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Abstract. Input uncertainty is an aspect of simulation model risk that arises when the
driving input distributions are derived or “fit” to real-world, historical data. Although
there has been significant progress on quantifying and hedging against input uncertainty,
there has been no direct attempt to reduce it via better input modeling. The meaning of
“better” depends on the context and the objective: Our context is when (a) there are one or
more families of parametric distributions that are plausible choices; (b) the real-world
historical data are not expected to perfectly conform to any of them; and (c) our primary goal
is to obtain higher-fidelity simulation output rather than to discover the “true” distribution.
In this paper, we show that frequentist model averaging can be an effective way to create
input models that better represent the true, unknown input distribution, thereby reducing
model risk. Input model averaging builds from standard input modeling practice, is not
computationally burdensome, requires no change in how the simulation is executed nor
any follow-up experiments, and is available on the Comprehensive R Archive Network
(CRAN). We provide theoretical and empirical support for our approach.
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1. Introduction
At a high level, stochastic simulations consist of in-
puts and logic. The inputs are the basic sources of
uncertainty that defy further explanation; they are
represented by fully specified probability models
(e.g., exponential distribution with rate λ � 7.2). The
logic consists of rules and algorithms that trans-
form realizations of the inputs into sample paths of
system performance (e.g., waiting times in queues);
estimating system properties from these sample paths
or “outputs” is the reason a simulation experiment
is performed. The fidelity of the outputs in repre-
senting the performance of a real or conceptual sys-
tem clearly depends—often in a very complex way-
—on the fidelity of the input models. In this paper, we
consider input models that are tuned or “fit” to
samples of real-world, historical data. We refer to this
activity as input modeling, and we propose a better
way to do it.

Beyond the availability of good software, methods
used for input modeling in the stochastic simulation
practice community have not advanced much in the
last 30 years.1 Here is the recipe found inmany textbooks
(e.g., Law andKelton 1991, Banks et al. 2010) for fitting
a marginal distribution F to describe an independent
and identically distributed (i.i.d.) input process:
1. Let x1, x2, . . . , xN be an i.i.d. sample from some

unknown input distribution Fc, with “c” denoting
“correct” or “true” distribution.
2. Fit q ≥ 1 candidate parametric distributions ^ �

{F1, F2, . . . ,Fq} using methods such as maximum likeli-
hood estimation (MLE), least squares, or moment
matching. This yields a set of fitted distributions, say,̂̂ � {F̂1, F̂2, . . . , F̂q}. The number of choices in current
software ranges from q � 10 to 40.
3. Rank the choices using one or more summary

measures of fit. Standard measures are hypothesis-test
statistics such as chi-squared, Kolmogorov–Smirnov
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and Anderson–Darling, and likelihood-based statis-
tics such as AIC and BIC.

4. From among the top choices, evaluate the fit,
for example, via p-values of the hypothesis tests or
graphically via Q-Q plots or other tools.

5. Select F̂ � Best Choice{F̂1, F̂2, . . . , F̂q}. Alterna-
tively, use the (possibly smoothed) empirical distri-
bution of x1, x2, . . . , xN if nothing fits well.

Although this recipe can and should be made
smarter, for instance, by using the physical basis of the
real input process to suggest an appropriate family of
distributions, in practice, step 5 is often automated by
selecting the distribution with, say, the minimum AIC
statistic for each input process, bypassing step 4. This
approach is understandable because it is not obvious to
simulation practitioners either how to do better or how
much the choice actually matters. Our proposal adopts
step 2, but rather than selecting one element of ^, it
instead creates an “input model average” that often
leads to a better input model.

Our work is motivated by the current interest in
simulation model risk due to input uncertainty, which
is the uncertainty resulting from having only a finite
sample N of real-world data from which to fit F̂.
However, the input-uncertainty literature has em-
phasized either quantifying the variability in the
simulation output due to the sampling variability in F̂
or selecting a defensive F̂, which means a distribution
that is plausible with respect to the given data but
leads to the worst-case (maximum or minimum) sim-
ulation output performance (see, e.g., Lam 2016). Our
objective is to reduce input uncertainty through our
choice of F̂ via a rethinking about how the input
models are created. Our work is heavily motivated by
recent advances in the statistics literature on using
model averaging within the frequentist paradigm to
improve parameter estimation efficiency and forecast
accuracy (e.g., Hjort and Claeskens 2003, Hansen
2007, Wan et al. 2010, Liang et al. 2011).

What do we want in an input modeling solution?
• It should work within the framework of current

input-modeling software and, inparticular, step 2,where
we have a collection of candidate distributions and
impose only amodest additional computational burden.

• It should not require any change in how we
actually execute the simulation, other than generating
inputs from a different F̂. Thus, input modeling re-
mains an upfront step in the simulation experiment
(input uncertainty quantification, on the other hand,
often requires additional follow-up experiments).

• It should improve simulation output fidelity when
the true distribution is not in ^—so no single choice
can be fully correct—but also tends to favor a single
candidate model when it is close to Fc. This is con-
sistent with the “view through the queue” criterion
coined by Whitt (1981), which evaluates an input

approximation by how well it reproduces the desired
output, rather than whether it discovers the true input.
More pointedly, our model averaging approach is

not a better way to discover the “true” real-world
distribution when it is a member of the candidate
set ^, either individually or as a mixture. In fact, our
asymptotic analysis specifically assumes that Fc /∈ ^
and shows that, under some assumptions on the can-
didate set of distributions ^, our model-average distri-
bution gets as close as possible to the real-world distri-
bution using only the component distributions in ^.
Thus, model averaging is not generally consistent for
Fc; however, ifwe include the empirical distribution (ED)
as a candidate, then the model average places all weight
on the ED as the sample size N → ∞. Further, under
very weak assumptions, the empirically optimal
model-average distribution exists and is easily found.
In the end, we will recommend the following: Re-

duce the size of the candidate set ^ (if large) by using
prior knowledge of the input process physics or
by screening out poor choices using something like
AIC or BIC; always include the ED in ^; and then do
model averaging. However, model averaging can be
applied in a completely automated fashion to a large
candidate set, and the ED need not be included (say
if a continuous F̂ is desired).
The paper is organized as follows. We describe the

problem and context more fully in Section 2 and our
input model averaging method in Section 3. An em-
pirical evaluation follows in Section 4. Proofs of some
of the results are found in Online Appendices A–B.

