
This article was downloaded by: [165.124.160.156] On: 26 May 2019, At: 13:12
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Gaussian Markov Random Fields for Discrete Optimization
via Simulation: Framework and Algorithms
Peter L. Salemi, Eunhye Song, Barry L. Nelson, Jeremy Staum

To cite this article:
Peter L. Salemi, Eunhye Song, Barry L. Nelson, Jeremy Staum (2019) Gaussian Markov Random Fields for Discrete Optimization
via Simulation: Framework and Algorithms. Operations Research 67(1):250-266. https://doi.org/10.1287/opre.2018.1778

Full terms and conditions of use: https://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2018.1778
https://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


OPERATIONS RESEARCH
Vol. 67, No. 1, January–February 2019, pp. 250–266

http://pubsonline.informs.org/journal/opre/ ISSN 0030-364X (print), ISSN 1526-5463 (online)

Gaussian Markov Random Fields for Discrete Optimization via
Simulation: Framework and Algorithms
Peter L. Salemi,a Eunhye Song,b Barry L. Nelson,c Jeremy Staumc

aThe MITRE Corporation, McLean, Virginia 22102; bDepartment of Industrial and Manufacturing Engineering, The Pennsylvania State
University, University Park, Pennsylvania 16802; cDepartment of Industrial Engineering and Management Sciences, Northwestern
University, Evanston, Illinois 60208
Contact: psalemi@mitre.org, https://orcid.org/0000-0001-9040-8082 (PLS); eus358@psu.edu, https://orcid.org/0000-0002-5171-0614 (ES);
nelsonb@northwestern.edu, https://orcid.org/0000-0002-1325-2624 (BLN); j-staum@northwestern.edu,

https://orcid.org/0000-0001-6163-2624 ( JS)

Received: July 16, 2015
Revised: May 6, 2016; March 29, 2017;
July 25, 2017
Accepted: October 5, 2017
Published Online in Articles in Advance:
January 18, 2019

Subject Classifications: simulation:
statistical analysis; simulation: efficiency;
simulation: design of experiments
Area of Review: Simulation

https://doi.org/10.1287/opre.2018.1778

Copyright: © 2019 INFORMS

Abstract. We consider optimizing the expected value of some performance measure of
a dynamic stochastic simulation with a statistical guarantee for optimality when the
decision variables are discrete, in particular, integer-ordered; the number of feasible so-
lutions is large; and the model execution is too slow to simulate even a substantial fraction
of them. Our goal is to create algorithms that stop searching when they can provide
inference about the remaining optimality gap similar to the correct-selection guarantee of
ranking and selection when it simulates all solutions. Further, our algorithm remains
competitive with fixed-budget algorithms that search efficiently but do not provide such
inference. To accomplish this we learn and exploit spatial relationships among the decision
variables and objective function values using a Gaussian Markov random field (GMRF).
Gaussian random fields on continuous domains are already used in deterministic and
stochastic optimization because they facilitate the computation of measures, such as ex-
pected improvement, that balance exploration and exploitation. We show that GMRFs are
particularly well suited to the discrete decision–variable problem, from both a modeling
and a computational perspective. Specifically, GMRFs permit the definition of a sensible
neighborhood structure, and they are defined by their precision matrices, which can be
constructed to be sparse. Using this framework, we create both single and multiresolution
algorithms, prove the asymptotic convergence of both, and evaluate their finite-time
performance empirically.

Funding: This article is based on work supported by the National Science Foundation Division of
Civil, Mechanical and Manufacturing Innovation [Grant CMMI-0900354].

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2018.1778.
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1. Introduction
Optimization plays a central role in operations research.
Formany practical stochastic optimization problems, the
objective function cannot be evaluated exactly and in-
stead must be estimated using simulation. Such prob-
lems require optimization via simulation (OvS). OvS
problems in which the decision variables can only as-
sume discrete values are called discrete optimization via
simulation (DOvS) problems, and they present partic-
ular challenges. In this paper, we focus on DOvS with
integer-ordered decision variables.

Becaue of its practical importance, DOvS has been an
active area of research for many years. Remarkable
theoretical and practical success has been achieved
using exhaustive search algorithms known collectively
as ranking and selection (R&S). R&S simulates all fea-
sible solutions and terminates with either a guaranteed
probability of correct selection (frequentist) or posterior

assessment of the relative quality of the selected solution
(Bayesian); see Kim (2013) and Frazier (2012), respec-
tively, for surveys. These guarantees are comforting
because evenwhen all feasible solutions are simulated it
is not possible to promise optimality in finite time except
in very special cases.
When the number of feasible solutions is too large to

exhaust, then many DOvS algorithms employ adaptive
random search (ARS). These algorithms attempt to le-
verage, in an informal way, anticipated spatial structure,
such as “good feasible solutions tend to be clustered.”
ARS algorithms are usually proven to be either glob-
ally or locally convergent as the simulation effort in-
creases without bound. See, for example, the survey in
Nelson (2010).
In this paper, we provide a DOvS framework to for-

mally learn spatial relationships, to balance exploration
and exploitation, and to facilitate a stopping criterion
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that considers the uncertainty at feasible solutions
that have and have not been simulated for large-scale
problems. Loosely speaking, we want efficient search
with R&S-like conclusions when we stop. We represent
the objective-function response surface as a Gaussian
random field (GRF) because GRFs support assessments
of the benefit of expending simulation effort in various
ways and statistical inference on the potential of unseen
solutions. GRF-based optimization methods were in-
troduced for deterministic computer experiments in
Jones et al. (1998), followed byHuang et al. (2006),which
considered computer experiments with noisy output.
Recently, Quan et al. (2013) and Xie et al. (2016) created
GRF-based optimization methods for DOvS. All of
these methods use a GRF with a continuous domain and
then project the problem into the discrete setting. Un-
fortunately, the standard covariance functions for con-
tinuous domains lead to a dense covariance matrix, and
the inverse of this matrix is used for fitting the GRF and
generating inference that guides the search. Therefore,
methods based on a continuous covariance function can
encounter difficulties for large-scale problems with many
feasible solutions because of slow and ill-conditioned
numerical computations and (more importantly for this
paper) can give misleading inference upon stopping.

A central contribution of this paper is creating a GRF
that is appropriate for the DOvS problem. Specifically,
we model the objective function values at the feasible
solutions as a realization of a discrete GaussianMarkov
random field (GMRF) (Rue andHeld 2005). TheMarkov
structure of GMRFs is intuitive for problems in oper-
ations research (Salemi et al. 2013). For example, if we
are interested in predicting the value of the objective
function at a feasible solution, then the values of the
objective function at the feasible solutions in a neigh-
borhood of it would often be sufficient; other feasible
solutions would provide little additional information.
This type of structure can be represented in a GMRF,
and the neighborhood is user selected. Further, GMRFs
can be defined on a lattice, so the use of GMRFs in
DOvS problems is more natural than using a GRF with
a continuous domain. Most importantly, the Markov
structure lends itself to efficient and numerically stable
calculations for large-scale problems. The dependence
in a GMRF is defined by its precision matrix, which is
the inverse of the covariance matrix. Using the Markov
structure of GMRFs, the precision matrix can be con-
structed to be sparse. Thus, we can use sparse-matrix
methods to calculate expressions that involve the pre-
cision matrix.

