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Abstract. We reconsider the ranking and selection (R&S) problem in stochastic simulation
optimization in light of high-performance, parallel computing, where we take “R&S” to
mean any procedure that simulates all systems (feasible solutions) to provide some statisti-
cal guarantee on the selected systems. We argue that when the number of systems is very
large, and the parallel processing capability is also substantial, then neither the standard
statistical guarantees such as probability of correct selection nor the usual observation-
saving methods such as elimination via paired comparisons or complex budget allocation
serve the experimenter well. As an alternative, we propose a guarantee on the expected false
elimination rate that avoids the curse of multiplicity and a method to achieve it that is
designed to scale computationally with problem size and parallel computing capacity. To facilitate
this approach, we present a new mathematical representation, prove small-sample and
asymptotic properties, evaluate variations of the method, and demonstrate a specific
implementation on a problem with over 1,100,000 systems using only 21 parallel process-
ors. Although we focus on inference about the best system here, our parallel adaptive sur-
vivor selection framework can be generalized to many other useful definitions of “good”
systems.
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1. Introduction
We consider optimization over k simulated systems
(feasible solutions) evaluated by their mean perform-
ances μ1,μ2, : : : ,μk, using methods that simulate all
systems and provide some statistical guarantee of find-
ing good ones. This context is the well-worn territory
of ranking and selection (R&S), which is important in
simulation research and practice because it is virtually
the only class of simulation optimization methods for
which strong finite-time, global statements are possi-
ble in a non-Bayesian setting; that is, without having
to commit to a prior distribution on μ1,μ2, : : : ,μk.

We are interested in situations where the number of
systems k is so large that simulating all systems is
only possible if we can simulate multiple systems
simultaneously with p� 1 parallel processors. Hunter
and Nelson (2017) provide an overview of parallel
R&S; they show that the parallel R&S procedures cre-
ated to date try to extend or load-balance methods
created for p�1 processor, which inherently leads to
compromises. Three prominent examples are Ni et al.

(2017), Zhong and Hong (2022), and Luo et al. (2015);
the first two use divide-and-conquer strategies and
load balancing, whereas the latter achieves a relaxed
statistical requirement by restricting comparisons to
special points in time. We adopt a new paradigm by
first rethinking the objectives of R&S when k is very large
and then by designing a procedure especially suited for
p� 1. Unlike the R&S procedures cited in Hunter and
Nelson (2017), our approach is inefficient for small k
and p�1 but gains computational efficiency as both
increase. We achieve these gains by focusing on over-
all computation rather than just the “number of obser-
vations” and by leveraging information provided by
all k systems collectively rather than comparisons
among systems individually.

Our parallel adaptive survivor selection (PASS) frame-
work controls the rate at which “good” systems are
eliminated by comparing all systems marginally to a
statistically improving standard learned globally. In
this setting, we argue that expected false elimination rate
is a practically relevant criterion and that it leads to
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procedures that scale with the number of systems k
and the number of processors p. PASS algorithms can
rapidly reduce a very large number of systems to a
relatively small number, which is useful in and of
itself, and can also be the front end to an efficient
follow-on procedure for small k.

In this paper, we present the theoretical underpin-
nings of bi-PASS, which is a particular version of the
PASS framework, and describe a Python/MPI imple-
mentation. We illustrate the effectiveness of our bi-PASS
implementation on an R&S problem with more than
1, 100, 000 systems using 21 parallel processors. To the
best of our knowledge, this is the largest problem ever
attempted with so few processors. Pseudo-code for
bi-PASS and an empirical comparison of bi-PASS against
competitors is provided in the companion paper (Pei
et al. 2020). Although our implementation does not yet
reflect optimally tuned software, it provides a proof-of-
concept for bi-PASS performance.

The purpose of this paper is to advance bi-PASS
theory and provide a rigorous computational model
that captures parallel dynamics. The companion paper
(Pei et al. 2020) is devoted to careful empirical compar-
isons versus competitors and detailed pseudocode.
This paper is organized as follows: Section 2 describes
the context of our work. Section 3 contains the mathe-
matical preliminaries motivating the PASS approach,
whereas Section 4 contains a theoretical framework for
bisection-PASS (bi-PASS) and key theorems. Section 5
introduces a framework for analyzing the compu-
tational intricacies for bi-PASS and information dis-
crepancies in a master-worker computing framework,
and Section 6 provides additional theoretical results
and practical strategies for this computational environ-
ment. Section 7 lists essential details of our Python/
MPI implementation. Section 8 summarizes the evalu-
ation against competitors in Pei et al. (2020) and intro-
duces new empirical results, whereas Section 9 closes
the paper with discussion.

2. Background
R&S procedures, whether frequentist or Bayesian in
philosophy, usually search for the best system or a
system tied with the best. They provide a statistical
guarantee of correctly selecting a system that has a suf-
ficiently small optimality gap, correctly including the
best system within a subset that ideally contains many
fewer than k systems, or minimizing some measure of
suboptimality for the chosen system. For overviews
seeHunter andNelson (2017), KimandNelson (2006b),
and Frazier (2010). All these approaches suffer in some
way as k increases because their family-wise statistical state-
ments encompass all k systems, and they usually focus on
reducing the number of observations rather than overall
computation time.

In a practical application, when k is in the thou-
sands to millions, it seems highly likely that

• There are many systems that are acceptably good
relative to the goals of the experimenter, and a huge
number that are not.

•What constitutes “acceptably good” can be defined
in terms of a known value, denoted μ+, the unknown
means μ1,μ2, : : : ,μk, or both.

• The systems are created by taking combinations of
some more basic decision variables.

When large k arises because the systems are created
from combinations of decision variables, it is tempting to
use methods that search the feasible region and exploit
the spatial structure without simulating all feasible solu-
tions. Creation of search methods has been an active
research area in stochastic simulation, and many algo-
rithms exist. See, for instance, Pasupathy and Ghosh
(2013) for a survey, the proceedings of anyWinter Simu-
lation Conference (www.informs-sim.org) for the latest
research, and Salemi et al. (2019) and Semelhago et al.
(2021) for a well-tested algorithm. Such methods are
required for problems beyond the R&S computational
limit. However, all search methods to date are suscepti-
ble to the three errors in simulation optimization noted
by Nelson and Pei (2021): failure to simulate the optimal
solution, failure to recognize the best solution actually
simulated, and returning a biased estimate of the per-
formance of the selected solution. R&S has the potential
to statistically control all three errors, in addition to being
relatively easy to implement in parallel. Of course, a con-
tinuous-decision-variable approximation is possible for
some discrete-decision-variable problems, but not all;
see Fu (2002), who includes real-world case studies of
staffing problems. Another example is Hoffman et al.
(2018), in which one of L preventative maintenance
scores are assigned to d machines, so the solution space
has Ld feasible solutions. Finally, the dimension of the
decision variable is a significant issue for search meth-
ods, whereas dimension does not matter at all for R&S,
only the number of feasible solutions k. For all these rea-
sons, it is sensible to treat a simulation optimization
problem as an R&S problem when computationally fea-
sible to do so, and PASS makes much larger problems
computationally feasiblewith a smaller number of paral-
lel processors required.

Our first departure from typical R&S is designating
a system as “good” if its mean is better than some
“standard” μ? � s(μ1,μ2, : : :μk,μ

+) for some known
function s(·). Although this approach may seem re-
lated to comparisons with a standard (Nelson and
Goldsman 2001, Kim 2005, Xie and Frazier 2013), we
use the standard very differently as explained later.

Our second departure is adopting the statistical
objective of controlling the rate at which we eliminate
systems that are better than the standard. What we
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call the expected false elimination rate (EFER) can be con-
trolled marginally and therefore does not suffer as k
increases. This error-rate approach has had a signifi-
cant impact on large-scale statistical inference more
generally (Benjamini and Hochberg 1995, Efron 2012).
In the simulation community, Singham and Szecht-
man (2016) are the closest analogy, and there is a con-
nection between our work and Fan et al. (2016) on
indifference-zone free R&S. However, EFER is not the
same as controlling the probability of a good selection
(PGS; Eckman and Henderson 2018), which is still a
family-wise probability statement and requires speci-
fying an allowable optimality gap.

Our final departure is to avoid any direct compari-
sons among pairs of systems. Although paired compar-
isons are the foundation for many observation-efficient
R&S procedures, they can be a computational bottle-
neck for parallel implementations. Instead, we compare
the systems individually to an estimate μ̂ of μ? that is
learned collectively. This approach is somewhat similar
to the problem of feasibility determination for stochas-
tic constraints (Szechtman and Yücesan 2008, Batur
and Kim 2010).

R&S problems and methods bear some resemblance
to multiarmed bandit problems and methods, with
“simulating a system” corresponding to “pulling an
arm.” Although it is difficult to cover all aspects of this
huge research area succinctly, bandit problems com-
monly emphasize online learning with bounded costs
and rewards and strategies that minimize accumulated
regret. R&S problems are offline system design prob-
lems typically assuming normally distributed per-
formance and focusing on computational efficiency
while selecting good systems. Regret-minimizing algo-
rithms can be inefficient at identifying the single best
system (Bubeck et al. 2009, Russo 2020), underscoring
the significant differences in methods concerned with
regret versus methods concernedwith finite-time error
guarantees. Villar et al. (2015) show that popular index
approaches (Gittins 1979, Whittle 1988) require addi-
tional adjustments to control error and have limita-
tions in detecting good systems (statistical power).

There is a thread of the bandit literature addressing
best-arm identification (see Jamieson and Nowak 2014
for a survey). However, much of this literature is about
playing one arm at a time, which is ill suited for a
large-scale parallel setting like ours. Hillel et al. (2013)
and Russo and Van Roy 2022) are examples of
approaches that focus on identifying “good” arms
within ε of the best rather than finding an optimal arm,
but they both assume arms’ rewards are bounded.
Russo andVan Roy (2022) establish information theory
machinery for a “satisficing” Thompson sampling
algorithm identifying ε-optimal arms and prove regret
bounds for infinite-armed bandit problems.