2. Background and Examples
In this paper, we focus on univariate input models, but
the method extends naturally to random vectors. Ge-
nerically, X and Y denote input and output random
variables, respectively, andx and y are realizedvalues.We
useFY to refer to the (typicallyunknown)distributionofY.
The following examples will be used to evaluate

our methods; they were chosen because they mimic
three distinct classes of problems found in simulation
studies and because we expect that different aspects
of the inputs X (e.g., mean, variance, tail behavior)
will affect the fidelity of their outputs Y. That is, even
though the examples themselves are simple, they
manifest complex and differing input-to-output be-
havior. The examples are important because we rely
solely on empirical evaluation to establish the po-
tential reduction in input uncertainty.

2.1. Stochastic Activity Network (SAN)
Stochastic activity networks are used in project plan-
ning when there is interest in the time to complete the
project; an early paper on simulating such networks
is Burt and Garman (1971). A realistic problem might
have several hundred activities, constrained resources,
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and so on, but, as an illustration, we consider one with
five activities where the time to complete the project is

Y � max X1 + X4,X1 + X3 + X5,X2 + X5{ }. (1)
See Figure 1. Thus, simulation of the SAN requires
five input distributions for X1,X2, . . . ,X5. Properties
of Y that are of interest include E(Y), Pr{Y > c}, F−1Y (p),
or the entire distribution. The natural experiment
design for the simulation is to make R replications
yielding i.i.d. outputs Y1,Y2, . . . ,YR. Each replication
requires random activity-time inputs X1,X2, . . . ,X5.
Because activity times are summed, path durations
tend to be normally distributed for realistically large
projects, but, for this small example, the specific
distributions of the Xi should matter.

2.2. GI/G/1 Queue
The GI/G/1 queue has a renewal arrival process of
customers, some nonnegative service-time distribu-
tion, and a single server (see, e.g., Gross et al. 2008).
Let Yi be the delay in queue of the ith arriving cus-
tomer when the system starts empty. Then,

Yi � max 0,Yi−1 + X2,i−1 − X1,i
{ }

, i � 1, 2, . . . , (2)
with Y0 � X2,0 � 0. There are two input distributions,
the interarrival-time distribution ofX1 and the service-
time distribution of X2; successive interarrival times
andservice timesare individuallyand jointly independent.

Under certain conditions, it can be shown that
Yi

$→Y as i → ∞, and properties of Y, a specific Yi, or
the set {Yi, i ≤ T} for some stopping time T are of in-
terest. Thus, the experiment design could be a single,
long replicationormultiple shorter ones, and thenumber
of inputsX1,i and X2,i needed may be fixed or random.

The E(Y) is tractable if the interarrival times are
exponentially distributed and it depends only on the
mean and variance of the service times X2; the entire
distribution of Y is tractable if the service time is also
exponential. In general, the distributions of Yi and Y
are not known. In our evaluation, we focus on the
distribution of Y5, the wait of the fifth arriving

customer, since the effect of the service-time distri-
bution beyond its mean and variance should not yet
have washed out.

2.3. Highly Reliable System (HRS)
Systems that are repairable or have significant re-
dundancy are designed to be highly reliable, meaning
that system failure is rare. Let Y be the time of system
failure. The following algorithm mimics an HRS for
which a failure is avoided if a backup component is
repaired (time to repair X1) before the active com-
ponent fails (time to failure X2); it does not actually
model such a systembut allows us to control the rarity
of failure through the distributions of X1 and X2:
1. Y � 0; i � 1
2. until X2,i < X1,i do

Y � Y + X2,i
i � i + 1

loop
3. return Y � Y + Xi,1.
If E(X1) � E(X2), then the system will be highly

reliable—just how reliable is determined by properties
of Y, such as itsmean or a tail probability. In our example,
Xi,1 andXi,2 are individually and jointly independent.

2.4. Input Uncertainty
To present our method, we focus on a single, uni-
variate input distribution Fc for which we have an
i.i.d. sample x1, x2, . . . , xN of real-world data. Because
it is a real-world process, there is no expectation that
Fc is a member of any standard family of parametric
distributions, including those in our set ^, although
some may be close.
The distribution of our generic output Y depends

upon the choice of input distribution F; thus, wewrite

Y ∼ FY y | F( )
.

Based on the input data, we fit a distribution denoted
by F̂; thus, the simulation generates observations of

Ŷ ∼ FY y | F̂( )
.

Ideally, FY(y | F̂) � FY(y | Fc), but, in practice, we will
be satisfied if the distributions are close in some
relevant sense (e.g., have nearly the same mean).
Notice that what matters is the implied output dis-
tribution; the input distribution Fc itself is of less
interest. We let Yc ∼ FY(y | Fc) denote the ideal output.
Research on input uncertainty addresses the prob-

lem that

FY y | F̂( ) 
� FY y | Fc( )
often by focusing on the error in using Ŷ as an esti-
mator of E(Yc). See, for instance, the surveys in
Barton (2012), Lam (2016), and Song et al. (2014).

Figure 1. A Small Stochastic Activity Network
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One reasonable objective is to form a confidence interval
or aBayesian credible interval forE(Yc) that accounts for
error in using F̂ as an estimator of Fc, as well as the
stochastic error from observing the simulated output
Ŷ rather than E(Ŷ). There has been significant success
in attacking this and related problems, including
Cheng and Holland (1997), Cheng and Holland (1998),
Chick (2001), Zouaoui and Wilson (2004), Ankenman
and Nelson (2012), Barton et al. (2013), Corlu and
Biller (2013), Fan et al. (2013), Xie et al. (2014), Song
and Nelson (2015), Ghosh and Lam (2015), Song
et al. (2015), Zhou and Xie (2015), Glynn and Lam
(2018), and Lam and Qian (2018), to name a few.
Notice that none of these papers attempt to reduce
input uncertainty; instead, they try to quantify it or
hedge against it.

Unfortunately, experience has shown that the added
error due to input uncertainty can be substantial, and
sometimes overwhelming, even when we have a sig-
nificant quantity of real-world data. Therefore, in this
paper, we look to reduce the input-uncertainty error
by our choice of F̂, a reduction that would then be
reflected in reduced measurements of it using the
methods described in the aforementioned papers. We
are not attempting to create a defensive choice F̂worst,
and, in fact, our approachwould be an impediment to
such robust analysis (see Lam 2016 for an excellent
survey of these methods).