Although our GMRF framework facilitates the use
of sparse-matrix methods that support algorithms
for large numbers of feasible solutions, there will,
nevertheless, be a computational limit on the size of
problem we can handle directly. A second contri-
bution of this paper is to extend the GMRF approach to

a multiresolution framework that can be used to solve
DOvS problems with vast numbers of solutions. The
multiresolution framework exploits a region-level GMRF
to learn about the quality of disjoint regions of the so-
lution space and solution-level GMRFs to learn about
the quality of individual feasible solutions within each
region.
A third contribution is to demonstrate that expected

improvement (EI) combined with our framework can
provide effective inference for terminating the search
when the estimated optimality gap is small enough.
Jones et al. (1998) first introduced EI for optimization
problems with deterministic computer experiments.
In their setting, the objective function can be observed
without noise, so their EI criterion does not incorporate
the uncertainty in the output from a stochastic simu-
lation. We show how to correctly calculate EI for
a GMRF + noise, which turns out to be similar to
Williams et al. (2000). To distinguish our result from
EI for deterministic experiments, we call it complete
expected improvement (CEI); it is “complete” in the
sense that it incorporates the uncertainty in stochas-
tic simulation by treating the value at the current
sample–best solution as a random variable, just like
the values of the feasible solutions being considered to
improve it.
The paper presents both a GMRF framework within

which algorithms can be designed and specific solution-
level and multiresolution DOvS algorithms. Both al-
gorithms are shown to converge to a globally optimal
solution as simulation effort increases under very mild
conditions (essentially finite variance). More impor-
tantly, however, these algorithms can self-terminate
well short of infinite effort with statistical assurance
about the optimality gap; this inference, which de-
pends on the GMRF assumptions, is a central feature
of our work.
In the next section, we present the GMRF framework,

which includes defining GMRFs and explaining how
they can represent a DOvS problem. Section 3 details
a specific solution-level DOvS algorithm, including
parameter estimation and sparse-matrix calculation
techniques. For problems with vast numbers of feasible
solutions, we extend the framework to a multiresolution
algorithm in Section 4. Results of numerical experiments
are found in Section 5.

2. A Framework for DOvS Using GMRFs
A GMRF is a nondegenerate multivariate Gaussian
random vector Y � (Y1, Y2, . . . , Yn)u that is associated
with an undirected and labeled graph & � (9, %),
where 9 denotes the set of nodes and % denotes the set
of edges; see Rue and Held (2005). Each node in 9 is
associated with a unique element of Y. Two nodes in
the graph are called neighbors if they are connected by
an edge. If we denote the mean vector and precision
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matrix of Y by µ andQ, respectively, then we can write
the probability density function of the GMRF as

f (y |µ,Q)�(2π)−n/2 |Q|1/2 exp − 1
2
(y − µ)uQ (y − µ)

( )
,

where the positive-definite precision matrix Q is the
inverse of the covariance matrix. The diagonal entries
of the precision matrix are the conditional precisions
Prec (Yi | Y9\{i}) � Qii, where Y9\{i} is the vector of
values of the GMRF observed only at the nodes 9\{i}.
The scalar precision Qii is the reciprocal of the condi-
tional variance. The off-diagonal elements are pro-
portional to conditional correlations; specifically,
Corr (Yi, Yj | Y9\{i,j}) � −Qij/

��������
QiiQj j

√
, where Y9\{i,j} is

the vector of values of the GMRF observed only
at the nodes 9\{i, j}. The graph & determines the
nonzero pattern of the precision matrix Q and vice
versa because for a GMRF Qij ≠ 0 if and only if
{i, j} ∈ %. Thus, the precision matrix will be sparse if
the set of edges is small and vice versa. GMRFs are
“Markov” because they possess the local Markov
property

Yi’Y9\{i,1(i)} | Y1(i) for every i∈9,

where 1(i) is the set of neighbors of node i in &; that
is, 1(i) � {j :{i, j}∈ %}.

To better understand the local Markov property,
consider the left-hand graph & in Figure 1, which
represents a portion of a feasible region where the
nodes correspond to solutions xu � (x1, x2) with con-
straint x1 < x2. If we observe the values of the GMRF at
x � (0, 3), (1, 4), (2, 3), and (1, 2), then our prediction of
the value of the GMRF at (1, 3), conditional on that

information, does not depend on the GMRF at any
other lattice point in the graph. The Markov property
does not imply that nodes far away from one another
are independent, but rather that if we know the value
of the GMRF at nodes close by, then we can ignore
nodes farther away conditional on those values. To
completely specify a GMRF, we only need to specify
the mean µ and the precision matrix Q, whose non-
zero pattern is associated with the structure of the
graph &. A problem-appropriate GRF is important
because our stopping inference will be with respect
to it.

2.1. A Precision Matrix for DOvS
In a DOvS problem with integer-ordered decision
variables, the feasible region - is a finite subset of the
d-dimensional integer lattice Zd. Thus, the straight-
forward construction of the graph & � (9, %) starts
with defining the nodes of the graph 9 to be -. To
finish the construction of &, we must specify the
neighborhood structure for any given node/solution.
Two sensible neighborhoods for a solution x ∈-

are 1(x) � {x′ ∈- :‖x − x′‖2 � 1}, which has up to 2d
neighbors in d dimensions, and 1+(x) � {x′ ∈- :
‖x − x′‖∞ � 1} , which has up to 3d − 1 neighbors in
d dimensions. Both are illustrated in Figure 1 for d � 2.
Because we are particularly interested in DOvS

problems with large feasible regions and because
(roughly speaking) the more sparse Q is, the larger the
DOvS problems we can solve, our algorithm will use
the neighborhood structure 1(x). For this neighbor-
hood, the fraction of nonzero entries in the precision
matrix Q is bounded above by (2d + 1)/|-| , which is
very small for large problems. Although we assume

Figure 1. (Color online) A Portion of Two Graphs & � (9, %) Corresponding to a Subset of the Integer Lattice Z2 with the
Constraint x1 < x2 and Illustrating the Neighborhoods 1(x) (Left) and 1+(x) (Right)
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this specific neighborhood for efficient computations,
our GMRF framework allows any neighborhood
structure, and our convergence proofs do not depend
on it.

Defining the graph &, and thus the nonzero pattern
of the precision matrix, does not specify the values of
the nonzero entries of Q. A standard approach is to
have the entries of Q given by a function p(x, x′;θ),
where θ is a vector of parameters; that is, Qij ≜
p(xi, xj;θ). For the neighborhood1(x), we propose θ �
(θ0,θ1,θ2, . . . ,θd)u and

p(x, x′;θ) �
θ0, if x � x′

−θ0θj, if |x − x′ | � ej
0, otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

for x, x′ ∈Zd, where ej is the jth standard basis vector.
Recall that Qii is the conditional precision of solution i,
and −Qij/

��������
QiiQj j

√
is the conditional correlation be-

tween solutions i and j. Thus, θ0 is the conditional
precision of each solution, and θj is the conditional
correlation between solutions that differ by one in the
jth coordinate direction. That the conditional corre-
lations can depend on the coordinate direction is
important to allow for response surfaces that change
more rapidly in one direction as compared with
another.

Because the conditional precisions must be positive,
it follows that θ0 > 0. We also want neighbors to have
nonnegative conditional correlations, so we restrict
the values of θ1,θ2, . . . ,θd to be nonnegative as well.
Furthermore, we need θj ≤ 1 for j � 1, 2, . . . , d because
the conditional correlations must be less than one.
Finally, Q should be positive-definite. Exploiting these
restrictions, we calculate the maximum likelihood es-
timates of the parameters; see EC.2 in the e-companion
to this paper. With this parameterization and these
restrictions, Q is a nonsingular M matrix, so its inverse
is nonnegative; that is, [Q−1]ij ≥ 0 for all i and j. In other
words, there are no negative unconditional correlations
among nodes in the GMRF, which is a property that
makes sense in many DOvS problems.

In summary, this parameterization is compact (d + 1
parameters), captures key features we expect in DOvS
problems, and all but θ0 are upper and lower bounded,
which facilitates estimation. Notice that, even though
we construct the precision matrixQ(θ) to be sparse, the
covariance matrix it implies, Q(θ)−1, will typically be
dense as it should be.