Parallel bandit approaches commonly differ from the
PASS framework in their assumptions and objectives.
Hillel et al. (2013) are representative of distributed ban-
dits that consider processor communication tradeoffs
and provide bounds on the number of arm pulls per
player and the number of communication rounds
under the assumption of bounded arm rewards. Li et al.
(2017) and Falkner et al. (2018) are examples of parallel
approaches that leverage a successive halving algo-
rithm (Karnin et al. 2013, Jamieson and Talwalkar 2016)
to “eliminate” the worst performers in each round and
devote more effort on better ones in the next round.
Successive halving is popular as a subroutine for
hyperparameter optimization to address the tradeoff
between considering many hyperparameter configura-
tions with short training times versus fewer hyperpara-
meter configurations with longer training times. There
are parallel methods such as Desautels et al. (2014) and
Kandasamy et al. (2017) that handle function evalua-
tions with stochastic noise, but they use a Gaussian
process modeling approach and are concerned with
regret bounds.

Finally, we mention that some bandit approaches deal
with known standards and even error-rate control.
Haupt et al. (2011) provide a “sparse detection” algo-
rithm that identifies the support of a sparse set of varia-
bles, with an asymptotic “false discovery rate” (FDR)
guarantee. Jamieson and Jain (2018) propose an algo-
rithmwith FDR control for Gaussian systems partitioned
by whether they are below or above a known standard,
but this algorithm pulls arms one-at-a-time and paralleli-
zation is not straightforward. Zhong et al. (2017) propose
an asynchronous parallel algorithm that identifies arms
above a known standard and is “optimal” (up to a con-
stant factor) in terms of number of arm pulls, but with
the assumption of bounded rewards.

We present the PASS framework as a novel per-
spective on R&S and provide mathematical prelimina-
ries in the next section.

3. Preliminaries
The PASS paradigm uses multiple workers to simulate
systems in parallel and eliminate inferior systems that
fall below a prespecified standard while providing
error-rate control for retaining “good” systems that are
at or above the standard. We define a “standard” of
acceptable performance for systems, μ? � s(μ1,μ2, : : : ,
μk,μ

+), in which s(·) is a known function (examples fol-
low), but the systems’ true means μ1 ≥ μ2 ≥ : : : ≥ μk
are unknown to us. We assume that μ? is large and
larger means are better, so that system 1 has the best
mean. PASS attempts to eliminate inferior systems
with means μi < μ? while guaranteeing that good sys-
tems with means μi ≥ μ? are eliminated at a rate no
greater than a prespecified α ∈ (0, 1).
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In this section, we suppose that μ? is known and
develop notation and key concepts.When μ? is known,
it is easy to create a parallel algorithm with minimal
synchronization because only outputs from, say, sys-
tem i are relevant for deciding if μi ≥ μ?. In Section 4,
we enrich these foundations so that PASS can be
implemented with an unknown μ? that is “learned”
throughout the algorithm and in a master-worker
framework in which processors must pass messages to
share information. To define our mathematical setting,
we require the following assumptions.

Assumption 1. For each system i ∈ {1, 2, : : : ,k}, the cumu-
lative simulation output up to t ≥ 0 is Bi(t) � σiWi(t) + tμi,
where 0 < σi <∞ andWi(·) is a standard Brownian motion.

Assumption 2. There is a common known variance for all
systems, so that for each i ∈ {1, 2, : : : , k}, σ2i � σ2 where 0 <
σ2 <∞ is known.

Assumption 3. Given μ? and α, g : [0,∞)→ [0,∞) is an
increasing function that depends on α, such that for any i,

Pr Wi(t) + t(μi −μ?) ≤ −g(t), for some t<∞|μi ≥ μ?
{ }≤ α,

Pr Wi(t) + t(μi −μ?) ≤ −g(t), for some t<∞|μi < μ?
{ }� 1:

For ease of mathematical analysis, Assumption 1 re-
presents the cumulative output of each system as a
continuous-time Brownianmotion.Assumption 2 states
that variances are known and equal across systems,
and without loss of generality we take σ2 � 1, so that
Var Bi(t)( ) � t and Bi(t) �Wi(t) + tμi for all i. We ad-
dress the realities of unknown and unequal variances
later, as well as the use of common randomnumbers.

The properties of −g(·) in Assumption 3 imply that
for each system i individually, the probability that
Wi(t) + t(μi −μ?) ever falls below −g(t) is bounded
above by α if i is at least as good as μ?, and equals one
if i is worse than μ?. We use −g(·) to eliminate systems
that appear worse than μ?. We specify an “error rate”
α ∈ (0, 1), which we later define rigorously.

For our experiments in Section 8, we use g(t) �����������������������������[c+ log (t+ 1)](t+ 1)√
from Fan et al. (2016) as the

boundary function, where c is a constant chosen to
guarantee the EFER α; c is increasing in 1− α: This
boundary resides in a class of functions whose mem-
bers are continuously differentiable, grow at a rate in
between O( ������������

t log log t
√ ) and O(t), and satisfy Assump-

tion 3. This boundary was originally used in an indif-
ference-zone-free approach that does not require the
typical frequentist R&S assumption of themeans of the
best and second-best system being at least δ > 0 apart.
The PASS framework is distinct from the thesis of Fan
et al. (2016), but we use the same type of boundary
because we do not want to eliminate systems with

means equal to μ?, and we do not assume anything
about the gaps between systems’ means and μ?. Fan
et al. (2016) is a select-the-best procedure that is af-
fected by k because of providing a correct-selection
guarantee and the use of pairwise comparisons. In
using the Bonferroni inequality to achieve a PCS of α,
their boundary (and choice of c) must keep the proba-
bility of good systems falling below it at less than
α=(k− 1), because the best system must be protected
against k – 1 others. Because PASS achieves an error
rate of α, we can keep the probability of good systems
falling below the boundary at α, and our choice of c is
unaffected by k.

To represent the mathematical and computational
aspects of PASS, we require distinct notions of the
algorithm’s “global (wall-clock) time” versus an indi-
vidual system’s “local time.” In a run of a PASS algo-
rithm, each system i has its own local time ti(τ) ≥ 0
that depends on the elapsed global time τ ≥ 0. We
advance system i’s local time ti(τ) by simulating sys-
tem i. In practice, we do not continuously observe
Brownian motions; instead, we advance each system’s
local time by obtaining discrete simulation replica-
tions. The output from executing the rth independent
and identically distributed (i.i.d.) simulation replication
of system i is Yir. For instance, if the Yir are marginally
N(μi, 1), then Bi(ni)�D ∑ni

r�1Yir at integer times ti(τ) � ni.
Therefore, system i’s local time is ni if we have ni replica-
tions from i. More generally, when the variance is not
one, then local time is proportional to ni.

For each i, Bi ti(τ)( ) is the accumulated output of sys-
tem i by local time ti(τ). To advance system i’s local
time to gain more information about μi, we simulate
system i on a processor, but this requires wall-clock
time. Thus, we pay a computational cost in wall-clock
time to gain statistical information on a system. Be-
cause of the parallel nature of PASS, at a given global
time τ, there will typically be multiple systems on dif-
ferent processors being simulated simultaneously and
accumulating local time.

In PASS, systems arecompared with the boundary
and are eliminated if they fall below it, which means
that they are removed from the set of systems under
consideration and no longer simulated. For τ ≥ 0, let
Q(τ) ⊆ {1, 2, : : : ,k} be the set of “contenders,” that is,
the set of systems not yet eliminated by time τ. The
cardinality of this set is nonincreasing in τ. We define

Q(τ) � i : Si(τ̃) > −g ti(τ̃)( ), for all τ̃ < τ
{ }

, (1)

where each system i’s centered partial sum statistic is

Si(τ) � Bi ti(τ)( ) − ti(τ)μ?: (2)

In other words, we eliminate system i at global time τ
if Si(τ) ≤ −g(ti(τ)); that is, its centered partial sum sta-
tistic touches the boundary, evaluated at the system’s
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local time. Thus, Q(τ) is the set of systems that have
“survived” elimination up to time τ. We index each
Si(·) and Q(·) by global time. However, whenever we
inspect a system i for elimination, we evaluate both
system i’s cumulative output and the boundary func-
tion at system i’s local time ti(τ).

PASS makes elimination decisions in this way to con-
trol the EFER.We define the EFER generically because it
can apply to various definitions of “good” systems.

Definition 1. Consider a set of “good” systems G ⊆ {1,
2, : : : ,k} and a simulation optimization algorithm that
delivers estimates of G at global time τ ≥ 0, denoted
Ĝ(τ) ⊆ {1, 2, : : : ,k}, for which Ĝ(τ′) ⊆ Ĝ(τ) when τ′ > τ:
Then the EFER at time τ is

EFER(τ) � 1−E |G ∩ Ĝ(τ) |
G| |

( )
and EFER � lim τ→∞EFER(τ):

Controlling the EFER is a natural objective for very
large k because it emphasizes retaining a proportion
of good systems relative to the total number of good
systems. If τend is the time at which we stop an optimi-
zation run, then controlling the EFER captures our
desire for G and Ĝ(τend) to coincide, or at least have
most of G remaining in Ĝ(τend). Because EFER(τend) ≤
EFER for all τend <∞, an algorithm that guarantees an
EFER for an infinite time horizon will have no greater
error at finite termination times. This property is
important because no realistic algorithm will run for-
ever, and we may want to stop or transition to another
procedure when the number of surviving systems is
small enough.

We now relate EFER to PASS with a known stand-
ard. Because systems’ true means are unknown, the
set G is also unknown. In PASS, the set of good sys-
tems is G � {i : μi ≥ μ?} and the estimate of this set is

the set of contenders, so that Ĝ(τ) �Q(τ) for τ ≥ 0.
Under Assumptions 1–3 and Equations (2) and (1),

but with no assumptions about whether systems are
simulated independently of each other, or how large
|G | or k is, we have that EFER ≤ α. Provided that the
local time for all systems increases without bound as
τ→∞, we also have that lim τ→∞Q(τ) ⊆ G with a
probability of one. The key is the boundary function
in Assumption 3 that ensures that each i ∈ Gc is elimi-
nated with a probability of one as τ increases and the
probability of false elimination is controlled margin-
ally for each i ∈ G.