Reducing the effect of input-model uncertainty
on the simulation output is challenging for obvious
reasons. The standard families of distributions used
in simulations are often supported by process phys-
ics; they are flexible, meaning that they can assume a
variety of shapes; and they are accompanied by prov-
ably efficient parameter-estimation methods, such as
MLE. Improving the standard approach universally
would be impossible, but we will demonstrate em-
pirically that substantial improvements are possible in
some situations, especially when the real-world input
data do not perfectly conform to any known para-
metric distribution, as is frequently the case in practice.
For completeness, we also evaluate our model-average
distribution F̂ against Fc, which we can do because we
will create the input data.

3. Input Model Averaging
To motivate the method that follows, recall that we
have a set ^ of q candidate parametric distributions
for Fc; for instance, ^ could contain the following:

1. exponential: f1(x) � θe−xθ, x ∈ [0,∞),
2. normal: f2(x) � 1

(2πσ2)1/2 e
−(x−μ)2/(2σ2), x ∈ R,

3. shifted gamma: f3(x) � βα

Γ(α) (x − ξ)(α−1)e−(x−ξ)β,
x ∈ (ξ,∞),

where fm(x),m � 1, 2, 3 are density functions for
^ � {F1,F2,F3}, and θ, σ, β, α > 0 and μ, ξ ∈ R are un-
known parameters.

Let F̂m(x) and f̂ m(x) be the estimators of Fc(x) and
f c(x)under themth candidate distribution, and letw �
(w1,w2, . . . ,wq)T be a weight vector belonging to the
set 0 � {w ∈ [0, 1]q:∑q

m�1 wm � 1}. The model-average
estimator of Fc(x) is

F̂ x,w( ) � ∑q
m�1

wmF̂m x( ), (3)

and, taking its derivative with respect to x, we have
the model-average estimator of f c(x):

f̂ x,w( ) � ∑q
m�1

wmf̂ m x( ). (4)

Clearly, F̂(x,w) includes each of the individual can-
didate distributions as a special case of w, but it in-
creases flexibility by allowing averages. A good choice
of w is one that makes F̂(x,w) close to Fc(x) in a
comprehensive way, which we will define precisely.
Of course, Fc(x) is unknown, but the ED with cu-
mulative distribution function (cdf)

F̄ x( ) � N−1 ∑N
i�1

I xi ≤ x( )

is unbiased and consistent for it, and so we use F̄ as a
stand-in for Fc in fitting. Finally, to guard against
overfitting, we use cross-validation (CV) with F̄(x) to
select w; we describe the CV method in the next
section. Given the CV-estimated weight ŵ, variate
generation is easy: Each time a value of X is needed,
generate integerM ∼ ŵ to select the distribution, and
then generate X ∼ F̂M.

Remark 1. Averaging distributions that are as dis-
similar as exponential, normal and shifted-gammamay
not seem sensible. However, practitioners often use
software that fits a long list of distributions, and, as we
will show, we can easily find the empirically optimal
model average even for such heterogeneous cases.

Remark 2. The model-average distribution F̂(x,w) is
clearly a mixture distribution, but it is different in spirit
from mixing a finite number of distributions from a
common family, which is a well-known distribution
fitting approach (McLachlan and Peel 2004). We can, in
fact, exploit finite mixtures of a common distribution
by including such models in the candidate set ^,
provided that we have a method for fitting them.

3.1. Cross-Validation for Input Model Averaging
Let xN � (x1, x2, . . . , xN) be the real-world data, which
we model as i.i.d. copies of the random variable
X ∼ Fc. Here we develop a “frequentist model aver-
aging” approach to estimate Fc(x) by F(x,w) using
J-fold CV to tune w to xN ; it is in the spirit of the
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Jackknife model average (JMA) of Hansen and Racine
(2012), developed originally for improving the effi-
ciency of estimators in a heteroscedastic linear re-
gression model. Hansen and Racine (2012) proved
that the JMA estimator of the regression coefficients
has the smallest asymptotic expected squared errors
among a large class of linear estimators, including the
least squares, ridge, Nadaraya–Watson, and spline
estimators. They also showed that the JMA estimator
frequently outperforms the AIC and BIC model se-
lection estimators, aswell asHansen (2007)’sMallows
model-average estimators in finite samples. Zhang
et al. (2013) showed that the merits of the JMA esti-
mator carry over to models that admit a lagged de-
pendent variable as a regressor and a nondiagonal
error covariance structure.

To implement the JMA scheme for input modeling
in stochastic simulation, we partition the data set xN
into J groups, such that, for each group, we have S �
N/J observations. For the jth group, the observations
are labeled as x(j−1)S+1, . . . , xjS, where j � 1, 2, . . . , J. Let
F̃
(−j)
m (x) be the estimator (e.g., via MLE) of Fc(x) with

the observations of the jth group removed from the
data set for the mth candidate distribution. Corre-
spondingly, the model-average estimator with the jth
group removed is

F̃
−j( ) x,w( ) � ∑q

m�1
wmF̃

−j( )
m x( ).

The ED estimator of Fc(x) using only the jth group is

F̄ j( ) x( ) � S−1
∑S
s�1

I x j−1( )S+s ≤ x
( )

, (5)

and it is well known that E(F̄(j)(x)) � Fc(x). Our J-fold
CV criterion is formulated to be

CVJ w( ) �∑J
j�1

∑S
s�1

F̃
−j( ) x j−1( )S+s,w

( )
− F̄ j( ) x j−1( )S+s

( ){ }2
.