2.2. A GMRF Representation of DOvS
We consider the DOvS problem, minimize y(x)≜
E[Y(x)] subject to x∈-, where - is a finite subset of the
d-dimensional integer lattice Zd and n ≜ |-| . The dis-
tribution of the random variable Y(x) as a function
of the feasible solution x is unknown. However, the

expectation y(x)≜ E[Y(x)] can be estimated via sto-
chastic simulation. Formally, we are able to observe

Yj(x) � y(x) + ε j(x) (2)

for any feasible solution x on replication j � 1, 2, . . . ,
where {ε j(x)} are independent and identically distrib-
uted (i.i.d.) with mean zero and finite variance that
may depend on x. In the following we also assume
that the ε j(x) are normally distributed. Although we
assume the ability to make replications in this paper,
a single-run steady-state simulation setting could be
accommodated with, say, batch means playing the
role of Yj(x).
Let y denote the vector of objective function values

(y(x1), y(x2), . . . , y(xn))u. Of course, y is unknown, so
we model it as a realization of the GMRF

Y≜ (Y(x1), Y(x2), . . . , Y(xn))u~1(µ,Q(θ)−1) (3)

with mean vector µ and precision matrix Q(θ) as de-
fined earlier.
Similar to virtually all methods for optimization

based on GRFs, the essence of our approach is to use
the conditional distribution of the GMRF after having
simulated some feasible solutions as the guidance
and inference engine for our search. Throughout the
paper we use the term “design point” to refer to
a feasible solution x that has been simulated for any
number of replications, and we use the terms “point”
and “feasible solution” interchangeably. Therefore,
we are interested in the conditional distribution of
the GMRF given simulation output at the design
points.
Let Ξ2 ⊆- denote the current set of design points and

partition - into the two disjoint sets Ξ2 and Ξ1�-\Ξ2.
Thus, Ξ2 is the set of feasible solutions that have been
simulated, and Ξ1 is the set of feasible solutions that
have not. For simplicity, we use “1” as a subscript to
denote quantities associated with the set Ξ1 and “2” as
a subscript to denote quantities associated with the
set Ξ2. For instance, n1 � |Ξ1| and n2 � |Ξ2| are the
numbers of solutions in each set.
Using these disjoint sets, we can partition the vectors

y, Y,µ and the precision matrix Q(θ) and rewrite ex-
pression (3) as

Y1

Y2

( )
~1

µ1
µ2

( )
, Q11(θ) Q12(θ)

Q12(θ)u Q22(θ)
( )−1( )

.

Let =̄2 be the vector of sample means of the simula-
tion output at the design points. Consistent with the
output model (2), we represent =̄2 as a realization of
the GMRF Yε

2 � Y2+ε with Y2 and ε independent and
ε ~1(�0n2×1,Q−1

ε ), where Qε is the intrinsic precision
matrix of the noise inherent to the stochastic simulation
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output =̄2. When we simulate design points indepen-
dently, Qε is a diagonal matrix whereas when we
simulate with common random numbers (CRN), Qε is
a dense matrix. The values in Qε also depend on how
many replications have been averaged, which need
not be the same at all design points. In EC.1 in the
e-companion, we prove the following:

Theorem 1. The conditional distribution of Y given Yε
2 �

=̄2 is

1
µ1
µ2

( )
+ Q̄ (θ)−1 �0n1×1

Qε (=̄2 − µ2)

( )
, Q̄(θ)−1

( )
, (4)

where

Q̄(θ)≜ Q11(θ) Q12(θ)
Q12(θ)u Q22(θ)

( )
+ 0n1×n1 0n1×n2

0un1×n2 Qε

( )
is the conditional precision matrix and 0ni×nj is the ni × nj
matrix of zeros.

Remark. The sparsity of Q̄(θ) is inherited from the
sparsity ofQ(θ) andQε . Furthermore, as is discussed in
Section 3.2, we can avoid direct inversion of Q̄(θ) using
sparse-matrix methods.

2.3. Indifference-Zone R&S and
Expected Improvement

Our goal is to create a framework for DOvS algorithms
that are self-stopping with inference similar in spirit to
that of indifference-zone (IZ) R&S but only simulating
a small fraction of the feasible solutions. This is clearly
impossible without a useful model of the unknown
objective function, and we propose a GMRF—with
appropriate neighborhood structure and parameter-
ization—that is observed with noise.

Let x⋆ denote the unknown best of the n feasible
solutions, which we assume for simplicity of exposition
is unique: x⋆ � argminxy(x). Let x̃ be the selected so-
lution by whatever method. Two standard objectives
in IZ R&S are attaining a desired probability of cor-
rect selection (PCS) Pr{x̃ � x⋆|minx≠x⋆y(x) − y(x⋆) ≥ δ}
≥ 1 − α and attaining a desired probability of a good
selection (PGS) Pr{y(x̃) − y(x⋆) ≤ δ} ≥ 1 − α. Both state-
ments refer to properties of the R&S procedure aver-
aged over the stochastic (intrinsic) simulation noise.
Our approach is more akin to PGS than PCS in that we
make no assumption about the gap between the best
and next-best feasible solution, but we do require
the user to provide a smallest practically significant
difference δ measured in the same units as the re-
sponse y(x).

Using our notation, the standard definition of EI for
a feasible solution x is

EIt(x) � E[max{0, Y(x̃t) − Y(x)}|=̄2
t], (5)

where we have appended a superscript t to indicate
quantities available at the end of the tth iteration of an
algorithm. In the original EI criterion for deterministic
computer experiments of Jones et al. (1998), Y(x̃t) � y(x̃t),
the true value of the best solution simulated through
iteration t (which is unambigously known), and the only
uncertainty in Y(x) is due to the conditional distribution
of the GRF Y(x). Clearly, this is inappropriate when the
output is from a stochastic simulation, so there have been
attempts to account for noise, most prominently Modi-
fied Nugget Effect Kriging (Quan et al. 2013) and aug-
mented EI (Huang et al. 2006). However, these attempts
are incomplete in the sense that they do not average over
all sources of uncertainty.
To distinguish it from these other versions, we use the

term complete expected improvement for the mathemati-
cally correct evaluation of (5) under our GMRF + noise
model. CEI averages over both the full conditional
joint distribution of the GMRF Y(x) and the simulation
noise given the observed simulation outputs up through
the current iteration. It is, in this sense, “complete,” but it
is still EI. Because we intend to use EI for stopping in-
ference, it is important to evaluate it correctly. See EC.8
in the e-companion for further analysis of how CEI is
different from deterministic EI.
Given the simulation output =̄t

2, the conditional joint
distribution of Y(x̃t) and Y(x) is bivariate normal with
parameters from the rows and columns of Equation (4)
corresponding to x̃t and x. Denote the conditional
means by Mt(x̃t) and Mt(x), the conditional variances
by Vt(x̃t) and Vt(x), and the conditional correlation by
ρt(x̃t, x). Let

Vt(x̃t, x)≜Vt(x̃t) + Vt(x) − 2ρt(x̃t, x)
���������������
Vt(x̃t)Vt(x)

√
be the conditional variance of the difference
Y(x̃t) − Y(x). Then the CEI of solution x, CEI(x), is

CEIt(x) � (Mt(x̃t) −Mt(x))Φ Mt(x̃t) −Mt(x)�����������
Vt(x̃t, x)√⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

�����������
Vt(x̃t, x)

√
φ

Mt(x̃t) −Mt(x)�����������
Vt(x̃t, x)√( )

,

(6)

where φ and Φ are the density and cumulative dis-
tribution function, respectively, of a standard normal
random variable. We used the expression for EI in
Jones et al. (1998) to derive (6) by noting that condi-
tional on =̄

t
2 the difference Y(x̃t) − Y(x) is a Gaussian

random variable with mean Mt(x̃t) −Mt(x) and vari-
ance Vt(x̃t, x).
We propose stopping when

max
x≠x̃t

CEIt(x) ≤ δ, (7)
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where x̃t is the sample best solution (smallest sample
mean) through iteration t and simulating the feasible
solution with the largest CEI(x) when it is not. This
stopping criterion has been suggested in other EI-based
methods, such as Huang et al. (2006). Here is why we
adopt it:

• We chose this definition of x̃t because it is the
solution we would actually select if we stopped;
x̃t � minx Mt(x) is another viable choice, but we consider
x̃t � minxȲ(x) more reliable in that our GMRF, as with
any GRF, is a useful model, but Ȳ(x) is a direct estimator
free of the estimated parameters of GMRF.

• PCS/PGS provide guarantees averaged over the
stochastic simulation noise; CEIt(x) goes further by av-
eraging over the remaining uncertainty about the values
of y(x), both simulated and not simulated as represented
by the conditional distribution of the GMRF. Both
relate to the optimality gap between the selected and
best solution. Thus, EI is a logical extension when not
all n solutions have been simulated as they are in R&S.

• Because EI evaluates improvement of each solution x,
we take the maximum of EIs to decide whether to stop.
One can choose to stop when improvement from the
smallest possible response value given by theGMRF is less
than δ; that is, E[max{0, Y(x̃t) − minx∈- Y(x)}|=̄t

2] ≤ δ.
However, this criterion can be overly conservative for
large -.

