this case, the simulation is
relatively more expensive than the linear algebra;
thus, it is more important to select good solutions to
simulate at each iteration from the entire solution
space than reducing the cost of linear algebra by
restricting the search. For the restaurant_25 experi-
ments, however, the mean time until termination of
GMIA increases compared with the restaurant_125
experiments, whereas that of rGMIA decreases. This
is because the simulation is now cheaper and linear
algebra is more expensive; thus, rapid search of
rGMIA pays off. Recall that this combination of
large computational overhead and relatively smallerT
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simulation effort is the setting for which rGMIA was
proposed. Finally, the restaurant_5 problem is higher
dimensional to push the limits of what GMIA can
solve. With a mean run time of over two days across
30 macroreplications for δ � 0.1, GMIA effectively
was unable to terminate. rGMIA was able to return
an estimated optimal solution within δ � 0.1 in two
hours on average.

7.2. rGMIA’s Performance Sensitivity to n6 and p
In this section, we investigate how rGMIA’s perfor-
mance is affected by the search set size. In the pre-
vious section, all experiments used search set size
n6 � 50, and p � 50 rapid-search iterations showed
good performance across all problems. We now vary
the search set size as n6 � 50, 100, 200 and evaluate the
performance of different choices for p, as well as the
adaptive scheme, under the fixed-precision setting.
We provide complete results for all of the test prob-
lems in Tables 6–14 in Appendix D of the online
supplement and summarize our findings here.

Tables 6–14 show that for a given search set size n6,
p � n6 is the best choice. We confirmed that in many
cases when p � n6, all solutions in 6 are simulated at
the end of each rapid search. We speculate that this is
because the spatial diversity among the solutions in
the search set overwhelms the stochastic error at each
solution, which causes CEI to rank not-yet-visited
solutions higher than already-simulated solutions.
As a result, rGMIA tends to include many unvisited
solutions in the search set at each global-search it-
eration and then explores all of them rather than
revisiting a solution multiple times. Therefore, when
p < n6, we do not fully exploit the computational
benefit of rapid-search iterations because there is still
value in simulating the remaining unvisited solutions
in6. On the other hand,when p > n6, rGMIA is forced
to simulate the same solutions in 6 more than once
instead of exploring new solutions. Thus, the adap-
tive scheme does not outperform p � n6.

Nonetheless, we speculate the adaptive scheme
may be useful when δ is small. For example, we can
observe in Table 14 in Appendix D of the online
supplement that for smaller δ, the relative perfor-
mance difference between the adaptive scheme and
p � n6 becomes smaller. This is because for smaller δ,
rGMIA must evaluate more solutions to achieve the
smaller acceptable optimality gap, and later iterations
tend to explore solutionswith poor conditionalmeans
and high uncertainty. Once some of these solutions
are simulated during the rapid-search iterations, rGMIA
may realize that these are in fact bad solutions and it is
sensible to break out of the search set early. On the other
hand, when the search set contains very good solu-
tions then it may be worth exploiting the search set for
more than p iterations to confirm a small achieved

optimality gap. This situationwill also favor using the
adaptive scheme over a fixed p.
From the experiment results, the best choice of n6

appears problem specific. Nevertheless, the run times
indicate that the performance is not sensitive to the
choice of n6. This suggests that there is little penalty in
choosing a suboptimal n6, given that p � n6.

8. Conclusions
A lingering barrier to large-scale DOvS is the inability
to exploit strong problem structure to efficiently
dispense with large portions of the space of feasible
solutions. Inferential optimization is promising in
characterizing DOvS structure statistically and thereby
deemphasizing large portions of the space of feasible
solutions with high confidence. Although the DOvS
problems that can be addressed in this way are still
small in dimension and number of feasible solutions
relative tomathematical programming, gains thus far
have been substantial.
GMIA (Salemi et al. 2019) is the current state-of-the-

art in inferential optimization for DOvS. The focus of
Salemi et al. (2019) was identifying and parameter-
izing an advantageous GP (the discrete GMRFs) and
creating an acquisition function suitable for stochas-
tic simulation (CEI). The focus of this paper is im-
proved computational efficiency via smart compu-
tational linear algebra to greatly extend the reach of
GMIAwithout degrading the inference. The result is a
specific algorithm, rGMIA. However, the central idea
of partitioning a feasible region into a search set and
fixed set, and updating the conditional distributions
efficiently, is generally applicable to DOvS problems
that use the GP conditional distribution for inference.
To realize the full potential of inferential optimi-

zation, future work will need to address some open
questions. Clearly, we need an effective strategy for
allocating simulation effort (i.e., replications) to so-
lutions. More specifically, rGMIA simulates two so-
lutions, x̃ and xCEI, on each iteration, so we need to
specify the number of replications to be obtained to
promote search progress without wasting effort. This
problem is challenging as neither EI nor CEI account
for the cost of simulation or the downstream progress
of the search. And although the alternative KG acqui-
sition function does look ahead, it is only one step ahead
and it does not provide optimality-gap inference.
We have thus far constructed the search set 6 by

simply selecting x̃ and the solutions with the n6 − 1
largest CEI values. Although this method seems to be
effective, there is potential for alternative constructions
that might be better. This is a topic of ongoing research.
Presently, GMIA and rGMIA both assume a se-

quential search; that is, simulation replications are
obtained sequentially on a single processor. With the
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proliferation of parallel computation, it is natural to
extend both algorithms to a parallel paradigm where
multiple solutions or replications can be simulated
simultaneously. This involves deciding which solu-
tions to simulate in parallel and how to efficiently
update relevant statistics and CEI values once the
solutions have been simulated.

Finally, at the present state of development high
dimension is more challenging than number of feasible
solutions: Q̄ becomes less sparse with dimension d.
Salemi et al. (2019) consider projecting less-active
dimensions onto active dimensions; although this
seems promising, creative ideas for addressing large d
are clearly needed.
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