In other words, we consider the squared difference be-
tween the model-average estimator constructed without
the jth group of real-world data and the ED constructed
from only the jth group, summed across all groups.
The empirically optimal weight vector resulting from
this criterion is

ŵ � argmin
w∈0

CVJ w( ),

leading to the model-average estimator F̂(x, ŵ) of Fc(x).
The optimization problem we need to solve to

find ŵ can be formulated as a quadratic program
(QP); see Jiang and Nelson (2018) for the formulation

and Nocedal and Wright (2006) for solving QPs.
Specifically,

minimize : CVJ w( )

� ∑J
j�1

∑S
s�1

F̃ −j( ) x j−1( )S+s,w
( )

− F̄ j( ) x j−1( )S+s
( ){ }2

� ∑J
j�1

∑S
s�1

∑q
m�1

wm F̃
−j( )
m x j−1( )S+s

( )({
− F̄ j( ) x j−1( )S+s

( ))}2

� ∑J
j�1

∑S
s�1

∑q
m�1

wmcmjs

{ }2

� ∑J
j�1

∑S
s�1

w�Cjs w � w�Cw

subject to :
∑q
m�1

wm � 1

wm ≥ 0, m � 1, 2, . . . , q,

where the matrices Cjs and C are defined in the ob-
vious way. If the q × q matrix C is positive definite,
then the objective function is strictly convex and the
QP has a unique optimal solution; we refer to this
as the empirically optimal model average. That each
matrix Cjs is positive semidefinite is clear from their
construction. When X is continuous-valued and at
least one of the candidate distributions is continuous,
we show in Online Appendix C that the probability of
there existing aw′ 
� 0 for which (w′)�Cw′ � 0 is zero;
therefore, C is positive definite almost surely. The QP
is easily solved via standard methods (Nocedal and
Wright 2006). Notice that the construction of C is a
one-time calculation and that QPs of such small size
(q ≤ 40) can be solved very efficiently. The fitting
algorithm is implemented in our R package FMAdist
(https://cran.r-project.org/package=FMAdist).

Remark 3. Model averaging is intuitively appealing, as
it enlarges the space of input model choices beyond ^
while still including the individual candidate distri-
butions in^ as special cases; it employs cross-validation
as a robust method for fitting; and the empirically
optimal solution is easy to find under weak assump-
tions. Under more restrictive assumptions, we show in
Section 3.3 that this empirically optimal choice is in fact
the best possible choice as N → ∞.

3.2. Relationships to Other Input Modeling Methods
The greatest progress in input uncertainty quantifi-
cation to date has been when the distribution family
of Fc is assumed known [e.g., gamma(α, β)], so that the
only uncertainty comes from the parameter estimates
(e.g., α̂, β̂). In our opinion, it is not universally the case
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that real-world data both conform perfectly to a
parametric distribution and are measured to suffi-
cient precision to be indistinguishable, even though
parametric distributions are often good approximations.

There has been some work on input uncertainty
quantification that allows for distribution family un-
certainty, specifically Chick (2001) and Zouaoui and
Wilson (2004). Both papers take a Bayesian per-
spective, placing a prior distribution on the correct
model family (e.g., exponential, Weibull, gamma), as
well as each distributions’ parameters, and derive
the posterior distributions given xN . Although variate
generation of inputs is identical to our method—first
choosing the distribution family from the posterior,
then generating variates—their goal is to fully rep-
resent input uncertainty in the posterior predictive
distribution of the output Y, rather than trying to
reduce it as we do; in fact, we provide no estimate of
input uncertainty.

Another appealing solution is to use a parametric
function F̂ that has the flexibility to get close to any Fc,
and many distributions have been created for this
purpose, including the generalized lambda distri-
bution (Karian and Dudewicz 2000) to match mo-
ments or percentiles, as well as the Bézier distribution
(Wagner and Wilson 1996), which can have an arbi-
trary number of parameters. However, these distri-
butions were created to be flexible rather than to
conform to particular process physics, leading to the
possibility of overfitting or manifesting unusual fea-
tures that are not consistent with the data. There is,
after all, a reason that the standard arsenal of normal,
lognormal, logistic, Weibull, gamma, Pareto, and so
on continue to be used: Their existence is implied by
theory that can hold approximately in practice.

As described in the previous section, the input
model averaging approach allows us to exploit these
tried-and-true families and also extend their reach
through averaging. To resist overfitting, we use CV
to select the weights; CV ensures that the weights do
not give an average that is inconsistent with the
distribution of the data, and the empirically optimal
weights are unique and easily found.

3.3. Asymptotic Properties of Input Model Averages
In this section, we establish asymptotic properties of
the empirically optimal model average under certain
restrictions on the true distribution Fc and the indi-
vidual candidate distributions in ^, and whether
the ED F̄ is in ^. As N → ∞, (a) for certain classes of
candidate distributions ^, when neither Fc nor F̄ are
in ^ individually, the empirically optimal model-
average weights become the squared-error-optimal
weights; and (b) when F̄ is included in ^, its weight
converges to 1. The first result implies that, under
certain conditions, cross-validation provides the best-

possible weights when no candidate distribution fits
perfectly, whereas the second implies that it is con-
sistent for Fc if we include the ED as a candidate.
We first establish the restrictions. Let βm be the

unknown parameter vector in the mth candidate
distribution, and let β̂m be its MLE for m � 1, 2, . . . , q,
which we assume exists. It is worth noting that
β̂m (1 ≤ m ≤ q) is determined from each candidate
distribution individually and not by the optimized
linear combination of distributions. Further, let β̂ �
(β̂T

1 , . . . , β̂
T
q )T with dimension κ. We require that the

size q of the candidate set is finite. Furthermore,
we assume that the following conditions hold:
(i) For each x ∈ R, the density function fm(x;βm) of

the mth candidate distribution is continuous at every
βm in the corresponding compact parameter spaceΘm.
(ii) There exists E[log f c(x)] and | log fm(x;βm)| < l(x),

where l(x) is integrable with respect to Fc.
(iii) There exists a vector β∗m at which the Kullback–

Leibler information
∫
R
log[f c(x)/fm(x;βm)]| f c(x)dx at-

tains a unique minimum.
Under these conditions, β̂→β∗ � (β∗T1 , . . . ,β∗Tq )T al-

most surely as N → ∞; that is, the MLEs converge
even when the distributions are misspecified. White
(1982) further showed that

β̂ − β∗ � Op N−1/2( )
. (6)

We assume that (6) is in force. The validity of (6)
depends on conditions (i)–(iii), aswell as assumptions
A4, A5, and A6 of White (1982).

Remark 4. The canonical parameter space for many
standard distributions is not compact, as assumed
in (i), for example, for the normal distribution σ > 0.
However, as a practical matter, assuming that there
exists a large but compact space in which each pa-
rameter lies, for example, σ ∈ [10−10, 1010], is reason-
able since there is no requirement that the bound be
known. In this sense, all of the distributions that
have a density in the examples in Section 4 satisfy
this condition.