Although EI is consistent with IZ R&S, other mea-
sures could be used. For instance, the knowledge
gradient (KG) chooses the next solution to simulate by
looking forward to the impact on the estimated value of
the optimal solution via the predictive distribution
obtained from allocating one or more observations to x.
In our notation, assuming a fixed number of replica-
tions per iteration and formulated so that the KG is
positive like EI,

KGt(x) � min
x′

E[Y(x′) |=̄t
2] − E

[
min
x′

Y(x′) | =̄t
2, x

t+1 � x
]
.

(8)

In words, EI estimates the optimality gap given the
current data, and KG seeks the steepest descent di-
rection to improve the optimal solution in the next
iteration. One could stop a search when all of the KGs
are small, implying that little additional improvement
is possible; that is, maxx KG(x) ≤ ε for some small ε.
However, it is not appropriate to choose ε � δ as the
improvement from a single iteration is small although
the optimality gap of the current optimal solution is
bigger than δ. KG-based stopping is more natural when
there is a cost to continued simulation and one wants to
know if it is worth the effort.

3. A Solution-Level Algorithm
In this section, we present an instance of our frame-
work, the Gaussian Markov improvement algorithm

(GMIA). We refer to it as a “solution-level algorithm”
because the nodes of the GMRF correspond to indi-
vidual feasible solutions x, and we employ the
neighborhood structure 1(x) described in Section 2.1.
An outline is given in Section 3.1. We then describe
efficiently calculating the conditional distribution (4)
using sparse-matrix techniques in Section 3.2. GMIA
represents specific choices that we have made and
found effective, but additional enhancements, other
neighborhood structures, and fine-tuning using known
properties of a specific problem are certainly possible.
Even using sparse-matrix techniques, |-| can be so
large that direct application of GMIA is computa-
tionally impossible. To address such cases, we describe
a multiresolution algorithm in Section 4 that exploits
a region-level GMRF as well as solution-level GMRFs;
to the best of our knowledge, this is the first such
algorithm.

3.1. GMIA Outline
GMIA utilizes CEI to search for solutions to simulate
and to stop when it drops below a specified thresh-
old δ.

GMIA
0. Generate a set of ks design points. Simulate r

replications for each design point and use the simu-
lation output to calculate the maximum likelihood
estimates (MLEs) for the GMRF parameters using the
method in EC.2 in the e-companion.

1. Let x̃, the current sample-best solution, be the
design point with the smallest sample mean.

2. Calculate the CEI with respect to x̃, defined in
Section 2.3, for each candidate feasible solution. If
maxx≠x̃CEI(x) ≤ δ, then go to step 5. Otherwise, go to
step 3.

3. Simulate r replications at both x̃ and the candidate
feasible solution x∗CEI that maximize the CEI over the set
of all candidate feasible solutions.

4. Update the simulation output at x̃ with the new
replications. If x∗CEI is a design point, then update the
simulation output at x∗CEI and go to step 1. If x∗CEI is not
a design point, then add x∗CEI to the set of design points,
add the simulation output obtained at x∗CEI to the
collection of simulation output, and go to step 1.

5. Return x̃ as the estimated optimal solution.
The inputs to the algorithm are the initial number of

design points ks, the number of replications to be al-
located each time a solution is simulated r (which can
be adaptive provided r> 0), and the smallest practically
important optimality gap δ.

3.2. Calculating theConditional Distribution andCEI
Substituting the plug-in estimate Q̂ε for the intrinsic
precision matrix and the MLEs θ̂ and β̂0 for the pa-
rameters of the GMRF (see EC.2 in the e-companion)
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into the conditional distribution (4), we obtain the esti-
mated conditional distribution

1

(
β̂01n×1 + Q̄ (θ̂)−1

(
�0n1×1

Q̂ε (=̄2 − β̂01n2×1)

)
, Q̄(θ̂)−1

)
, (9)

where

Q̄(θ̂)≜

(
Q11(θ̂) Q12(θ̂)
Q12(θ̂)

u Q22(θ̂)

)
+
(
0n1×n1 0n1×n2
0un1×n2 Q̂ε

)
.

In this conditional distribution, we ignore the vari-
ability that is added from estimating themean β0, so the
conditional covariance matrix is still Q̄(θ̂)−1.

The computationally expensive calculation re-
quired to compute the conditional distribution is in-
version of the matrix Q̄(θ̂). Inverting a dense n× n
matrix is, in general, O(n3). However, our matrix is
sparse, and with our proposed neighborhood struc-
ture, the fraction of nonzero elements is bounded
above by (2d + 1)/n. To compute all n − 1 CEIs we
need only the n diagonal elements of Q̄−1(θ̂) and the
n − 1 off-diagonal elements of one column. Methods
for computing selected elements of diagonal-dominant
sparse matrices can be used to get the diagonal elements
and very few others. Most such methods are based on
the pioneering paper by Takahashi et al. (1973) with
more recent variations and applications found in
Erisman and Tinney (1975), Niessner and Reichert
(1983), and Vanhatalo and Vehtari (2012) and imple-
mented in packages such as PARDISO (http://www.
pardiso-project.org/). The one column we need can be
obtained by a direct back-solve. Further, using the sparse-
matrix format, the storage required to retain Q̄ is linear
in the (small) number of nonzero elements. In EC.7 in
the e-companion, we provide some additional insight
into how our specific neighborhood structure can be
exploited. For our proof-of-conceptGMIAandMR-GMIA
(which follows) we used the general-purpose sparse-
matrix methods in Matlab, but custom code can fully
exploit the techniques described herein.

3.3. Asymptotic Convergence of GMIA
GMIA exploits the GMRF framework to terminate when
the expected improvement from additional searching is
small. Under very mild conditions, GMIA, without any
stopping condition, converges with probability one to
a globally optimal solution. This result does not depend
in any way on the validity of the GMRF framework,
but only on the following assumptions:

Assumption A. y(x)> −∞ for all x∈-.
Assumption B. 0<Var[Y(x)]< +∞ for all x∈-.

Assumption C. The initial estimated precision matrixQ(θ̂)
is positive-definite and is not updated thereafter.

In EC.3 in the e-companion, we prove the following
theorem:

Theorem 2. The GMIA algorithm without a stopping
condition simulates each solution x∈- infinitely often with
probability one as the number of iterations goes to infinity.

As a consequence of Theorem 2, the fact that the
number of feasible solutions n is finite, and that the
estimated optimal solution is the simulated solution
with the smallest sample mean, the asymptotic con-
vergence of GMIA follows by the strong law of large
numbers.
Theorem 2 does not depend on our chosen neigh-

borhood structure being “correct,” nor does it depend
on having “good” parameter estimates for the GMRF.
In fact, the result will hold with any neighborhood and
GMRF parameterization that satisfies Assumption C.
The efficiency of the CEI computations and the val-
idity of the CEI inference will be improved by good
choices and estimates, however. Further, we can relax
Assumption C and allow µ̂ and θ̂ and, therefore,Q(θ̂)
to be updated a finite number of times.

4. The Multiresolution Framework
and Algorithm

The core problem in DOvS is balancing exploration and
exploitation. Optimization based on the Gaussian
process obtains this balance by incorporating measures
such as EI to guide the search. Although a local search
can be used to find a point that maximizes EI or KG
locally (Xie et al. 2016), to fully benefit from this ap-
proach, we a need to compute an EI or KG measure for
every feasible solution on every iteration. There will
always be feasible regions- that are too large for this to
be possible. What constitutes “too large” depends on
a number of implementation-specific and problem-
specific factors.
In this section, we show that our GMRF framework

lends itself to a powerful multiresolution extension:We
first partition - into m disjoint regions 31,32, . . . ,3m,
where each region is a subset of- that is connected in the
graph &. Then we let the nodes of a region-level GMRF
represent ameasure of the overall solution qualitywithin
each regionwith a neighborhood structure again defined
by proximity (i.e., adjacent regions). The region-level
GMRF provides global guidance by facilitating a CEI
comparison among regions. As in the previous section,
the quality of individual solutions within a region 3j is
represented by a solution-level GMRF except that the
GMRFs for 3j and 3ℓ for j≠ ℓ are assumed to be
independent.
In this framework, the solutions across regions are

connected by the region-level GMRF rather than by
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their neighboring individual solutions, and the solu-
tions within a region are connected by their solution-
level GMRF. We want the regions to have a large
number of feasible solutions to make the independence
approximation reasonable but not so many that we
cannot efficiently calculate the CEI for each individual
solutionwithin a region. Further, it is beneficial (but not
required) that the regions be of similar shape and
contain a similar number of feasible solutions. Figure 2
shows a (very small) region-level and four solution-
level GMRFs of a rectangular feasible region for (x1, x2).
Conceptually, we are not limited to just two resolu-
tions: a GMRF for regions of regions could also be
defined. Fortunately, region-level and solution-level
GMRFs will be sufficient for many problems of prac-
tical interest.