Thus far, we have assumed μ? is known but have
not elaborated on how to choose it. There are many
practically meaningful ways to define μ?, including
μ? � μ1, in which only the best (or ties) are acceptable;
μ? � μb, 2 ≤ b ≤ k− 1, in which systems as good as the

bth best are acceptable; or μ? �min{μ1,μ
+}, in which

systems better than a known value μ+, or μ1 if there
are no such systems, are acceptable. In this paper we
focus on μ? � μ1, since it is the closest to the usual
R&S formulation. However, we expect that standards
such as μ? � μb and μ? �min{μ1,μ

+} are more rele-
vant in practice when k is very large.

Of course, μ? will not be known in realistic prob-
lems, which motivates the need to learn μ? efficiently
but in a way that does not compromise the EFER; the
remainder of the paper concerns this subject. See
Online Appendix EC.1 for how the following theory
can be extended to other standards beyond μ? � μ1.
For a discussion of the differences among EFER guar-
antees and more traditional R&S guarantees such as
probability of correct selection or good selection, see
Online Appendix EC.2.

4. Theoretical Framework for Parallel
Adaptive Survivor Selection

In this section, we introduce a theoretical framework
and EFER results for bisection-PASS (bi-PASS) for the
case when μ? � μ1, so that the standard is the true best
mean. However, unlike in Section 3, we do not assume
that μ? is known. Instead, we estimate the true stand-
ard, and our estimate μ̂ is the current sample mean of
the outputs of the contenders, which we define as the
not-yet-eliminated systems. Thus, bi-PASS is similar
to a bisection search in that μ̂ estimates the average
(true) mean of the survivors, which (ideally) increases
toward μ? as unacceptable systems are eliminated. We
define μ̂ rigorously in Section 4.1.

The ability to provide a global statistical guarantee is
a strong motivation for solving a simulation optimiza-
tion problem via R&S. In the case of bi-PASS, the
desired guarantee is EFER ≤ α. Here, we provide some
theoretical justification in a normally distributed out-
put setting. Section 4.1 contains the key theorem that a
synchronized version of bi-PASS in which all systems
have known, common variance, attains the desired
false elimination rate even if the termination time is
infinite. In Section 4.2, we prove that this result also
holds when systems have a common but unknown
variance. These consequences are significant because
they demonstrate that under some conditions, using a
careful estimation of an unknown standard does not
sacrifice the EFER guarantee that a known standard
provides. Although elimination decisions are not com-
pletely decoupled as in PASS with a known standard,
comparison with an estimated standard still avoids
pairwise comparisons and full synchronization, and
therefore can be parallelized efficiently.

Although this section’s setting does not capture all
intricacies of executing bi-PASS, the result supports the
observed empirical performance. Pei et al. (2018, 2020)
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showcase empirically that a practical implementation of
bi-PASS attains the EFER guarantee and performs well
against R&S competitors, and Section 8 provides further
empirical support. In practice, we must assign a system
to a processor to advance its local time (at the cost of
global wall-clock time), and the processor must some-
how share its information (e.g., using message passing).
These computational aspects in a parallel algorithm
implementation are deferred to Section 5. We provide
an asymptotic result about bi-PASS with out-of-sync
information in Section 6.

4.1. EFER for Synchronized bi-PASS with
Common Known Variance

We introduce a result for a synchronized version of
bi-PASS based on the formulation in Section 3. As
before, we suppose Assumptions 1–3 hold. We intro-
duce additional assumptions for a more-structured
setting which also allows us to make some notation
simplifications in this section.

Assumption 4 (Equal Means Configuration). Let μ1 �
μ2 �⋯� μk � μ.

Assumption 5 (Synchronized Local Time). Each system
i ∈ {1, 2, : : : , k} has common local time ti(τ) � t(τ) for all
global time τ, where t(·) is nondecreasing.
Assumption 6. For each system i, j ∈ {1, 2, : : : ,k}, i≠ j,
Bi(·) andBj(·) are independent.

We use Assumption 4 because for a given common
variance, the equal means configuration is the most
difficult setting for the EFER because any elimination
is a false elimination. Without loss of generality, we
take μ � 0, so that Bi(t) � σWi(t) for all i � 1, 2, : : : , k.
Assumption 5 is “synchronized local time,” which
means that each contender accumulates local time at
the same rate. Because all systems are in sync, we
omit dependence on global time and simply use t to
index each Brownian motion. Assumption 6 allows us
to fully characterize the joint distribution of the con-
tenders’ centered partial sum statistics when using an
estimated standard. Later in Section 6.3, we discuss
the use of common random numbers, which violates
this assumption. In Online Appendix EC.3, we prove
the following.

Theorem 1. Let Assumptions 1–6 hold. Recall that, with-
out loss of generality, we assume μ � 0 and σ2 � 1, and omit
notational dependence on global time. For t � 0, 1, 2, : : : and
i ∈ {1, 2, : : : , k}, define

Si(t) � Bi(t) − tμ̂(t), (3)

where

μ̂(t) � 1
Q(t)| |

∑
j∈Q(t)

Bj(t)
t

(4)

and

Q(t) � i : Si(t̃)>−g(t̃), for all t̃ � 0,1,2, : : : such that t̃ < t
{ }

:

(5)

Then

Pr Si(t) ≤ −g(t), for some t � 0, 1, 2, : : :
{ } ≤ α: (6)

Theorem 1 applies to inspection at integer times t �
0, 1, 2, : : : , which is natural when output are replica-
tion results. However, the proof in Online Appendix
EC.3 holds for any discrete times t � 0,Δt, 2Δt, : : : with
Δt > 0.

4.2. EFER for Synchronized bi-PASS with
Common Unknown Variance

Section 4.1 provides an EFER result for bi-PASS when
systems have a common known variance. In this sec-
tion, we describe adjustments for handling common
but unknown variances.

With common known variance, Theorem 1 assumes
unit variance without loss of generality because we
can always transform a driftless Brownian motion to
obtain a standard Brownian motion. Here, we discuss
this transformation. Let W(·) be a standard Brownian
motion and let σ2 > 0 be a finite constant. If B(t) �
σW(t) for t ≥ 0, then B(t)=σ2 has the same distribution
as W(t=σ2), which has unit variance and time scale
t=σ2. See Resnick (1992) for Brownian motion scaling
properties. This argument establishes the following
consequence of Theorem 1.

Corollary 1. Let Assumptions 1–6 hold. For t � 0, 1, 2, : : :
and i ∈ {1, 2, : : : ,k}, define

Si(t) � Bi(t) − tμ̂(t)
σ2

, (7)

where

μ̂(t) � 1
Q(t)| |

∑
j∈Q(t)

Bj(t)
t

(8)

and

Q(t) � i : Si(t̃) > −g(t̃=σ2), for all
{
t̃ � 0, 1, 2, : : : such that t̃ < t

}
: (9)

Then

Pr Si(t) ≤ −g(t=σ2), for some t � 0, 1, 2, : : :
{ } ≤ α:

Corollary 1 introduces the transformation needed to
preserve the EFER in the setting of common known
variance not equal to one. In Corollary 1, each sys-
tem’s centered partial sum statistic is the same as in
the unit variance case of Equation (3) except for divi-
sion by σ2. The argument for the boundary function is
also divided by σ2. We refer to these modifications as
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“scaling.” Under the special case of σ2 � 1, the nota-
tion in Theorem 1 and Corollary 1 coincide.

Exploiting Corollary 1, we now describe modifica-
tions for unknown variances. First, we show that Theo-
rem 1 holds for common unknown variance using a
more generous boundary that accounts for more uncer-
tainty than in Assumption 3. Standard R&S condition-
ing arguments, as in Fan et al. (2016), can be used to
adjust the boundary for estimated variance.

Assumption 7. Given α ∈ (0, 1) and nonnegative integer
d, let gd : [0,∞)→ [0,∞) be an increasing function
depending on α and d, such that for a standard Brownian
motionW(·),

E Pr W(t) ≤ −gd(td=X)Xd , for some t <∞
∣∣∣∣∣ X

{ }[ ]
≤ α,

(10)

where X is a chi-squared random variable with d degrees of
freedom independent ofW(·).
Theorem 2. Let Assumptions 1 and 4–7 hold. Assume that
each system i has common variance σ2i � σ2 <∞. Let σ̂2 be
a sample variance estimator of σ2 such that σ̂2

=σ2�DX=d,
where X is a chi-squared random variable with d degrees of
freedom that is independent of Bi(·) for each i � 1, 2, : : : , k.
For t � 0, 1, 2, : : : and i ∈ {1, 2, : : : ,k}, define Si(t), μ̂(t),
and Q(t), as in Corollary 1, but with σ̂

2 in place of σ2.