We next define the notations needed to state our
main results. Let F0 � (Fc(x1), . . . ,Fc(xN))T, the values
of the true cdf evaluated at the data points, and let
F̂m � (̂Fm(x1), . . . , F̂m(xN))T, the corresponding quan-
tity for the mth candidate fitted distribution, for m �
1, 2, . . . , q. We assume that the ED is not one of the q
candidates. For any fixed w, define a corresponding
vector of values for the averaged distribution, with pa-
rameters fitted from data F̂(w)�(̂F(x1,w),...,F̂(xN ,w))T
and with the limiting parameters F∗(w) � F̂(w) | β̂�β∗ .
Recall that CV leaves out sets of S consecutive data

values in turn. In F̃(w) � (̃F (−1)(x1,w), . . . , F̃(−1)(xS,w),
F̃
(−2)(xS+1,w), . . . , F̃(−J)(xN ,w))T, we collect the cdf values

for each data point based on the model average that
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excludes it; that is, F̄� (F̄(1)(x1), . . . , F̄(1)(xS), F̄(2)(xS+1), . . . ,
F̄(J)(xN))T is the corresponding vector using the ED.
We assume that J is fixed, so that S → ∞ as N → ∞.

Finally, define the discrepancy L∗N(w) � ‖F∗(w) −F0‖2,
and let ξN � infw∈0 L∗N(w) (with all weights assigned
to distributions other than the ED).

For proving the results, we need the following
regularity conditions.

Condition 1. There exists a neighborhood 1 of β∗ such that

sup
β̃∈1

∂F̂ xi,w( )
∂β̂

⃒⃒⃒⃒
⃒
β̂�β̃

⃦⃦⃦⃦
⃦⃦

⃦⃦⃦⃦
⃦⃦ � Op 1( )

uniformly for i � 1, 2, . . . ,N and w ∈ 0.

Condition 2. For allw∈0, N−1/2‖F̂(w)− F̃(w)‖2 �Op(1),
and N−1/2{F̂(w) − F̃(w)}T{F̂(w) − F̄} � Op(1).
Condition 3. When N→∞, there exists a sequence cN → 0
such that ξ2N ≥ N/cN almost surely.

Condition 3 is well defined even if Fc is a nontrivial
mixture of two or more elements of the candidate
set ^. It can be seen that

F̂ w( ) − F̃ w( ) � ∑q
m�1

wm F̂m x1( ) − F̃
−1( )
m x1( )

{ }
, . . . ,

(
∑q
m�1

wm F̂m xS( ) − F̃
−1( )
m xS( )

{ }
,

∑q
m�1

wm F̂m xS+1( ) − F̃
−2( )
m xS+1( )

{ }
, . . . ,

∑q
m�1

wm F̂m xN( ) − F̃
−J( )
m xN( )

{ })T
. (7)

Hence, Condition 2 requires the difference between
the regular and leave-S out estimators to decrease
sufficiently quickly asN increases. On the other hand,
Condition 3 requires that ξN grows at a rate no slower
than N1/2. This in turn implies that the correct input
distribution Fc must not be among the candidate
distributions in the model average.

Theorem 1. If Fc /∈ ^, F̄ /∈ ^, and Conditions 1–3 hold,
then as the real-world sample size N → ∞,∑N

i�1 F̂ xi, ŵ( ) − Fc xi( )
[ ]2

infw∈0
∑N

i�1 F̂ xi,w( ) − Fc xi( )
[ ]2 P−→1. (8)

The proof is in Online Appendix A. Notice that the
numerator and denominator are the sum of squared
deviations of the model-average estimator from the
true distribution, a comprehensive measure of fit.
In the numerator, the weight ŵ is obtained via J-fold
CV with the empirical distribution, whereas in the

denominator the minimum possible squared devia-
tion weight is chosen. The result shows that, as the
sample size increases, J-fold CV yields error no larger
than the minimum possible error with the given set of
candidate distributions, which wewould expect to be
smaller than choosing any one distribution from ^
when Fc /∈ ^. Notice that the condition “Fc /∈ ^” does
not prohibit Fc from being a nontrivial mixture of two
or more elements of ^.

Theorem 1 does not establish that F̂(xi, ŵ) is as-
ymptotically consistent for Fc. However, as noted
earlier, the ED is unbiased and consistent for Fc.
Therefore, we also consider including F̄ in the can-
didate set ^ for model averaging. Although (8) no
longer holds, model averaging becomes consistent in
the sense that, in the limit, all of the weight is on
the ED.

Theorem 2. If Fc /∈ ^ but F̄ ∈ ^, and if Conditions 1–3
hold, then ŵED

P→1 as N → ∞.

The proof is in Online Appendix B. The effect of
including F̄ is that the other parametric distributions
smooth the ED and provide better tail behavior. This
is important because the ED being unbiased does
not imply that the output Ȳ ∼ FY(y | F̄) has the same
distribution, or even the same mean, as the ideal
outputYc because the simulation is in general a highly
nonlinear transformation of inputs to outputs.
See the commentary in Song et al. (2015). Neverthe-
less, we will show empirically that the ED of the
entire data set, F̄, is often a good choice when the
criterion is recovering the distribution of Yc, and
model averaging with the ED can be superior to ei-
ther the ED alone or model averaging of paramet-
ric distributions.

Remark 5. Among the list of possible candidates ^
could be kernel density estimators and the more-recent
log-concave density estimators (Cule et al. 2010, Kim
and Samworth 2016). These semiparametric methods
do not leverage process physics—an advantage of our
approach—but do have excellent convergence rates to
the true distribution. However, we would expect our
fits to be smoother for small to moderate N. That said,
these methods are not natural candidates for our model
averaging because they directly estimate the density,
whereas we require the cdf.

4. Experiments
In this section, we evaluate our proposal empirically.
Recall that our interest is in how properties of the
simulation output Ŷ ∼ FY(y | F̂) compare with the ideal
output Yc ∼ FY(y | Fc) (Section 4.1) and also how our
fitted model-average distribution F̂(x; ŵ) compares
to the distribution that generated the input data Fc

(Section 4.2). The assessments in this section are
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quantitative; see Jiang and Nelson (2018) for some
graphical illustrations of the attained fits and Online
Appendix D for additional documentation.