In the multiresolution framework, the region-level
GMRF describing the quality and spatial structure of
regions has its own mean and precision matrix as
described in the following. The solution-level and the
region-level GMRFs work together to balance explo-
ration and exploitation and terminate when the joint
CEIs fall below a threshold. The specific multi-
resolution algorithm described in this section is a first
step toward realizing this general framework, and it is
particularly well suited to low-dimension problems
with vast number of solutions. In Section 5.3, we
demonstrate a variation that facilitates solving higher-
dimensional problems.

The response associated with the region 3ℓ is

z(3ℓ) � |3ℓ |−1
∑
x∈3ℓ

y(x).

That is, the measure of region-level quality z(3ℓ) is the
average of the objective-function values of all solutions
in 3ℓ. Similar to the solution-level GMRF, we model

z � (z(31), z(32), . . . , z(3m))u as a realization of a region-
levelGMRFZ≜ (Z(31),Z(32), . . . ,Z(3m))u~1(η,T(τ)−1)
withmean vector η and precisionmatrixT(τ) as a function
of parameters τ, which are analogous to µ,Q(θ), and θ
at the solution level. Similar to the solution-level GMRF,
our main interest is to find the conditional distribution of
Z given observations from design regions.
Let 3 � {31,32, . . . ,3m} denote the set of region-

level “feasible solutions.” A “design region” 3ℓ is
any region for which at least one of its feasible solutions
x has been simulated; that is, there exists x∈3ℓ such
that x ∈ Ξ2. The set of design regions is denoted by Π2,
and Π1 � 3\Π2. We can partition z,Z,η, and T(τ)
usingΠ1 andΠ2 as we did at the solution level. Within
design region 3ℓ, let Ξ2(3ℓ)⊆3ℓ be the set of feasible
solutions in 3ℓ that have been simulated, and let
Ξ1(3ℓ) � 3ℓ\Ξ2(3ℓ). See EC.4 in the e-companion for
a justification and complete specification of the region-
level GMRF.
For the solution-level GMRFs, we may choose to fit

a different set of parameters for each region—µ
ℓ
and θℓ

for 3ℓ—or assume all regions share the same solution-
level parameters µ and θ, which substantially reduces
the computation for parameter estimation. We employ
the latter approach in experiments.
In EC.4 in the e-companion, we present a detailed

version of MR-GMIA. On each iteration of the algo-
rithm, we select three regions in which to run simula-
tions: (i) the design region 3min that contains the
solution with the smallest sample mean among all
simulated solutions in -, (ii) the design region 3̃ that
has the smallest region-level estimator ]̄(3ℓ) among
3ℓ ∈Π2 (see EC.4 in the e-companion), and (iii) the
region3⋆

CEI that has the largest region-level CEI among
all regions in 3. Because it is possible that 3min is the
same as 3̃ or 3⋆

CEI, we may only select two regions on
some iterations. Notice that 3⋆

CEI may be a region in
which no solution has yet been simulated, in which
case we simulate ks initial design points from 3⋆

CEI. For
3min and 3̃, and for3⋆

CEI if it already is a design region,
we apply the same method as in the solution-level
GMIA algorithm: at each iteration, we simulate two
solutions, the solution with the smallest sample mean
and the solution with the largest solution-level CEI in
that region. The algorithm stops when both the largest
region-level CEI and the solution-level CEI fall below δ.
In EC.4 in the e-companion, we prove the following

theorem:

Theorem 3. The MR-GMIA algorithm in EC.4 in the
e-companion without a stopping condition simulates each
solution x∈- infinitely often with probability one as the
number of iterations goes to infinity.

Therefore, the MR-GMIA finds the global optimal
solution with probability one as the simulation budget
increases. More generally, such a global convergence

Figure 2. (Color online) Illustration of a Region-Level
GMRF and Four Solution-Level GMRFs in Two Dimensions
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result can be obtained for any MR-GMIA that guar-
antees a “solution” in a GMRF at each resolution is
simulated infinitely often. In Section 5.3, we define
a three-resolution GMIA to solve a 15-dimensional
problem whose global convergence can be shown by
a simple extension of the proof of Theorem 3.

5. Numerical Experiments
In this section, we present three examples to demon-
strate the performance of GMIA and MR-GMIA. The
main goals of this section are to show that (i) GMIA
combined with expected improvement provides valid
inference on the remaining optimality gap at termi-
nationwhile achieving good finite-budget performance
for a DOvS problem and (ii) MR-GMIA can solve a
large-scale DOvS problem efficiently and effectively.
We also provide a proof-of-concept demonstration
of applying MR-GMIA to a 15-dimensional problem
by using a three-resolution GMRF model.

The first example is an (s,S) inventory optimization
problem that exhibits behavior like a practical DOvS
problem. We use this example to demonstrate (i) by
comparing performance of GMIA and a continuous
GRF-based procedure with Gaussian correlation func-
tion. We also compare three sampling criteria, EI, CEI,
and KG, combined with GMIA and with the continuous
GRF-based procedure. For EI and CEI, the stopping
conditions EI/CEI≤ δ were tested. Because KG≤ δ is
interpreted differently from EI/CEI≤ δ as discussed in
Section 2.3, we did not test KG as a stopping criterion.
Instead, we examined the finite-budget performance of
GMIA and GRF-based procedures to compare EI, CEI,
and KG for search guidance. We also apply the MR-
GMIA presented in EC.4 in the e-companion to the same
(s,S) inventory problem to show its improvement in
efficiency compared with GMIAwhile still achieving the
target optimality gap.

To achieve goal (ii) we tested the MR-GMIA on the
second test problem with two different numbers of
feasible solutions, 10,000 and 1,000,000, to examine the
impact of the problem size on the performance of the
MR-GMIA. This problem is created by adding stochastic
noise to the two-dimensional Griewank function, awell-
known test function for a global optimization problem
with many local minima but evaluated only on a lattice
to test the performance of MR-GMIA on a difficult
DOvS problem.

Finally, we devise a three-resolution GMIA to
demonstrate that we can add a higher resolution to the
two-resolution GMRF structure presented in EC.4 in
the e-companion to solve a high-dimensional problem
with a large number of solutions. The response function
for this test case is a 15-dimensional inverted Gaussian
density function, which we converted to a DOvS prob-
lem in the same way as the Griewank function, on an
integer lattice with 415 � 1,073,741,824 solutions.

In all examples in this section, MLEs are computed
only once at the beginning of each algorithm.

5.1. (s,S) Inventory Problem
The objective function for the (s,S) inventory problem
suggested in Koenig and Law (1985) is the expected
average cost per period of the inventory system over
30 periods.We assume the demand for inventory in each
period is a sequence of i.i.d. Poisson random variables
with a common mean of 25. To obtain a simple rect-
angular feasible region as in Figure 2, we chose our
decision variables to be s and S − s, where the feasible
region is defined by constraints 1≤ s≤ 100 and 1≤ S−
s≤ 100, which leads to 10, 000 feasible solutions. The
optimal solution to this DOvS problem is s � 17 and
S − s � 36 with an expected average cost per period of
$106.12 based on onemillion replications ofMonteCarlo
simulation at each feasible solution. We assume the
minimum difference in the objective function that is
worth detecting is δ � $1, which is used for the stopping
criterion in the algorithms.
If one simulation run of the inventory problem takes

a long time, 10,000 feasible solutions can be considered
large. On the other hand, if each run takes a short time,
then wemay apply an IZ R&S procedure that simulates
all solutions in the feasible region. A main takeaway
from this example is that GMIA provides similar in-
ference on the optimality gap as the IZ R&S procedure
by simulating many fewer feasible solutions when
combined with EI or CEI.