Then Pr Si(t) ≤ −gd(t=σ̂2), for some t � 0, 1, 2, : : :
{ }

≤ α:

Proof. We have

Pr Si(t) ≤ −gd(t=σ̂2), for some t � 0, 1, 2, : : :
{ }

� Pr

{
Bi(t) − tμ̂(t)

σ2
d
X

≤ −gd(td=(Xσ2)),

for some t � 0, 1, 2, : : :

}

� E

[
Pr

{
Bi(t) − tμ̂(t)

σ2
≤ −gd(td=(Xσ2))Xd ,

for some t � 0, 1, 2, : : :

∣∣∣∣∣ X
}]

≤ E

[
Pr

{
W(t=σ2) ≤ −gd(td=(Xσ2))Xd ,

for some t � 0, 1, 2, : : :

∣∣∣∣∣ X
}]

≤ α:

The second-to-last line follows from a nearly identical
application of the proof of Theorem1 inOnlineAppendix

EC.3. Lemma EC.6 in Online Appendix EC.3 also holds
when −g(t) is replaced by −a1 · g(−a2t) for some con-
stants a1, a2 > 0. w

When σ2 is unknown, a natural estimator is the
pooled sample variance

σ̂
2
pooled �

1
k

∑k
i�1

1
n0 − 1

∑n0
r�1

(Yir − Ȳi·)2 � 1
k

∑k
i�1

σ̂
2
i , (11)

where Yi· � n−10
∑n0

r�1Yir, σ̂
2
i is the sample variance of

system i, and n0 is the initial number of replica-
tions obtained from each system. The pooled sample
variance σ̂

2
pooled is the common “scaling factor” for

each system. In the normally distributed output
case, the pooled sample variance satisfies the as-
sumptions of Theorem 2 and k(n0 − 1)̂σ2

pooled=σ
2 has a

chi-squared distribution with k(n0 − 1) degrees of
freedom. However, we expect the number of sys-
tems k to be so large that a degrees-of-freedom ad-
justment is unnecessary and the σ̂

2
pooled could be

treated as “known.”
In a general setting in which variances are unknown

and unequal, choosing a scaling factor for each system
is less straightforward. In Section 6.2, we discuss strat-
egies for practical implementation, and verify their
effectiveness empirically in Section 8.

5. Model for Computational bi-PASS
In this section, we develop notation to model how
bi-PASS is implemented in practice. We refine the
notation in Section 3 to capture the essential features
of bi-PASS with an estimated standard in a master-
worker computing framework. Otherwise, the setting
is the same as Section 3, including Assumptions 1–3,
and we let the common known variance be σ2 � 1. As
before, for each system i, ti(τ) is i’s local time at global
time τ ≥ 0.

To be general, we consider a parallel computing
environment in which processors do not have shared
memory and must communicate information exclu-
sively via message passing. We assume a master-
worker computing framework for communication, in
which workers exchange messages with a single mas-
ter, but do not communicate directly with other work-
ers. The master delegates “jobs” to p workers. When
the master assigns a job to a worker, it must send a
message to that worker with the information neces-
sary to complete the job, and a worker that has com-
pleted a job must report back with a message to the
master and include any newly acquired information.

In bi-PASS, we can think of the master-worker
framework and jobs as a multiserver queueing net-
work that is closed but leaky. Each job uniquely repre-
sents a contender. The master and workers are the
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servers, and jobs (contenders) are customers that cycle
between being served by the master and being served
by a worker. At initialization, no systems have been
eliminated and the set of contenders consists of all k
systems, so that there are also k jobs, one for each con-
tender. Each worker serves a job i by advancing local
time on system i and reporting new information on
system i to the master. The master serves job i by
receiving and processing this new information on sys-
tem i. Processing the new information on system i
includes determining whether the system should be
sent to a worker to accumulate more local time, or
whether the system should be eliminated, in which
case the job corresponding to system i is eliminated.
Optionally, a worker may also be allowed to eliminate
the system it is simulating. We refer to this option as
“worker elimination.”

Algorithm 1 (Pseudocode Sketch of bi-PASS Master
Loop)
1. Listen for incoming worker messages
2. ifWorker w sends job i completion message then
3. Update system i’s info: cumulative output and

local time [and elimination status]
4. Add i to job queue according to some criteria

[unless eliminated by worker]
5. whileWorker w has no job do
6. Remove first system from front of job queue

(say, system j)
7. if j can be eliminated then
8. Remove j from contenders
9. Update estimated standard

10. else
11. Assign j to worker w
12. Send cumulative output, local time, and run

length Δj [and estimated standard and incre-
ment δj]

13. Return to Step 1

Algorithm 2 (Pseudocode Sketch of bi-PASS Worker
Loop)
1. Listen for job assignment message frommaster
2. ifMaster sends job j assignment message then
3. while Additional Δj local time not yet accumulated

do
4. Accumulate local time
5. [Inspect system j for elimination after each

increment δj]
6. Send job j completion message to master in-

cluding system j’s info: new cumulative output
and local time [and elimination status]

7. Return to Step 1

In Algorithms 1 and 2, we list the main loop for
the master and for each worker as an outline for the
structure of bi-PASS. Sections 5.1 and 5.2 provide ex-
plicit notation capturing the contenders, the estimated

standard, and elimination conditions in a parallel envi-
ronment. The loops begin after an initial n0 observations
are collected on each system. We describe what each
worker does to complete a job and report its results
back to the master, as well as what the master does to
complete a job and assign a new job to an idle worker.
In general, message-passing time increases with the size
of the message, and bi-PASS facilitates relatively speedy
communication since only a few scalar quantities are
communicated between the master and a worker within
a message. In brackets, we include additional steps
and information needed when worker elimination is
allowed. As discussed in Section 5.2, when worker elim-
ination is allowed, a worker processing job i also itera-
tively inspects for elimination of system i in local time
increments of δi > 0. See Pei et al. (2020) for complete
pseudocode.

In bi-PASS, there is a one-to-one correspondence
between each job and contender. This property implies
that bi-PASS avoids statistical bias problems created
when replications from the same system are parallel-
ized, as described in Heidelberger (1988) and Luo et al.
(2015). Additionally, each job asks a worker to carry
out the same set of operations, so that any worker can
take any job and job assignment is simple for the mas-
ter. It is also the case that if the systems are actually the
same simulation model with different parameters or
decision variables, then the master can preload the
model on eachworker and only pass a system’s unique
parameters when instructing a worker to simulate that
system. Workers are either performing a simulation
job or are retired, and workers do not need to wait
for any other workers to start a job. This property is in
contrast to algorithms like the state-of-the-art parallel
good selection procedure (GSP) from Ni et al. (2017),
in which there are different types of jobs and workers
switch between “simulation” jobs and “screening”
jobs.

Next, we introduce notation to capture discrepan-
cies in the information that is accessible to a worker
simulating system i and the information available to
the master. Workers only report to the master upon a
job completion. Although the quantity Bi(ti(τ)) is well
defined at all global times τ ≥ 0, the master might not
have access to this information at time τ.

For each system i, define

ai(τ) �
1, if system i has been assigned to a

worker at global time τ

0, otherwise: (12)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
If ai(τ) � 0 at global time τ, then system i is either in
the master queue or has been eliminated. We let
ai(τ) � 1 if the master and a worker are communicat-
ing about system i at time τ, so that message-passing
is included in the time i is assigned to a worker.
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For each system i, define

li(τ) � sup {τ̃ ≤ τ : ai(τ̃) � 0} (13)

as the most recent (“last”) global time before τ that
system j was not assigned to a worker; thus, ti(li(τ))
represents the most recent local time for system i that
is accessible to the master. We emphasize here that
li(τ) is a global time, whereas ti(li(τ)) is a local time.
Because only workers can advance systems’ local
times, we have ti li(τ)( ) ≤ ti(τ) for all global time τ and
for all systems i. For any global time τ, we say that the
master processor is “current” on system i if ti li(τ)( ) �
ti(τ) and say that the master processor is “out-of-date”
on system i otherwise. If the master is out-of-date on
system i, then this implies that ai(τ) � 1, and the
worker assigned to i has advanced i’s local time but
not yet reported new information on system i to the
master.

Equations (12) and (13) are important for describing
the value of the estimated standard that the master
(and potentially workers) use to inspect for elimina-
tion, explained in the following Sections 5.1 and 5.2,
respectively. At any global time τ, the master only has
access to Bi ti(li(τ))( ) for each system i. Therefore, the
master must base the estimated standard and set of
contenders at time τ on Bi ti(li(τ))( ) for each system i.
To ensure that all quantities are well defined, we
assume that each master computation, such as inspect-
ing a system for elimination or assigning a job to a
worker, takes at least ε > 0 global time, as would be the
case in a real implementation.

5.1. Master-Only Elimination
Here we describe the centered partial sum statistic
used to inspect a system for elimination in the “master-
only elimination” setting, in which the master inspects
contender i for elimination when it reaches the head of
the master queue and at least one worker is idle. In
other words, the master inspects contender i for elimi-
nation immediately before it is (potentially) assigned.
Workers only simulate systems and do not inspect
them for elimination.

For each system i, let Ci(τ) be the global elimination
inspection times for system i up to but not including
time τ. Then Ci(τ) is a set of stopping times defined as

Ci(τ) � {τ̃ < τ : system i is inspected for elimination}:
(14)

Because master computations take at least ε > 0 global
time, at most one system is inspected for elimination
at any time, and the number of times a system is
inspected for elimination is countable.

The master maintains the set of contenders and the
estimated standard based on the information the mas-
ter has available. We append [m] to Q to emphasize

that Q[m](τ) is the set of contenders that the master
maintains based on information available to the
master at global time τ. More precisely, we define
Q[m](τ) as
Q[m](τ) � i : Si(τ̃) > −g ti(τ̃)( ), for all τ̃ ∈ Ci(τ){ }

, (15)

where we define system i’s centered partial sum statis-
tic Si(τ̃) in Equation (16).

Suppose that the master inspects system i for elimi-
nation at global time τ̃. Then ai(τ̃) � 0 because i is not
on a worker and the master calculates system i’s cen-
tered partial sum statistic as

Si(τ̃) � Bi ti(τ̃)( ) − ti(τ̃) 1
Q[m](τ̃)∣∣ ∣∣ ∑

j∈Q[m](τ̃)

Bj(tj(lj(τ̃)))
tj(lj(τ̃))︸��������������︷︷��������������︸

estimated standard μ̂(τ̃)

:

(16)

Putting this together in an explicit elimination condi-
tion, if τ̃ is an inspection for system i, then the master
eliminates system i if Si(τ̃) ≤ −g ti(τ̃)( ): Themaster com-
pares system i’s cumulative output to an estimated
standard computed from the master’s version of the
set of contenders. However, the master can only use
the last reported cumulative output of each contender
for the estimated standard, because the master cannot
access new information about contenders assigned
to workers until the workers complete their jobs and
report back.