We reach the following broad conclusions: Model
averaging, especially including the ED as a candidate,
is often substantially superior to any single choice
from^, and typically noworse. Given a large number
q of candidate distributions, it is best to screen out
obviously poor choices first and do model averaging
over a smaller subset of ^. When either the size of the
real-world data sample N is large, or none of the
candidate distributions has the capability to fit well
(e.g., data are multimodal but choices in ^ are all
unimodal), the weight on the ED, ŵED, tends to be
large. Thus, the ED provides protection against a
badly chosen candidate set (which can occur when
using the built-in set in a software package) and
provides the consistency established by Theorem 2.
Although not specifically targeted in our experiments,
it seems clear that employing a candidate set with
common, appropriate support, and containing can-
didates that arewell justified byprocess physicswhen
available, is helpful. Finally, we found no systematic
difference from using J � 5 or 10 folds for CV; we
would never use more than 10 folds and recommend
J � 5 when N is small.

4.1. Evaluation of the Output Distribution
To evaluate the various methods with respect to the
output distribution, we use the relative distribution
method of Handcock and Morris (2006). A brief ex-
planation of the method follows: Let the distributions
of Ŷ and Yc be denoted by FŶ(y) and FYc(y), respec-
tively. Define the grade transformation of Ŷ to Yc as

U � FYc Ŷ
( )

, (9)
obtained by transforming Ŷ by FYc . The CDF of U can
be expressed as

G u( ) � FŶ F−1Yc u( )
( )

(10)

for 0 ≤ u ≤ 1, where F−1Yc (u) � inf{y | FYc (y) ≥ u} is the
quantile function of FYc .

It is easily seen that if Ŷ $� Yc, then the CDF ofU is a

45◦ line. When Ŷ
$
� Yc, then the closerG(u) is to the 45◦

line, the better the fit provided by Ŷ. In our analysis,
we use the unsigned area between G(u) and the 45◦
line over 0 ≤ u ≤ 1 to evaluate the effectiveness of the
method. We denote the gap by A(u) � |G(u) − u|, so
that the area is A � ∫ 1

0 A(u) du. Clearly, we could
compare a list of individual properties, such as the
mean and variance, but A provides a comprehensive
measure of performance. The relative distribution
method is in the same spirit as the tail-probability plot
method (see, e.g., Heyde and Kou 2004). When the
true distribution of Yc is not available, as in most of

our examples, it is represented by a very large sample
from FYc ; this is possible for us because the distri-
butions of the inputs Fc are known. To implement the
relative distribution analysis, we used the codes at
https://csde.washington.edu/~handcock/RelDist/
Software/R/.
The following are features of our empirical evaluation:
• We apply input model averaging to cases of the

SAN, GI/G/1 and HRS simulations, as described in
Sections 2.1–2.3, for different quantities of real-world
data, N, used to fit the input models. We generate the
“real-world data” from fully specified distributions.
• We consider instances in which the candidate set

^ does, or does not, contain the true input distribu-
tions Fc. The single “best-fit” distribution, which rep-
resents common input-modeling practice, is selected
from this set both by minimum AIC and minimum BIC.
• We refer to our frequentist model averaging

method as JFCV (for J-fold cross-validation). The ED is
considered both as an individual input distribution
method and a candidate within the JFCV model av-
erage. We refer to the JFCV method that includes the
ED as a default candidate as the JFCV(ED) method.
Thus, our five competing methods are AIC, BIC, ED,
JFCV, and JFCV(ED).
• When evaluating the performance of the methods,

we consider both the area A discussed above and the
tail area A tail �

∫ 1
0.9 A(u) du. We are interested in A tail

because there is a common belief that the ED, which
does not model the tail of the distribution beyond the
largest data point in the real-world sample, may be an
inferiormethodwhen interest centers on the tail of the
simulation output Y. Each experiment is repeated for
100 macroreplications and the results reported are
averages ofA or Atail across these 100macroreplications.
When presenting the results, we usually normalize the
average area (of A or Atail depending on the focus of
interest) generated by the JFCVmethod to 1, although
in some cases we also present the raw average area.
Hence, if the relative average area produced by a
method is larger than 1, then it is inferior to JFCV, and
vice versa, based on this metric. All results are dis-
played to statistically meaningful digits of precision.
We also examine how the JFCV weight ŵ changes
as N increases.
• For the SAN experiment, we also very precisely

estimate the mean squared error (MSE) of a point
estimate for the probability of late project completion.

4.1.1. SAN Experiment. We begin with the SAN de-
scribed in Section 2.1, for which there are five input
distributions for the five activity times, X1,X2, . . . ,X5.
For cases I–III, the true distributions are made up of
mixture distributions that are not contained in any
of the candidate sets, whereas cases IV–V include
distributions that are contained in the candidate sets.
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Results for cases I–V are reported inOnlineAppendixD.
Here we report case VI, which uses a candidate set ^
that is common to all commercial distribution fitting
products: ^4 � {normal, lognormal,beta, exponential,
gamma,Weibull} plus possibly the ED. In addition to
the candidate set ^4, we also consider a smaller
subset within it containing the “best” three based on
minimum AIC and BIC selections. We refer to this
subset as ^(3)

4 and apply the JFCV methods under this
subset as well as the full set ^4. In the event that AIC
and BIC do not lead to the same set of best distri-
butions, averaging under ^(3)

4 will involve more than
three distributions.

The true activity-time distributions are Pareto,
Rayleigh, and loglogistic, as shown in Table 1. In
each case, the mean activity time is approximately 1.
None of these are contained in the candidate set.

The results are displayed in Table 2. JFCV is su-
perior to any single choice made via best AIC or BIC,
and JFCV(ED), which includes the ED in the candi-
date set, is substantially better than JFCV alone. In
this example selecting a subset of the top three dis-
tributions before modeling averaging has little or no
effect; however, in Online Appendix D, we show that
it can be useful in other scenarios for the SAN, as well
as in our distribution-to-distribution comparisons in
Section 4.2.

Although A provides a comprehensive measure of
output-distribution performance, we also display some
results for the MSE of a point estimate of Pr{Yc > 6.65},
since the probability of completing beyond a due date
is often important in project planning; 6.65 is the 0.9
quantile (based on a side experiment with one million
replications). This case is to give a sense of the effect of
modeling averaging on point-estimator performance.
Table 3 displays results for real-world sample sizes
N � 100, 1,000, and R � 1,000 replications of the SAN;
a large number of replications are required so that
point estimator variance does not overwhelm the bias
reduction that we hope to be revealed. The MSE is
estimated from 5,000 macroreplications of the entire
experiment, and the standard error of the estimate is
also displayed. We see that when N is small, model
averaging yields substantial improvement over the

ED or best AIC choices; when N is larger, the ED and
model average are indistinguishable.