5.1.1. Comparison of GMIA and ContinuousGRF-based
Algorithm. To compare with GMIA, we constructed
a continuous GRF-based procedure by changing the
metamodel of the response surface in GMIA from
GMRF to continuous GRF with a Gaussian correlation
function. We used the Matlab “fitrgp” library to fit the
GRF regression. For both algorithms, we tested EI, CEI,
andKG for search guidance, whichwe computed for all
10,000 feasible solutions at each iteration. To compute
KG for the feasible solutions, we used the MatlabKG
library provided by Frazier (2009–2010), where the
exact algorithm is presented in Frazier et al. (2009).
Note that we assume the cost of sampling a solution is
constant for all solutions. For the stopping criterion, we
tested EI/CEI≤ δ for both the GMIA and GRF-based
procedures. Because KG≤ δ has a different interpreta-
tion than EI/CEI≤ δ, performance of KG as a stopping
criterion was not tested. Instead, we compared the finite-
budget performances of GMIA +EI/CEI/KG andGRF +
EI/CEI/KG. Althoughwe claim the strength of GMIA is
its inference about the optimality gap at stopping, good
finite-budget performance of GMIA will reassure users.
For all six algorithms, ks � 20 initial design points in

the feasible region were selected by Latin hypercube
sampling, and r � 10 replications were simulated for
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each sampled design point. For GMIA, the solution
with the smallest sample mean among the simulated
solutions was chosen as the current best solution at
each iteration when EI or CEI is used as a criterion. On
the other hand, the solution with the best conditional
mean was selected as the current best when KG is used
to be consistent with the definition of KG. For the GRF-
based procedure, a solution with the best conditional
mean was selected as the current best regardless of the
sampling criterion.

We first present the finite-budget performance
comparisons. Figure 3 shows boxplots of optimality
gaps from 400 runs of all six algorithms stopped after
100 iterations, where for each run the same random
number seed was used for all six algorithms. Below the
boxplots, the sample means and their standard errors
of the optimality gap are presented. Notice that all
algorithms based on GMRF have lower medians and
means than those based on the continuous GRF. When
combined with GMIA, EI, CEI, and KG show very
similar performance. On the other hand, GMIA + CEI
has a statistically significantly smaller average opti-
mality gap than GRF + KG, which is a popular current
method to solve a DOvS problem. The performance of
GRF + EI is comparable to GMIA’s whereas GRF + CEI
has the largest average optimality gap among all six

algorithms, and several of its runs have high opti-
mality gaps.
We also present the progress each algorithm made

during the first 100 iterations averaged over 400 runs in
Figure 4. The trajectory of GMIA + EI is very similar to
that of GMIA + CEI and, therefore, was omitted from
Figure 4 for better comparisons to the other the algo-
rithms. GRF-based procedures exhibit faster conver-
gence at the beginning but slow down substantially as
the algorithm progresses, especially for GRF + CEI
and GRF + KG, whereas GMIA + CEI/KG show more
steady progress.
We observed a few runs of GMIA and the GRF-based

procedure to see which solutions are selected to sample
at each iteration and discovered that GMIA tends to
sample solutions closer to the current optimal solution
whereas the GRF-based procedure tends to sample
solutions farther away from the current optimal. This
difference in behaviors makes the GRF-based algo-
rithm converge faster initially as it explores the feasible
solution space more broadly but slow down as the
algorithm proceeds because it does not exploit the
neighborhood containing the current optimal solution
as much. GMIA, on the other hand, makes slower
progress at the beginning as it explores less globally
compared with the GRF-based procedure; however, it

Figure 3. Boxplots and the Sample Averages and Their Standard Errors of the Optimality Gaps of Six Algorithms Applied to
the (s, S) Inventory Problem Stopped After 100 Iterations

Notes. For each algorithm, 400 runs were made. The whiskers of boxplots are extended to the observations within 1.5 times the interquartile
range. We omitted three observations (two with optimality gap 112.26 and one with 24.51) from the boxplot of GRF + CEI for better scaling of
other boxplots. Std. err., standard error.
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improves steadily by making local improvements from
the current optimal solution.

Now we move to examine whether GMIA and the
GRF-based procedures make valid inference on the
remaining optimality gap at termination when EI and
CEI are used as stopping criteria. From the definition of
EI/CEI, EI ≤ δ or CEI ≤ δ indicates that the expected
optimality gap of the current best solution is less than δ.
For the benchmark, we applied the Kim and Nelson
(2001) (KN) R&S procedure to the same (s,S) inventory
problem; it simulates all feasible solutions at the be-
ginning and sequentially eliminates solutions from
contention.We adopted CRN for the KN procedure, set
the number of first-stage replications of each feasible
solution to n0 � 10, 1 − α � 0.95 for the PCS and δ � $1.
Table 1 shows the average and maximum optimality
gaps at termination from 50 runs of all five procedures,
including KN. The average number of solutions that
each algorithm visited as well as the average number of

replications spent until termination are also presented.
All standard errors are in the parentheses.
Notice that both average and maximum optimality

gaps of GMIA + EI and GMIA + CEI are less than the
desired optimality gap δ � $1. Moreover, their av-
erage optimality gaps are statistically indistinguish-
able from the optimality gap of KN while spending
about a half of the simulation budget KN spent and
without simulating all feasible solutions. On the other
hand, GRF + EI and GRF + CEI stopped prematurely
when the optimality gap was still much larger than δ
after sampling a few solutions. These results indicate
that theGMRFmetamodel lets GMIAcorrectly assess the
remaining optimality gap via EI/CEI whereas the con-
tinuous GRF underestimates it. This shows that a GMRF
is a bettermodel to represent the responses of the discrete
feasible solutions of this DOvS problem.
In Figure EC.1 of EC.5 in the e-companion, we

present heat maps of the variance–covariance matrices
of the underlying GMRF and the continuous GRF for
this problem, which provides an intuitive explanation
for such a performance difference. Although the initial
variance–covariance matrices of the two Guassian
processes are based on the MLEs computed from the
same set of initial observations, the continuous GRF has
a much thicker diagonal band with high variances and
covariances relative to GMRF. However, the con-
tinuous GRF’s variances and covariances decrease
significantly after updating the distribution of the
GRF conditional on the initial observations because
the high correlations among nearby solutions make the
variances and covariances of the solutions near the
initial design points greatly reduced. This causes
the GRF to quickly decide that there is not much
variability left in the random field, resulting in small EI
or CEI of solutions. On the other hand, the Markovian
assumption of GMRF combined with our choice of
neighborhood structure makes the precision matrix
Q(θ) very sparse, and as a result, the off-diagonal
elements of the variance–covariancematrix of the GMRF
(inverse of Q(θ)) decay faster than the continuous

Figure 4. (Color online) The Trajectory of the Optimality
Gap at Each Iteration of Each Algorithm Included in Figure 3
(Except for GMIA + EI) Averaged over 400 Runs

Note. GMIA + EI is omitted because it has a very similar trajectory as
GMIA + CEI.

Table 1. Average and Maximum of Optimality Gaps at Termination of 50 Runs of
GMIA + EI/CEI, GRF + EI/CEI, and KN Given δ � $1

GMIA + EI GMIA + CEI GRF + EI GRF + CEI KN

Average optimality gap 0.089 0.096 3.283 3.401 0.097
(0.009) (0.012) (0.346) (0.343) (0.009)

Maximum optimality gap 0.271 0.348 8.545 8.545 0.271
Average number of 2,775 2,750 20.9 20.3 10,000
sampled solutions (82) (76) (0.2) (0.1) —

Average number of 55,314 54,854 218 207 108,111
replications (1,633) (1,526) (4) (2) (185)

Notes. The average number of sampled solutions and the average number of replications spent by each
algorithm until termination are also presented. The standard errors are presented in parentheses.
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GRF’s. Hence, the variance–covariancematrix of GMRF
updated conditional on the initial observations still has
higher variances and covariances compared with the
continuous GRF, which helps us make better inference
on the remaining optimality gap.