5.2. Master and Worker Elimination
Next consider the “master and worker elimination”
setting, which is the same as earlier with the addition
that workers also inspect systems for elimination. This
modification allows for more systems to be eliminated
faster. When job i is assigned to a worker, the worker
advances local time and inspects system i for elimina-
tion in discrete increments of local time δi ∈ (0,Δi),
until a predetermined run length Δi > 0 has been accu-
mulated or until i is eliminated, whichever comes first.
For noneliminated systems, the master continues to
inspect for elimination immediately before it is poten-
tially assigned.

Let Ci(τ) be the set of system i’s global inspections
up to time τ. Now Ci(τ) contains times that a worker
inspects i, because system i is inspected for elimina-
tion by both the master and (in discrete increments of
δi local time) by any worker that is simulating it. As
before, let Q[m](τ) be the set of contenders, containing
systems that have not been eliminated by global time
τ from the master’s perspective. However, now, in the
construction of each system’s centered partial sum sta-
tistic, Q[m](·) takes an argument that accommodates
worker elimination.
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If system i is inspected for elimination at global
time τ̃, its centered partial sum statistic is

Si(τ̃) � Bi ti(τ̃)( )

− ti(τ̃) 1
Q[m] li(τ̃)( )∣∣ ∣∣ ∑

j∈Q[m] li(τ̃)( )

Bj tj(lj(τ̃)� li(τ̃))
( )
tj(lj(τ̃)� li(τ̃))︸����������������������︷︷����������������������︸

estimated standardμ̂(τ̃)

:

(17)

When ai(τ̃) � 0, so that the master is inspecting i for
elimination, the formula derived in Equation (16) is a
special case of the formula in (17). To see this, suppose
that the master inspects system i for elimination at
time τ̃. Because ai(τ̃) � 0, we have li(τ̃) � sup{τ′ ≤ τ̃ :
ai(τ′) � 0} � τ̃, which also implies that lj(τ̃)� li(τ̃) �
lj(τ̃).

Now consider ai(τ̃) � 1, meaning that i is assigned
to some worker w. Worker w inspects system i using
the estimated standard value communicated by the
master at the time of job assignment. This estimated
standard value stays constant throughout the job
because worker w does not have access to current
information on the master or other workers while it
is completing job i. The lj(τ̃)� li(τ̃) term reflects this
information discrepancy. The minimum operator en-
sures that the estimated standard value stays constant
or “frozen.” Even if other workers complete jobs and
report back to the master while worker w is in prog-
ress on its job i, worker w does not have access to this
new information. As before, if τ̃ is an inspection for
system i, then i is eliminated if Si(τ̃) ≤ −g ti(τ̃)( ):

The “frozen” estimated standard in worker elimina-
tion complicates our ability to guarantee the EFER, as
discussed in Online Appendix EC.4, although we
observe no deleterious effects in our experiments in
Section 8.

5.3. Worker-Only Elimination
We omit development of the “worker-only elimi-
nation” setting, in which only workers but not the
master inspect for elimination. We see no practical
advantage of this setting, even though it fits under the
general framework of Equation (17). Because the mas-
ter must manage the estimated standard anyway, the
master’s inspection is a simple “if” statement with no
additional computation. When a master eliminates a
system, this action avoids an unnecessary job assign-
ment and thus saves the worker overhead of message
passing and setting up the simulation.

6. Analysis of Computational bi-PASS
In this section, we discuss theoretical results and practi-
cal considerations for a computational implementation
of bi-PASS in the master-worker computing framework

of Section 5. We present an asymptotic result showing
that even when contenders’ observations are out-of-
sync, so that at any global time contenders may have
different local times from each other, any problematic
statistical effects are mitigated when the number of sys-
tems k is large. We also discuss strategies for estimating
scaling factors when variances are unknown and un-
equal and present results suggesting that common ran-
domnumbers should not be usedwith bi-PASS.

6.1. Asymptotic EFER for bi-PASS
We consider the asymptotic behavior of bi-PASS, as
outlined in Section 5 and Algorithms 1 and 2, as the
number of systems k→∞. This setting is relevant as
bi-PASS is designed for large k. We introduce addi-
tional assumptions for a result that shows that under
equal means, known and equal variances, and no
elimination, the EFER guarantee holds asymptotically
despite systems being out of sync.

Assumption 8. Assume that
(a) There is an infinite sequence of problems indexed by k,

{(Bk
i (t), tki (τ)) : t,τ ≥ 0, i � 1,2,: : : , k}∞k�1,

where each Bk
i (·) is an independent Brownian motion with

unknown mean μi and known variance σ2i . System 1 is the
best, so that μi ≤ μ1 <∞ for all i ∈ {1, 2, : : : }. There are
constants σL,σU such that 0 < σL ≤ σi ≤ σU <∞ for all i.
Let Prk denote the probability with respect to problem k’s
stochastic processes {(Bk

i (t), tki (τ)) : t,τ ≥ 0, i � 1, 2, : : : , k}.
(b) For each i ∈ {1, 2, : : : ,k} and k ∈ {1, 2, : : : }, system i’s

local time tki (τ) is a nondecreasing, continuous, and deter-
ministic function with tki (0) � 0 and tki (τ) →∞ as τ→∞.

(c) For each i, j ∈ {1, 2, : : : ,k} and k ∈ {1, 2, : : : }, there is a
τ0 ∈ (0,∞) such that tkj (τ0) ≥ t0 > 0, and a constant r such

that tki (τ)=tkj (τ) < r <∞ for τ ≥ τ0.

Remark 1. Letting k→∞ is only meaningful if the
number of workers p also increases; otherwise, some
systems might never be simulated. Assumption 8(a) is
one way of representing the requirement that every
system is simulated, and one possible way to achieve
this is by having p=k→ γ ∈ (0, 1) as k→∞, where γ
might be interpreted as the number of workers per
system.

Assumption 8(b) establishes that each system’s local
time continues advancing with respect to global time;
that is, each system is simulated infinitely often. This
setting is sensible, because we are not eliminating sys-
tems in this asymptotic environment. The bounds in
Assumption 8(c) ensure that as k→∞, each system’s
local time does not get arbitrarily far ahead of any
other system’s local time. This bound is in fact enforce-
able in practice, as in the implementation in Section 7,
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in which we move contenders with significantly less
local time to the front of themaster’s job queue.

Next, we state Theorem 3, and its proof is given in
Online Appendix EC.5.

Theorem 3. Let Assumptions 2, 3, 6, and 8 hold, and
assume equal means μi � μ and equal variances σ2i � σ2 for
all i, and without loss of generality assume that μ � 0 and
σ2 � 1.

For τ ≥ 0 and k ∈ {1, 2, : : : }, define Sk1(0) � 0 and

Sk1 τ( ) � Bk
1(tk1(τ)) −

tk1(τ)
k

∑k
i�1

Bk
i t

k
i (τ)

( )
tki (τ)

� tk1(τ)
k− 1
k

( )
Bk
1(tk1(τ))
tk1(τ)

− 1
k

∑k
i�2

Bk
i t

k
i (τ)

( )
tki (τ)

[ ]
:

Let W(·) denote a standard Brownian motion. Consider
m > 0 fixed local times 0 < c1 < c2 <⋯< cm <∞, and for
each k ∈ N, let τk1 < τk2 <⋯< τkm be the corresponding
global times such that tk1 τ

k
ℓ

( ) � cℓ for ℓ ∈ {1, 2, : : : ,m}. Then
lim
k→∞

Prk{Sk1(τkℓ) ≤ −g cℓ) for some ℓ � 1, 2, : : : ,m
( }

� Pr W cℓ( ) ≤ −g cℓ( ) for some ℓ � 1, 2, : : : ,m
{ } ≤ α:

Because system 1 is arbitrary, Theorem 3 provides an
asymptotic EFER guarantee. The theorem’s setting
involves using the average of the sample means from
all systems as an estimated standard to inspect system
1 for elimination at a fixed set of local time points. In
practice, these fixed local time points are proportional
to system 1’s run length Δ1. With a suitable boundary
function and an infinite sequence of “problems” con-
sisting of sets of independent Brownian motions with
known and equal variances, the aforementioned esti-
mated standard behaves asymptotically like a known
standard, despite systems having different local times.
Provided that there is a limit on how far out of sync the
other systems can be, the impact of being out of sync
vanishes as we consider larger and larger problems.

Although this result is certainly not a complete
asymptotic justification of bi-PASS, it suggests why we
have not detected problems empirically. This result
does not include elimination of other systems and sub-
sequent statistical effects on the estimated standard.

Remark 2. Our conditions imply that each system’s
global-time-to-local-time function tki (·) can depend on
i and problem size k, but not on the simulation output.
When systems are not eliminated, assuming that each
tki (·) is deterministic is not dramatically different from
reality.

Finally, Theorem 3 also holds when means are un-
equal and when variances are known yet unequal,
provided that the variances of the systems remain
within bounds. This result is stated later, and its proof

in Online Appendix EC.5 is analogous to the proof of
Theorem 3.

Corollary 2. Let Assumptions 3, 6, and 8 hold. For τ ≥ 0
and k ∈ {1, 2, : : : }, define

Sk1 τ( ) � 1
σ21

Bk
1(tk1(τ)) −

tk1(τ)
k

∑k
i�1

Bk
i t

k
i (τ)

( )
tki (τ)

[ ]
:

Consider some fixed local times 0 < c1 < c2 <⋯< cm <∞
and for each k ∈ N, let τk1 < τk2 <⋯< τkm be the correspond-
ing global times such that tk1 τ

k
ℓ

( ) � cℓ for ℓ ∈ {1, 2, : : : , m}.
Then

limsup
k→∞

Prk{Sk1(τkℓ) ≤ −g(cℓ=σ21) for some ℓ � 1, 2, : : : ,m }

≤ Pr{W(cℓ=σ21) ≤ −g(cℓ=σ21) for some ℓ � 1, 2, : : : ,m } ≤ α:

6.2. Scaling Factors for Unknown and
Unequal Variances

Previous results in Sections 4.1 and 4.2 provide theoreti-
cal conclusions for synchronized bi-PASS with common
variance. The results of Section 6.1 show that when var-
iances are unequal but known, using each system’s true
variance as its scaling factor upholds the EFER guaran-
tee asymptotically under certain conditions, even when
systems are out of sync. In practice, when variances are
unequal and unknown, the situation is not straight-
forward. For master-only elimination and master-and-
worker elimination, Equations (16) and (17) must be
divided by some “scaling factor” σ̃2

i for each system i,
and for the elimination-inspection conditions, the boun-
dary −g ti(τ)( ) becomes −g(ti(τ)=σ̃2

i ). We consider three
approaches for scaling factors:

1. Pooled scaling factor. As a common average var-
iance, use the same scaling factor σ̂2

pooled for each sys-
tem, as in Equation (11). If the variances do not differ
too widely then we expect this approximation to per-
form well with a common known-variance boundary
g(·).