4.1.2.GI/G/1 Experiment. Next we examine results for
two cases of theGI/G/1queue described in Section 2.2:
An M/M/1 queue (case VII), meaning exponential
interarrival and service times, and a GI/G/1 queue
with balanced hyperexponential interarrival times,

X1 ∼ exponential 1( ) with probability 1/2
exponential 20( ) with probability 1/2,

{
and service times that follow themixture distribution,

X2 ∼ unif 10, 20( ) with probability 2/5
gamma 2.875, 1/2( ) with probability 3/5,

{
which we label as case VIII. In both cases, the implied
traffic intensity is E(X2)/E(X1) � 0.9, and the output
we consider is the waiting time of the fifth arrival Y5.
We consider candidate sets

^1 � truncated normal, beta, gamma
{ }

,

^2 � ^1 ∪ lognormal, Weibull
{ }

,

^3 � ^2 ∪ negative binomial,discrete uniform,
{

Poisson, continuous uniform, loglogistic,
inverse Gaussian,Pareto,binomial}.

Tables 4 and 5 contain the M/M/1 results for relative
average A and Atail, respectively. For capturing the
entire output distribution of Y5 as measured by A,
JFCV and JFCV(ED) tend to be better than AIC, BIC,
and ED, even though the true exponential distribu-
tion is in all candidate sets ^1–^3 in the form of the
gamma distribution, and again in sets ^2–^3 in the
form of the Weibull distribution. AIC and BIC im-
prove substantially in capturing the tail behavior as
measured by Atail but do not beat JFCV(ED).
Tables 6 and 7 present corresponding results for the

GI/G/1. When interest centers on A, the JFCV(ED)
method is the clear favorite, followed by the ED,
which has an edge over the JFCV, which in turn de-
livers better performance than AIC and BIC in the
majority of cases. When interest centers on Atail,
JFCV(ED) remains the best, the ED can yield worse

Table 1. True Activity-Time Distributions for Case VI SAN Example

Activity Distribution Parameters CDF

X1 Rayleigh σ � π/2 1 − exp(x2/(2σ2)), x ≥ 0
X2 Pareto μ � 1/4, σ � 3/16, ξ � 3/4 1 − (1 + ξ(x − μ)/σ)−1/ξ, x ≥ μ
X3 Pareto μ � 1/2, σ � 1/4, ξ � 1/2 1 − (1 + ξ(x − μ)/σ)−1/ξ, x ≥ μ
X4 Loglogistic α � 0.23, β � 1.21 1

1 + (x/α)−β , x ≥ 0

X5 Loglogistic α � 2/π, β � 2 1
1 + (x/α)−β , x ≥ 0
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performance than the JFCV, and the AIC and BIC
selections can be particularly badwhen there is a large
set of candidate distributions.

4.1.3. HRS Experiment. Finally, we consider the HRS
example of Section 2.3. We consider the following
setup, labeled as case IX in our subsequent presen-
tation of results. Let the inputs be

X1 ∼ unif 0, 1( ) with probability 0.5
exponential 1( ) with probability 0.5

{
X2 ∼ N 100, 100( ) with probability 0.5

gamma 20, 0.2( ) with probability 0.5.

{
Notice that E(X1) � 1 and E(X2) � 100. Recall that Y is
thought of as the time to failure.

Tables 8 and 9 present the results. This is a very
difficult problem for which the distribution of Y is
very sensitive to the input distributions. This makes
the performance of JFCV(ED) impressive, as it is
clearly the best across all cases. The performance of
the JFCV, AIC, BIC, and EDmethods is rather diverse.
AIC’s performance is either on a par with, or slightly
better than, BIC. None of the JFCV, AIC, BIC and ED
can strictly dominate the others, although JFCV tends
to be the winner when considering A.

4.2. Evaluation of the Input Distribution
In this section, we present results that directly assess
the quality of the model-average fit F̂(x; ŵ) with re-
spect to the true distribution Fc. In the unlikely event
that Fc ∈ ^, one should not expect model averaging to
do better since an empirical weight of precisely 1
assigned to any particular distribution, including Fc,
is a probability 0 outcome. Therefore, we focus on
cases in which Fc /∈ ^.

Specifically, our candidate set is all or part of

^� normal, lognormal, exponential,Weibull,
{
gamma,ED}

whereas Fc is Rayleigh, Pareto, generalized lambda
(Karian and Dudewicz 2000), hyperexponential, or
mixtures of these. For measures of fit, we compared
the mean and variance of the fitted distributions to
those of Fc (as a sanity check), but, more importantly,
we computed the following:
Kolmogorov-Smirnov distance (K-S):maxx |F̂(x;ŵ) −Fc(x)|;
Cramér von-Mises distance (Cv-M):

∫ [F̂(x;ŵ) −Fc(x)]2
dFc(x);
Anderson-Darling distance (A-D):

∫ [F̂(x;ŵ)−Fc(x)]2
Fc(x)(1−Fc(x)) dF

c(x).
K-S examines the largest absolute gap between the
cdfs; Cv-M and A-D are likelihood weighted squared
areas between them, with A-D further emphasizing
differences in the tails. We also recorded the weights
assigned to each distribution in the model average.
Real-world sample sizes of N � 100, 1,000 were em-
ployed, and all results were averaged over 1,000
macroreplications of the experiment.
We present results that represent the more-favorable

and less-favorable performance of model averaging
from this large number of cases. Not surprisingly, no
approach dominates on all instances and all mea-
sures, so “favorable” is somewhat subjective. Over-
all, we found the following:
• Model averaging can improve over any single

choice from ^, and the best model-average tends
never to be worse.
• Including the ED in ^ is almost always valuable

for measures other than K-S; ED alone often has the
poorest K-S performance, which makes sense as it is a
discrete approximation to a continuous Fc.
• Reducing the size of ^ to the top AIC/BIC

choices before model averaging improves fit; often

Table 2. Numerical Results for SAN Experiment Case VI

Actual average A Relative average A

Scenario JFCV AIC BIC ED JFCV (ED) JFCV AIC BIC ED JFCV (ED)