Note that “fitrgp” fits the parameters of GRF’s prior
distribution using maximum likelihood estimation.
One may consider taking a fully Bayesian approach
using hyperparameters, which will increase uncer-
tainty about the response surface and, as a result, may
delay the stopping decision for the continuous GRF.
Also recall that we used aGaussian correlation function
for the continuous GRF, which models an infinitely
differentiable response surface. Thus, the modeled
response surface may be too smooth to represent
a discrete surface. A Matérn correlation function can
be an alternative to a Gaussian correlation function
as it lets one control the differentiability of the surface.
Nevertheless, it still models a continuous surface.

The results presented in this section show that GMIA
combined with EI or CEI provides good finite-budget
performance and valid inference on the remaining
optimality gap at termination when EI or CEI is used as
a stopping criterion. As the no free lunch theorem in
Wolpert and Macready (1997) proves, we may find an
instance of a DOvS problem on which the continuous
GRF-based procedure has better finite-budget per-
formance than GMIA. However, the valid stopping
decision of GMIA is a valuable feature of GMIA in-
dependent from its finite-budget performance. Although
CEI is the expected improvement that correctly averages
over all remaining sources of uncertainty, the empir-
ical performance of deterministic EI and CEI in this
example were statistically indistinguishable.

5.1.2. Comparison of GMIA and MR-GMIA. We also ran
the version of MR-GMIA in EC.4 in the e-companion
combined with CEI and EI on the same (s,S) inventory
problem with region-level neighborhood structure as
depicted in Figure 5(b). We divided the same feasible
region with 10,000 solutions into 25 square regions,
including 400 feasible solutions numbered bottom to
top starting from the lower left corner. The true optimal
solution (17, 36) is contained in region 32, and 33 has
the smallest region-level response.
We have two precision matrices: region-level pre-

cision matrix T(τ) and solution-level precision matrix
Q(θ). The former, in this example, is a 25 × 25 matrix,
and the latter is 400× 400, both much smaller than the
10,000× 10,000 precision matrix used in the GMIA run.
As Cholesky decomposition of a sparse n×n matrix
is O(n2), the smaller dimensions of the precision ma-
trices significantly reduce the computation time in-
volved in both MLE and CEI calculations.
We chose kr � 5 initial design regions by Latin hy-

percube sampling. To select the design points within
each region, we used the same Latin hypercube sample
of size ks � 10 for all design regions; for this reason,
some of the regions in Figure 5(b) show the same light
gray pattern. From each selected design point, we
simulated 10 replications and used the result to com-
pute the MLEs. At each iteration, region-level CEIs are
calculated for all regions. The solution-level CEIs are
calculated for all solutions within the currently sam-
pled region at the iteration if the region was simulated
previously. The algorithm stops if the largest region-
level CEI and the largest solution-level CEIs of the re-
gions that are sampled at the current iteration drop be-
low δ � $1.

Figure 5. (Color online) Allocations of Simulation Replications at Feasible Solutions for the (s, S) Inventory Problem in Base-10
log Scale

Notes. (a) GMIA. (b) MR-GMIA: Regions are numbered 1–25 bottom to top from the lower left corner.
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Figure 5 compares the simulation replications allo-
cated across the feasible solutions by GMIA and MR-
GMIA from one sample path of both algorithms when
CEI is used as the sampling and stopping criterion
(CEI ≤ $1). The large light gray area in Figure 5(a) in-
dicates the solutions that were sampled only once, that
is, one-time allocation of 10 replications. Points with
darker shades were selected as the current sample best
for one or more iterations and simulated repeatedly.
The darkest point (18, 36) is the solution that GMIA
chose as optimal on this run. Notice that the design
points are clustered with each other except for a few
initial design points obtained from Latin hypercube
sampling. The algorithm did not simulate any solutions
near the upper right and the lower left corners of the
feasible region where the objective function increases
steeply. This indicates that the estimated GMRF
structure guides the algorithm to rule out inferior so-
lutions. In EC.6 in the e-companion, we present the
plots of the conditional means of the GMRF at different
iterations to show how the GMRF updates its belief
about the response surface as the algorithm proceeds.

Figure 5(b) shows that MR-GMIA allocated most of
the simulation replications within 32,33,34, and 37.
The surrounding regions of these four regions were
selected once or a few more times before the algorithm
stopped. After the initial sampling, MR-GMIA quickly
finds the region that is likely to contain the global
optimal solution using the region-level CEI. Notice that
325 at the upper right corner whose response z(325) is
the largest among all regions was simulated only once
and never selected again. Also, the neighboring regions
of 325 were not simulated. This shows that the region-
level GMRF informed the algorithm correctly that the
regions close to325 are not likely to contain the optimal
solution. Compared with the simulation replication
allocation of GMIA in Figure 5(a), the biggest difference
is that MR-GMIA first chooses regions to simulate, then
selects the solutions within those regions; therefore,
sampling solutions is restricted within the boundaries
of selected regions. This, in fact, helps MR-GMIA
concentrate on the regions that are likely to contain
the global optimal solution.

Table 2 shows the average and maximum optimality
gaps of 50 runs of MR-GMIAwhen EI and CEI are used

as stopping criteria. Comparedwith the performance of
GMIA + EI/CEI in Table 1, MR-GMIA + EI/CEI have
larger average and maximum optimality gaps at ter-
mination; however, their average optimality gaps are
less than δ, which means that MR-GMIA still achieves
the target optimality gap on average. Moreover, the
average numbers of solutions visited by MR-GMIA +
EI/CEI are much lower than those of GMIA + EI/CEI
(2,775/2,750) and KN (108, 111) in Table 1. Also, the
average number of replications that MR-GMIA + EI/
CEI spent is also much lower than that of GMIA + EI/
CEI (55,314/54,854), which confirms the behavior
observed in Figure 5(b); MR-GMIA concentrates its
effort on the regions likely to contain the optimal. MR-
GMIA sampled a larger number of solutions and spent
more replications when CEI is used as a stopping
criterion than EI. As a result, we have smaller average
optimality gap for CEI.
Another advantage of MR-GMIA over GMIA is

the matrix computation time. For the GMIA runs
of this problem, the Cholesky decomposition of the
10, 000× 10, 000 precision matrix, the additional multi-
plications to invert it, and computing the condi-
tional mean of all feasible solutions took 13.61 (stan-
dard error � 0.23), 78.00 (0.92) and 6.9× 10−5 (2× 10−6)
seconds, respectively. For the MR-GMIA runs, the
same calculation times for the region-level GMRF
took 2.6× 10−5 (2× 10−6), 5.3× 10−5 (3× 10−6), and 1.2×
10−4 (8× 10−5) seconds, respectively, and those for
the solution-level GMRF took 2.4× 10−3 (1× 10−4),
9.0× 10−3 (2× 10−4), and 6.3× 10−4 (3× 10−5) seconds,
respectively. Even after considering that MR-GMIA
performs the solution-level matrix calculations for up
to three regions at each iteration, the total time MR-
GMIA spends on matrix computation is far less than
that of GMIA.

5.2. Griewank Function
The Griewank function (http://www.sfu.ca/~ssurjano/
griewank.html) has many local minima, which makes it
a challenging test function for optimization algorithms.
Figure 6 shows the two-dimensional Griewank function
on the domain [−5, 5]× [−5, 5]. Within this domain, the
range of the function is [0, 2.0044], and the global
minimum is at (0, 0). Notice that there are four local

Table 2. Average and Maximum of Optimality Gaps at Termination of 50 Runs of
MR-GMIA + EI/CEI

MR-GMIA + EI MR-GMIA + CEI

Average optimality gap 0.505 (0.065) 0.321 (0.054)
Maximum optimality gap 1.886 2.218
Average number of sampled solutions 303 (36) 525 (73)
Average number of replications 6,071 (901) 13,214 (2,188)
Notes. The average number of sampled solutions and the average number of replications spent by each
algorithm until termination are also presented. The standard errors are presented in parentheses.
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minima near the four corners of the domain, and their
response values are 0.0086.

To create a DOvS problem, we take as feasible so-
lutions the 100× 100 lattice on [−5, 5]× [−5, 5], where
the response at each solution is given by the Griewank
function in Figure 6. Normally distributed simulation
noise with mean zero and variance σ2 is added to the
response function to make it stochastic. As depicted
in Figure 7(a), we divided the feasible solutions into
25 square regions, each of which contains 400 solutions.
To analyze the impact of δ on the performance of
the algorithm, we tested three values of δ: 0.005, 0.01,
and 0.02. We chose these values relative to 0.0086,
the difference between the responses at the local
minima and the global minimum, so that we can test
the effect of δ on the solution quality of the algorithm.