2. Batch means. Replace Yir with differently sized
batch means from each system so that the batch means
have approximately equal target variance σ2c . That is,
the basic observations from system i become Ȳir(bi) �
b−1i

∑rbi
h�(r−1)bi+1Yir, r � 1, 2, : : : such that Var(Ȳir(bi)) ≈ σ2c .

Again, a common known-variance boundary g(·) is
used. Goldsman and Nelson (1990) applied a similar
idea in the context of multiple comparisons.

3. Custom scaling factor. Each system i ∈ {1, 2, : : : ,k}
uses its own scaling factor σ̂2

i , for example, its individ-
ual sample variance. If n0 is common, then the same
degrees-of-freedom adjusted gd(·) is appropriate for
all systems, but due to scaling, boundaries will be

Pei, Nelson, and Hunter: Parallel Adaptive Survivor Selection
Operations Research, Articles in Advance, pp. 1–19, © 2022 INFORMS 11

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

98
.2

53
.2

9.
49

] 
on

 2
2 

M
ay

 2
02

3,
 a

t 1
2:

27
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



evaluated at different local times n=σ̂2
i for n � 1, 2, : : :

for each system i. This approach ensures the desired
EFER for a known standard μ?. This adjustment will be
approximately correct if the variance of the estimated
standard μ̂ is effectively zero, as we expect when k is
very large (initially) or n is very large (eventually)
when the number of contenders is small.

Approach 1 is the simplest but can be risky if varian-
ces are significantly unequal. Approach 2 heuristically
adjusts for this possibility while staying in an “equal
variance” paradigm. Approach 3 slightly increases
algorithm complexity but stays robust across different
configurations of variances by giving each system its
own scaling factor. We evaluate Approaches 1 and 3 in
Section 8.

6.3. Common Random Numbers
Common random numbers (CRNs) is perhaps the
most well-known andmost often-used variance reduc-
tion technique (Nelson and Pei 2021), reducing the
variance of the difference between two estimators by
inducing positive correlation. This is important be-
cause pairwise differences are the foundation for many
R&S procedures. Because CRN is the default experi-
ment design in most simulation software, it may be
applied intentionally or inadvertently. In this section,
we explore the merits of using CRN in bi-PASS and
conclude that CRN is not generally recommended.

For the analysis that follows, we compare independ-
ent simulations of k systems to the best-case scenario
for CRN. Instead of using an independent Brownian
motion Wi(t) for each system, we use a common Brow-
nian motion W(t). In the best-case scenario for CRN,
systems are perfectly correlated, so that BCRN

i (t) �
σiW(t) +μit for all i � 1, 2, : : : ,k; that is, the stochastic
component of each system’s simulation output is the
sameW(t).

We first consider the synchronized setting of Section
4.1 and then later examine the impact of being out of
sync. In the synchronized setting, let

SCRNi (t) � BCRN
i (t) − 1

k

∑k
j�1

BCRN
j (t)

� (σi − σ̄)W(t) + (μi − μ̄)t,
where σ̄ � ∑k

j�1 σj=k and μ̄ � ∑k
j�1 μj=k. If all variances

are equal to σ2, then this expression reduces to
SCRNi (t) � (μi − μ̄)t, which has EFER � 0 for system 1
and any tied with it, and eliminates all inferior sys-
tems with a probability of one if we update μ̄ after
eliminations. This result suggests a benefit to CRN,
but the general case suggests otherwise.

When at least some variances are unequal, Var(SCRNi

(t)) � (σi − σ̄)2t. If instead we simulate k independent

Brownian motions and form our centered partial sum
statistic SIND

i (t) � Bi(t) − 1
k
∑k

j�1Bj(t), then it is easy to
derive that

Var(SIND
i (t)) � k− 1

k

( )2
σ2i +

1
k2

∑
j≠i

σ2j

[ ]
t:

Simple algebra shows that Var(SCRNi (t)) < Var(SIND
i (t))

if and only if

σi >
1
2

∑
j≠i σj

k− 1

( )
1−

∑
j≠i σ

2
j

(∑j≠i σj)2
( )

:

As an easy-to-interpret special case, suppose that
σ1 �⋯� σi−1 � σi+1 �⋯ σk � σ≠ σi. Then CRN is effec-
tive if

σi >
σ

2
k− 2
k− 1

( )
≈ σ

2

for k large. Thus, not all systems benefit from CRN if var-
iances are substantially unequal.

Unfortunately, even if variances are equal or nearly
so, making elimination decisions with out-of-sync
local times, as we fully expect to do, can penalize
CRN. To show this, we assume all σi � 1 and, without
loss of generality, that all μi � 0. We focus on system i
at time t1 > t0 > 0, where t0 is the local time for sys-
tems 2,3, : : : ,k. Consider the statistic

SCRNi (t1) � BCRN
i (t1) − t1

k

∑k
j≠1

BCRN
j (t0)
t0

+BCRN
i (t1)
t1

( )
:

Tedious algebra yields

Var(SCRNi (t1)) � k − 1
k

( )2
t1 − t0 + 1 − t1

t0

( )2
t0

[ ]

→k→∞
t1 − t0 + 1 − t1

t0

( )2
t0 > t1

for t1 large enough. On the other hand, in the same
setting but with all systems simulated independently,

Var(SIND
i (t1)) � k − 1

k

( )2
t1 − t0 + 1 + t21

(k − 1)t20

( )
t0

[ ]
→k→∞

t1 − t0 + t0 � t1:

Thus, CRN can inflate variance when systems have
substantially out-of-sync local times, even if variances
are equal.

Remark 3. If one wants to use CRN in bi-PASS, assign-
ment of pseudorandom number streams is straight-
forward because at any given time in the algorithm
there is only one simulation job per contender. Then
the first time a system is simulated, it is assigned well-
separated streams, say 1, 2, : : : ,u; the second time it is
simulated, it uses streams u+ 1,u+ 2, : : : , 2u; and so on.
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This maintains synchronization across systems but
guarantees independent replications. A pseudoran-
dom number generator from L’Ecuyer et al. (2002) is
well suited for this setting.

7. Implementation of bi-PASS
Here we discuss the bi-PASS implementation that we
use for numerical experiments. Our practical algorithm
is straightforward to deploy in a parallel, message-
passing setting. Deriving the “optimal” implementation
is beyond the scope of this paper and depends on the
computing architecture. Our implementation choices
provide promising results.

To implement bi-PASS in a master-worker frame-
work, we use the academic and industry standard for
parallel communication, the message passing interface
(MPI). We specifically use the popular open-source
library, Open MPI, and its Python implementation
mpi4py, but emphasize that the structure of the code
is platform and programming language independent.
We do not explicitly manage a message queue because
such mechanics are handled by Open MPI. We do not
assume sharedmemory to avoid dependence on a par-
ticular computer architecture. Other communication
schemes are possible but are not discussed here.

The bi-PASS algorithm consists of an initial Stage 0
requiring simulation to estimate systems’ variances and
a sequential elimination Stage 1. Detailed and complete
pseudocode is available in the companion paper (Pei
et al. 2020), but we provide a brief overview here aswell.

In Stage 0, the master creates a queue of k jobs and
assigns jobs one at a time to an available worker. Each
job i corresponds to simulating system i for a prespeci-
fied n0 observations and computing the running sum
of output and estimated sample variances for each
system and then reporting this information back to
the master. After all jobs are completed and the job
queue is empty, the master computes scaling factors
for each system and computes an initial standard
before the next stage. Thus, all systems must have n0
observations before elimination is allowed.

At the beginning of Stage 1, the master creates a
queue of k jobs and sends jobs one-at-a-time toworkers
until each worker is busy. Until a stopping condition
occurs, the algorithm then obeys the loop structure
introduced in Section 5 and Algorithms 1 and 2. In
summary, Stage 1 consists of sequential elimination:
The master “serves” each job in its queue by either
eliminating the corresponding system or assigning
it to a worker, and workers “serve” assigned jobs by
advancing local time on the corresponding system and
potentially inspecting the system for elimination.

For elimination decisions, we use the boundary
gn0−1(t) �

����������������������������������[cα,n0−1 + log (t+ 1)](t+ 1)√
, where cα,n0−1 is a

constant chosen so that the algorithm attains a desired
false elimination rate of α with an initial sample size
of n0 for variance estimation. We use this boundary
because it possesses the necessary properties of
Assumption 3 and because there is a precedent for
using it in the indifference-zone-free R&S literature
(Fan et al. 2016). Pei et al. (2020) describe a Monte
Carlo procedure for estimating cα,n0−1 for given α and
n0. Constructing a boundary that is “optimal” in some
sense is beyond the scope of this paper but is a topic
for future work.

Recall from Algorithms 1 and 2 that Δi is system i’s
run length, which is proportional to the amount of
local time to simulate on i when i is assigned to a
worker. We set Δi � Δ for all i so that Δ is the common
run length for all systems. As in the experiments of Pei
et al. (2020), we add the modification that when a job
corresponding to system i completes, then i is placed
at the front of the master queue if it is 2Δ or more repli-
cations behind any other system. Otherwise, the sys-
tem is placed in the back of the master queue. We add
this small modification to ameliorate out-of-sync local
times.