We adjusted the standard error of the sample mean at
each design pointwhen it isfirst visited to be relative to δ.
Given r � 16, the number of replications at each solu-
tion, and δ, we tested three values of σ/

��
r

√
: δ/2, δ, and 2δ.

For each run, we used Latin hypercube samples of
kr � 5 and ks � 20 to select the initial design regions and
design points, respectively.
Figure 7(a) shows how simulation replications were

allocated across the feasible region in one sample
path of MR-GMIA. Notice that all regions were visited
at least once, unlike the (s,S) inventory problem
in Figure 5(b). Compared with the (s,S) inventory
problem, the response surface of the Griewank function
is harder to predict as the region-level response z(3ℓ)
for all 25 regions do not vary much. Therefore, the
region-level CEI did not rule out any region before it
was visited at least once. However, once the regions
were visited, the algorithm correctly found the regions
that either contain the global and local minima or are
close to them and concentrated the simulation effort
there. Notice that the algorithm simulated solutions in
the ellipsoidal area that contains the global optimal
solution most frequently.
Table 3 presents the results of 50 runs of MR-GMIA

with the chosen δ and σ values. For each run of all nine
cases of (δ,σ) in Table 3, common random numbers
were adopted. Notice that our algorithm returned the
global optimal solution in all 50 runs of all settings
except for (δ,σ) � (0.02, 0.08), and (0.02, 0.16). Even in
these two cases, the average response at the solution is
within δ from zero. As expected, both the number of
simulated solutions and the number of replications
spent tend to increase as δ decreases and as σ increases.
However, MR-GMIA is not very sensitive to the choice
of δ for smaller σ.

Figure 6. (Color online) Two-Dimensional Griewank
Function on [−5, 5]× [−5, 5]

Figure 7. (Color online) Allocations of Simulation Replications at Feasible Solutions of the Griewank Function in Figure 6 in
Base-10 log Scale

Notes. (a) 100 × 100 lattice. (b) 1,000 × 1,000 lattice.
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To test the impact of the number of feasible solutions
on the performance of the algorithm, we ranMR-GMIA
with (δ, σ) � (0.005, 0.01) but using a finer lattice as
depicted in Figure 7(b): a 1,000× 1,000 grid instead of
100× 100, which results in 1,000,000 feasible solutions.
These solutions are divided into 2,500 regions, each
of which contains 400 feasible solutions. Figure 7(b) is
a map of replications spent in the feasible region in one
run of MR-GMIA. Notice that the areas in white, which
indicate that they were never simulated, correspond to
the peaks of the Griewank function in Figure 6. Unlike in
the 100× 100 case, the region-level responses actually
differ in this case as we have a finer grid. The region-level
CEI effectively rules out the regions that are not likely to
contain the optimal solution using the region-level GMRF
structure. Most of the simulation effort is concentrated in
the regions near the global minimum and a local mini-
mum in the lower left corner.
The average optimality gap of 50 runs of MR-GMIA

applied to the 1,000× 1,000 Griewank problem is
0.0002 (standard error � 0.00004), and the maximum
response was 0.0016, which is smaller than δ � 0.005.
The average number of simulated solutions is
24,696 (1,307), which is only 2.5% of the 1,000,000 fea-
sible solutions. Compared with the 100× 100 case,
which simulated 19% of the feasible solutions on av-
erage, we can confirm that the algorithm works effi-
ciently even if we have a large number of feasible
solutions. The average number of replications spent is
89,079 (2,775), which is less than eight times larger than
that of the 100× 100 case in Table 3. These results show
themultiresolution algorithm scales well as the number
of feasible solutions increases.

5.3. Inverted Multivariate Normal Density Function
Finally, we present a proof-of-concept study that ap-
plies MR-GMIA based on a three-resolution GMRF
model to solve a high-dimensional DOvS problem. The
response function is the inverted Gaussian density
function suggested in Xu et al. (2010):

f (x1, x2, . . . , xd) � −β exp
{
−γ∑d

j�1
jx2j

}
,

xu� (x1, x2, . . . , xd). (10)

The function is minimized at xu � (0, 0, . . . , 0) and does
not have any local minima. We chose β � 1,000 and
γ � 0.001, which makes the optimal objective function
value −1,000. Normally distributed noise with mean
zero and variance 16 is added to the response function
to make it stochastic. We chose d � 15 and considered
solutions within the integer lattice in [0, 3]15 as the
feasible solution set containing 415 � 1,073,741,824
solutions within which the range of (10) is [−1,000,
−861.29].T
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In Section 5.2, we designed the regions of the MR-
GMIA to have the same dimension as the feasible
solution space. However, in this example, the smallest
hyper-rectangular region with the same dimension has
215 � 32,768 solutions and a 32,768× 32,768 solution-
level precision matrix. Even with the sparse-matrix
method in Matlab, this is a large matrix. Another
problem for such a region is that all solutions within the
region are corner solutions, and hence, we cannot fully
take advantage of the inference from their neighbors.

We overcome the first issue by adding an additional
resolution; instead of a two-resolution GMRF as we
discuss in Section 4, we have a three-resolution GMRF
consisting of super region–level, region-level, and solution-
levelGMRFs. A super region–level “solution” represents
a region of regions just as a region-level “solution”
represents a region of solutions. This extension reduces
the number of “solutions” within the GMRF at each
level. Moreover, we reduced the dimension of higher-
level GMRFs by projection. For instance, a “solution”
of the super region–level GMRF represents an average
quality of regions of solutions whose first 5 coor-
dinates in [0, 3]15 are [1, 0, 1, 3, 1], and among these
regions, a region represents solutions whose first
10 coordinates are [1, 0, 1, 3, 1, 1, 0, 0, 0, 2]. Therefore,
we have 45 regions of regions in the super region–level
GMRF, 45 regions in each of 45 region-level GMRFs
and 45 solutions in each of 410 solution-level GMRFs.
There are two advantages of designing the GMRFs in
this way. First, it reduces the number of corner so-
lutions and, hence, lets us better utilize inference from
the neighboring solutions. Second, we have more
flexibility in choosing the number of layers of GMRFs
versus how many solutions to include in each GMRF.
For instance, we may decide to have five layers of
GMRFs instead of three, and it is easier to design
which “solutions” to include in each layer of GMRF by
projection rather than preserving all 15 dimensions in
each layer.

We applied the MR-GMIA described earlier to this
problem and observed 10,000 iterations of 200 sample
paths. For the initial design, five solutions per region,
five regions per super region, and five super regions
were sampled. In total, 125 solutions are sampled
initially, which is only 1.16× 10−6% of the feasible
solutions. Each time a solution is selected, we sim-
ulated r � 4 replications, and CEI was used as the
sampling guidance. Similar to the two-resolution
GMIA in EC.4 in the e-companion, we selected
three super regions at each iteration; the super re-
gion with the smallest super region–level mean, the
super region that contains the current optimal so-
lution, and the super region with the largest su-
per region–level CEI. In each selected super region,
two regions were sampled; the region with the largest
region-level mean and the region with the largest

region-level CEI. Similarly, two solutions were sam-
pled in each selected region.
The average optimality gap of 200 runs after 10,000

iterations is 1.27 (standard error � 0.12), and the av-
erage number of solutions that the algorithm visited is
73,344 (1,046), which is only 0.0068% of the feasible
solution space.We also tested the stopping condition of
CEI ≤ δ for δ � 1 and let the algorithm stop either when
all super region–level, region-level, and solution-level
CEIs fall below δ or after 10, 000 iterations. Among the
200 runs, 58 runs stopped by the stopping criterion, and
their average optimality gap is 1.23 (0.24), which shows
good performance.
This experiment explores a differentway to construct

multiresolution GMRFs to solve high-dimensional prob-
lems. There are various design questions, including
but not limited to the number of resolutions to use and
which projection function to define “solutions” in each
level of GMRF. We defer the answers to these ques-
tions to future research, but the potential is clear.
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