If there aremoreworker processors than contenders,
we avoid creating new jobs for “excess” workers
and instead retire them to preserve the one-job-per-
contender property. Although this may be inefficient
for utilization, in practical settings, we do not expect
bi-PASS to run for very long after the first worker is
retired. In fact, if bi-PASS is used as a screening step
before another R&S procedure, a natural switchover
point is when the number of contenders reaches p.

Our algorithm as written does not have a defense
against processor failure. However, intermittently sav-
ing the master’s copy of statistics, that is, the running
sums, scaling factors, and contenders, allows users to
resume an interrupted bi-PASS trial from the most-
recent inspection.

8. Empirical Performance
In this section, we review previous comparisons of
bi-PASS versus key competitors and report two sets of
experiments, all using the algorithm structure and
implementation choices detailed in Section 7. We also
briefly describe our computing architecture. In Section
8.1, we run extensive trials on a carefully controlled
collection of small problems with 1,000 systems to
understand how characteristics of the problem and
bi-PASS implementation affect algorithm perform-
ance. In Section 8.2, we deploy bi-PASS on a realistic
problemwithmore than 1million systems.

Pei et al. (2020) is a companion paper specifically
created to cover code details and empirical evaluation.
It provides a thorough comparison of bi-PASS versus
its closest competitor, the GSP, which is a large-scale
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parallel R&S algorithm. bi-PASS does not have a natu-
ral competitor because its elimination rate guarantee
is different from the norm of family-wise statements
in R&S. It also does not make sense to run bi-PASS
until one contender remains because bi-PASS ineffi-
cient with a small number of contenders. Neverthe-
less, we include such comparisons for completeness.
As noted in Section 2, a common assumption for
parallel stochastic multiarmed bandit algorithms is
bounded observations, and many methods provide
guarantees about regret but lack assurances about
finite-time selection (or elimination) probabilities or
rates.

Pei et al. (2020) compare three algorithms: bi-PASS,
a synchronized version of GSP similar to the Spark
implementation in Ni et al. (2017), and a parallel version
of subset selection based on Nelson et al. (2001); they
also discuss computational tradeoffs among the algo-
rithms. On a 22,500 system problem with 101 process-
ors, using the same total number of replications that
GSP used to select a near-optimal solution, bi-PASS and
subset selection narrowed the contenders to about 10
and 200, respectively. On a 216, 600 system problem
with 101 processors, bi-PASS and GSP ran until a stop-
ping condition of each contender (excluding eliminated
systems) accumulated 100 replications. At this termina-
tion point, bi-PASS had on average about 2,300 contend-
ers with 4million total replications, outperforming GSP,
which delivered about 3,100 contenders with 5.7 million
total replications in twice the wall-clock time. In both
experiments, bi-PASS did not make any false elimina-
tions, showing support for the EFER guarantee and
our implementation choices. Both experiments had sys-
tems with nonnormal output data, demonstrating that
bi-PASS is robust to nonnormality, at least to some
extent.

This section’s experiments used Northwestern Uni-
versity’s Optimization and Statistical Learning (OSL)
cluster, which runs a Linux CentOS 7.4 operating sys-
tem. We use two compute nodes, each with two
40-core Intel(R) Xeon(R) Gold 6148 processors with
256 GB of RAM and 1 TB of hard drive memory. No
other processes executed during our experiments,
which prevented processor competition for resources
and corruption of wall-clock time statistics.

8.1. bi-PASS Configuration Experiments
In this section, we evaluate different implementation
choice for bi-PASS. We discuss 36 test configurations
created from different combinations of two types of
scaling factors, whether worker elimination is allowed,
and various configurations of means and variances.
Each configuration has k � 1,000 systems and p+ 1 � 11
processors. Each trial stops when each contender (sys-
tem that has not yet been eliminated) amasses at least

1, 000Δ observations or until there is only one con-
tender remaining, whichever occurs first.

We set the initial sample size n0 � 10, common run
length after the n0 stage to Δi � Δ � 100 for each sys-
tem i, and EFER parameter α � 0:05. We consider
“custom” scaling factors and “pooled” scaling factors,
as we describe in Section 6.2. We use the boundary
function from Section 7 with the constant cα,n0−1 � 8:6
based on the aforementioned α and n0 parameters.

We consider master-only elimination and both mas-
ter and worker elimination, as described in Section 5.
When worker elimination is permitted, a worker com-
pleting job i inspects system i for elimination after each
additional simulation replication. We are interested in
efficiency and the EFER, because worker elimination
can compromise EFER guarantees due to workers
using an estimated out-of-date standard that does not
incorporate any new information from systems that
have been simulated since job assignment.

Three different configurations of the means and three
different configurations of the variances are illustrated
in Figure 1. Each system i has output that is N(μi,σ

2
i )

and independent from other systems. In each means
configuration, larger indices correspond to largermeans,
and system k (system 1,000) has the best and largest
true mean of 1,000. We refer to systems relatively far
away from k as “inferior” and relatively close to k as
“better.” Under the log-like means configuration, in
which there are many high-performing systems and
they are close together, μi �

�
i3

√ ·(1,000)2=3 for each i.
Under linear means, μi � i. Under exponential-like
means, in which there are many bad systems, and they
are close together, μi � i3=1, 0002. Under the decreasing
variances configuration, better systems have low varian-
ces and σ2i � 100− (i− 1)=10 for system i. Under equal
variances, σ2i � 50. Under increasing variances, better
systems have high variances and σ2i � i=10.

Table 1 summarizes the average total effort and the
sum of replications across all systems at trial termina-
tion, with standard errors based on 1,000 macrorepli-
cations for different testing configurations. Each
estimated total effort has a standard error no greater
than 1.3%. We only report the total effort because, in
each trial for each test configuration, bi-PASS correctly
identifies the single best by eliminating all other sys-
tems before the other termination criteria of each con-
tender accumulating 1,000Δ observations. We observe
a false elimination rate of exactly 0. The estimated
EFER suggests that on these relatively modest prob-
lems, bi-PASS is conservative.

Adding worker elimination reduces the total effort
required comparedwithmaster-only elimination because
systems are inspected more often. Worker elimination
decreases total effort by about 4.8% under exponential-
like means and 7.6% under log-like means, suggesting
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that worker elimination is more helpful when there are
many high-performing systems. Frequently inspecting
better contenders for elimination is more helpful than fre-
quently inspecting inferior ones, because inferior con-
tenders generally stay far below the estimated standard
and are easier to eliminate anyway. In all cases, on aver-
age, adding worker elimination decreases total effort by
6.1% compared with master-only elimination. In our
tests, worker elimination does not appear to violate the
EFER, likely because of an adequate distance between
truemeans of better systems in all configurations.

The impact of pooled scaling depends on the dis-
tribution of variances. Under decreasing variances,
pooled scaling increases total effort by about 29% rela-
tive to custom scaling. Here, it is harder to eliminate
better systems because their centered partial sum sta-
tistics use an overly conservative scaling factor that is
greater than their true variances. Under increasing
variances, pooled scaling decreases total effort by
about 19% relative to custom scaling because of better
systems having higher true variances than the scaling

factor and thus being easier to eliminate. One down-
side of pooled scaling is that good systems are at a
higher risk for getting falsely eliminated if their scal-
ing factors are less than their true variances, although
we do not observe this behavior in our tests. On aver-
age across all cases, we find little difference in total
effort between the two scaling factors.

Based on these results, we adopt master-only elimi-
nation and custom scaling factors in Section 8.2 because
of their lower false elimination risk and because they
do not use any a priori information on the distribution
ofmeans and variances.

8.2. Large-Scale Project Planning Problem
Experiments

This section illustrates empirical bi-PASS performance
on a large-scale problem with 1, 184,040 feasible solu-
tions (systems). The problem is to reduce the time to
complete a stochastic activity network (SAN) based
on a real-world model of U.S. Food and Drug Admin-
istration (FDA) research planning (Kwak and Jones

Table 1. Average Total Replications Across All Systems at Trial Termination, with Standard Errors Based on 1,000 Trials,
and Termination Occurring When There Is a Single Contender Remaining or Each Contender Has at Least 1,000Δ
Observations, Whichever Comes First

Master-only elimination, custom scaling Master and worker elimination, custom scaling

Decreasing var Constant Increasing Decreasing var Constant Increasing

Log means 10.4e4 6 1e3 15.8e4 6 1e3 21.3e4 6 2e3 Log means 9.1e4 6 6e2 1.5e5 6 1e3 2.0e5 6 2e3
Linear 8.0e4 6 9e2 8.6e4 6 7e2 9.3e4 6 7e2 Linear 7.8e4 6 5e2 8.2e4 6 5e2 8.7e4 6 5e2
Exp 6.1e4 6 6e2 6.2e4 6 7e2 6.4e4 6 8e2 Exp 5.8e4 6 5e2 5.9e4 6 5e2 6.0e4 6 5e2

Master-only elimination, pooled scaling Master and worker elimination, pooled scaling

Decreasing var Constant Increasing Decreasing var Constant Increasing

Log means 1.6e5 6 8e2 1.6e5 6 1e3 1.5e5 6 1e3 Log means 1.5e5 6 4e2 1.4e5 6 7e2 1.4e5 6 1e3
Linear 9.0e4 6 8e2 8.6e4 6 7e2 8.6e4 6 7e2 Linear 8.1e4 6 5e2 8.1e4 6 6e2 8.1e4 6 5e2
Exp 6.2e4 6 7e2 6.2e4 6 7e2 6.2e4 6 7e2 Exp 5.9e4 6 5e2 6.0e4 6 5e2 5.9e4 6 5e2

Note. All sample paths observed terminate with one contender remaining and no false eliminations.

Figure 1. (Color online) Configurations of Means and Variances

(a) (b)

Notes. (a) Three cases for truemeans. (b) Three cases for true variances.
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1978). Paths through the network connect milestones
(nodes) via research activities (arcs), and activities
must be completed in sequence. Each activity has an
uncertain completion time. The project begins at an
initial milestone and completes when the last mile-
stone is reached, so that the overall project completion
time is the time required to complete the longest path
through the network. See section 3.4 in Nelson and
Pei (2021) for more background on SANs.

In the FDA problem there are 28 activities, and 7 of
them can be chosen for a “speed up” by investing addi-
tional resources; the choice of 7 was ours to obtain a
problem of roughly one million options. The goal is to
find the seven activities that minimize the expected
(mean) value of project completion time. Using the
negative of the project completion time to transform
the problem tomaximization, the objective becomes

max
x1, : : : , x28

E max
j∈{1, : : : , 12}

−∑
i∈Pj

Ai(xi)
( )

s:t:
∑28
i�1

xi � 7,

where xi ∈ {0, 1} for i � 1, 2, : : : , 28, Pj is a set of indices
of activities on path j, and Ai(xi) is activity i’s stochas-
tic completion time. We use the same network as
Kwak and Jones (1978), which has 12 paths, detailed
in their paper.

The default time for activity i is Ai(0) days, having a
Gamma distribution with mean given in Kwak and
Jones (1978). A few activities were simply logical con-
nections with a duration of zero in the original prob-
lem, so we made them Gamma distributed with mean
0.1 day for our version. Setting xi � 1 represents allo-
cating additional resources to activity i. The reduced
time for activity i is Ai(1), having a Gamma distribu-
tion with mean equal to half of the mean of Ai(0). For
both Ai(0) and Ai(1) their coefficient of variation is 0.1.

Figure 2 displays a histogram of the estimated ex-
pected project completion time for all k � 1, 184,040
feasible solutions, based on an expensive simulation
of 10,000 i.i.d. replications per solution. The estimated
difference between the best and second-best system is
0.1 days, and the best system has a sample mean of
36.61 days estimated with a standard error less than
0.01.

The FDA problem underscores the usefulness of
R&S in general, and bi-PASS in particular, for situa-
tions that are untenable for other methods. The FDA
problem is not amenable to a continuous approxima-
tion, has a highly nonlinear objective function, and
lacks an exploitable spatial structure. Although it is a
network, the network structure cannot be exploited in a
response surface or adaptive random search method
because even “close” systems can have distinctly differ-
ent objective function values because of having differ-
ent longest paths. Also, because dimension is irrelevant
to bi-PASS, our parametrization of decision variables

Figure 2. (Color online) Histogram of FDA SAN Sample Means for All k � 1,184,040 Feasible Solutions
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has the same difficulty as a problem with, say, a thou-
sand binary variables.

The experiment design is as follows: We use p+ 1 �
21 processors, initial sample size n0 � 10, common run
length Δ � 100 replications, EFER parameter α � 0:05,
master-only elimination, and custom scaling factors,
based on our experiments in the previous section. The
boundary function in Section 7 is used with the same
constant cα,n0−1 � 8:6 as in Section 8.1. The constant is
the same because α and n0 − 1 are the same, even
though here we have more than a million additional
systems. This underscores a large-scale advantage of
bi-PASS: the statistical guarantee is on elimination
rate, so the boundary does not depend on the number
of systems.

Ni et al. (2017) exhibit a Spark version of the GSP
solving a 1 million system throughput maximization
problem with 480 processors. Because we only use 21
processors in our experiment, we cannot test GSP due
to the prohibitive number of operations required. GSP
divides systems into “screening groups” distributed
across workers, which each require O((k=p)2) pairwise
comparisons—on the order of a billion comparisons—
for the first round alone. The need for a relatively
small screening group is a significant bottleneck for
applying procedures based on pairwise comparisons
in large-scale problems, an issue bi-PASS avoids.
Zhong and Hong (2022) also use 480 processors for
the 1 million system problem.

Figure 3 displays the average number of contenders
remaining versus wall-clock time in hours, recorded
every additional 1 million total replications, averaged
over 10 independent trials of bi-PASS. The contenders-
versus-time trajectory traces the progress that bi-PASS

makes: As each run progresses, more systems are elim-
inated and the estimated standard increases. In this
FDA problem, the rate of eliminations per hour in-
creases toward the end. We also point out that the con-
tenders-versus-time trajectory is similar across trials:
at each recording increment, the standard error of the
number of contenders was less than 5% of the mean,
and the standard error of the time was less than 0.5%
of themean.

In all trials, bi-PASS eliminated all but the true best
system, suggesting adherence to the EFER guarantee.
On average, bi-PASS took 7.51 hours and consumed
114.4 million total replications. Both statistics have
standard errors less than 0.1% of their means. The
results from the FDA problem demonstrate that
bi-PASS is a powerful tool, reliably retaining the single
best system from 1.2 million systems with only 21 pro-
cessors within 8 hours. Twenty-one processors is only
slightly larger than the current eight-core-two-thread
laptop computers that are available for a few hundred
dollars.

9. Concluding Remarks
To explore the relationship between bi-PASS and clas-
sical R&S, we focus on the standard μ? � μ1 here. How-
ever, we do not envision bi-PASS being used as a
fixed-precision procedure that is run until a single
system remains. Instead, we see bi-PASS as a fixed-
budget screening step before doing something else,
such as applying a standard R&S procedure or a search
method to a smaller subset of systems. In this setting,
an objective such as μ? � μb for some b > 1 is more
appropriate. Using bi-PASS as a screening step is simi-
lar to a subset selection procedure (Nelson and Pei
2021) but with a different objective: retaining all of the
top b systems not just the best.

For convenience, we adopt the lower-boundary
function −g(·) from Fan et al. (2016); they use 6g(·) to
create an indifference-zone-free select-the-best R&S
procedure. However, this boundary is muchmore con-
servative than necessary if we use bi-PASS as a fixed-
budget procedure, so future work involves finding less
conservative, budget-sensitive boundaries.

Brownian motion (normally distributed) output is a
common starting assumption for many indifference-
zone, select-the-best-mean R&S procedures. Such pro-
cedures can sometimes be shown to be asymptotically
valid for more general output distributions (Kim and
Nelson 2006a). The asymptotic regime drives the indif-
ference zone parameter δ→ 0 while also driving the
difference between the best and second-best system to
zero, which makes sense: harder problems require
more output data. We believe that the version of
bi-PASS presented here is somewhat more dependent
on normality than these indifference-zone procedures

Figure 3. (Color online) Number of Contenders vs. Wall-
Clock Time in Hours, Averaged Across 10 i.i.d. Bi-PASS Trials
with 20 Workers on the FDA SAN Problem, Recorded Every
1Million Total Replications
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in the sense that there is not a natural regime to drive
large sample sizes (the procedure is built to preserve
EFER even if run forever), and letting the number of
systems k→∞ does not change the marginal distribu-
tion of each systems’ output. Nevertheless, we observe
substantial robustness to nonnormality in extensive
experiments, which suggests that there is an appropri-
ate asymptotic explanation for it.

Acknowledgments
The idea of PASS was introduced in Pei et al. (2018), which
contained none of the theory, algorithms, or results pro-
vided here. The authors thank the associate editor and refer-
ees for thoughtful and challenging reviews.

References
Batur D, Kim S-H (2010) Finding feasible systems in the presence of

constraints on multiple performance measures. ACM Trans.
Modeling Comput. Simulation 20(3):13.

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate:
A practical and powerful approach to multiple testing. J. Royal
Statist. Soc. B 57(1):289–300.

Bubeck S, Munos R, Stoltz G (2009) Pure exploration in multi-armed
bandits problems. Proc. Internat. Conf. on Algorithmic Learn.
Theory (Springer, Berlin), 23–37.

Desautels T, Krause A, Burdick JW (2014) Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization.
J. Machine Learn. Res. 15:3873–3923.

Eckman DJ, Henderson SG (2018) Guarantees on the probability of
good selection. Proc. Winter Simulation Conf. (IEEE, New York),
351–365.

Efron B (2012) Large-Scale Inference: Empirical Bayes Methods for Esti-
mation, Testing, and Prediction, vol. 1 (Cambridge University
Press, Cambridge, UK).

Falkner S, Klein A, Hutter F (2018) BOHB: Robust and efficient
hyperparameter optimization at scale. Proc. Internat. Conf. on
Machine Learn. (PMLR), 1437–1446.

Fan W, Hong LJ, Nelson BL (2016) Indifference-zone-free selection
of the best. Oper. Res. 64(6):1499–1514.

Frazier PI (2010) Decision-theoretic foundations of simulation opti-
mization. Wiley Encyclopedia of Operations Research and Manage-
ment Sciences (Wiley, New York).

Fu MC (2002) Optimization for simulation: Theory vs. practice.
INFORMS J. Comput. 14(3):192–215.

Gittins JC (1979) Bandit processes and dynamic allocation indices. J.
Royal Statist. Soc. B 41(2):148–164.

Goldsman L, Nelson BL (1990). Batch-size effects on simulation opti-
mization using multiple comparisons with the best. Proc. 1990
Winter Simulation Conf. (IEEE, New York), 288–293.

Haupt J, Castro RM, Nowak R (2011) Distilled sensing: Adaptive
sampling for sparse detection and estimation. IEEE Trans.
Inform. Theory 57(9):6222–6235.

Heidelberger P (1988) Discrete event simulations and parallel proc-
essing: Statistical properties. SIAM J. Sci. Statist. Comput. 9(6):
1114–1132.

Hillel E, Karnin ZS, Koren T, Lempel R, Somekh O (2013) Dis-
tributed exploration in multi-armed bandits. Advances in
Neural Information Processing Systems, vol. 26 (NIPS, Lake
Tahoe, NV).

Hoffman M, Song E, Brundage M, Kumara S (2018) Condition-based
maintenance policy optimization using genetic algorithms and
Gaussian Markov improvement algorithm. Bregon A, Orchard
M, eds. Proc. Annual Conf. of the PHM Soc., vol. 10 (PHM Society,

Philadelphia). https://papers.phmsociety.org/index.php/phmconf/
issue/view/phm2018 and https://papers.phmsociety.org/index.
php/phmconf/article/view/537.

Hunter SR, Nelson BL (2017) Parallel ranking and selection. Tolk A,
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