^4 0.05 0.06 0.06 0.06 0.04 1.00 1.07 1.07 1.06 0.77
^(3)

4 0.06 0.06 0.06 0.06 0.04 1.00 1.05 1.05 1.05 0.76

Table 3. MSE Results for SAN Experiment, Case VI, for
Estimating Pr{Yc > 6.65}
N R Candidates MSE SE (MSE)

100 1,000 ED 0.00254 4.8E-05
100 1,000 Best AIC 0.00116 1.6E-05
100 1,000 ^4 + ED 0.00079 1.8E-05

1,000 1,000 ED 0.00016 2.9E-06
1,000 1,000 Best AIC 0.00093 8.2E-06
1,000 1,000 ^4 + ED 0.00015 3.1E-06

Table 4. Numerical Results forM/M/1 QueuewithN � 100

Relative average A

Case Scenario JFCV AIC BIC ED JFCV (ED)

VII ^1 1.00 1.04 1.04 1.00 0.98
^2 1.00 1.04 1.04 1.01 0.98
^3 1.00 1.00 0.99 0.96 0.94
^(3)

3 1.00 1.09 1.08 1.05 1.00
^(6)

3 1.00 1.07 1.06 1.02 0.98

Nelson et al.: Input Model Averaging
10 INFORMS Journal on Computing, Articles in Advance, pp. 1–13, © 2020 INFORMS



model averaging the single best fit and the ED is the
consensus best choice.

• Themore distinct Fc is from any other choice in^,
themoreweight is applied to the ED; for instance, this
occurred when we created a bimodel true distribu-
tion Fc via a mixture (all of the candidates in ^
are unimodal).

• In a targeted test to study the effect of nested
distributions, we found that using ^ � {exponential,
Weibull, gamma} for model averaging when Fc is
exponential leads to a noticeably poorer fit than
choosing any one of the candidates. A tentative rec-
ommendation is to avoid nesting, such as including
exponential and Erlang in a set that already includes
Weibull and gamma.

4.2.1. More-FavorablePerformance. HereFc is Rayleigh
with parameter 0.5, from which we have N � 1,000
observations, with full candidate set ^� {normal,
lognormal,exponential,gamma,ED}, andwe use J � 5
folds for fitting the weights. The gammadistribution is
always the best AIC fit. Results are shown in Table 10.
Either gamma + ED or using all of ^ provide argu-
ably the best fits based on our three performance
measures. For the same experimentwith onlyN � 100
“real-world” observations, gamma + EDwas the best
choice, and better than model averaging larger sets.
This suggests that when the quantity of input data is
small it is even more important to first screen the
larger set ^ before model averaging.

For a second favorable example, Fc is Pareto with
location parameter 1 and shape parameter 3, fromwhich
we have N � 100 observations, with full candidate
set ^ � {normal, lognormal,gamma,Weibull, ED},

and we use J � 5 folds for fitting the weights. Either
the gamma, lognormal, or Weibull distribution was
chosen as the best AICfit in somemacroreplication, so
we included them all as individual choices. Results
are shown in Table 11. Individually, the Weibull
provides a good fit in this case, yet improvement is
still possible by model averaging a smaller set of
distributions than the full set.
Although not shown here because the result is

obvious, model averaging including the ED had very
favorable performance relative to any single choice
when Fc was obtained by a mixture (e.g., of two
Rayleigh’s with different parameters) so as to create a
bimodel distribution; in such cases, the ED received a
weight of around 0.9. This illustrates that model
averaging with the ED provides protection against a
poorly chosen candidate set, which might occur if
distribution fitting was automated. Of course, bi-
modal and mixture distributions can be included
as candidates.

4.2.2. Less-Favorable Performance. In all of our ex-
periments, there was some model-average distribu-
tion that did as well or better than any single choice,
but, in a few cases, this was very sensitive to the
distributions chosen as candidates; the most extreme
case follows.
In this example, Fc is a generalized lambda distri-

bution with λ1 � 3, λ2 � 2, λ3 � 1.5, and λ4 � 0.5.With
these choices, the density has a bathtub shape. On
each of 1,000 macroreplications, we obtainedN � 100
observations, with full candidate set ^� {normal,
lognormal,exponential,gamma,Weibull,ED}, and we

Table 5. Numerical Results for M/M/1 Queue, Tail
Estimation, with N � 100

Relative average Atail

Case Scenario JFCV AIC BIC ED JFCV (ED)

VII ^1 1.00 0.74 0.74 1.24 0.84
^2 1.00 0.71 0.71 1.17 0.71
^3 1.00 0.43 0.42 0.65 0.47
^(3)

3 1.00 0.82 0.81 1.26 0.77
^(6)

3 1.00 0.53 0.53 0.82 0.51

Table 6. Numerical Results forGI/G/1 Queue withN � 100

Relative average A

Case Scenario JFCV AIC BIC ED JFCV (ED)

VIII ^1 1.00 0.94 0.94 0.90 0.83
^2 1.00 1.05 1.05 0.96 0.88
^3 1.00 1.15 1.16 0.81 0.78
^(3)

3 1.00 1.30 1.31 0.92 0.84
^(6)

3 1.00 1.24 1.25 0.88 0.82

Table 7. Numerical Results for GI/G/1 Queue, Tail
Estimation, with N � 100

Relative average Atail

Case Scenario JFCV AIC BIC ED JFCV (ED)

VIII ^1 1.00 0.64 0.64 0.99 0.58
^2 1.00 0.82 0.82 1.35 0.67
^3 1.00 1.40 1.42 0.68 0.37
^(3)

3 1.00 2.49 2.54 1.22 0.59

^(6)
3 1.00 1.66 1.69 0.81 0.38

Table 8. Numerical Results for HRS with N � 100

Relative average A

Case Scenario JFCV AIC BIC ED JFCV (ED)

IX ^1 1.00 1.00 1.00 0.58 0.37
^2 1.00 0.73 0.73 0.64 0.41
^3 1.00 1.26 1.27 1.27 0.75
^(3)

3 1.00 1.17 1.18 1.18 0.70
^(6)

3 1.00 1.29 1.31 1.30 0.79
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used J � 5 folds for fitting the weights. The lognormal
was chosen as the best AIC fit, but we explored other
combinations as well. Results are shown in Table 12.
Notice thataveragesof lognormal+EDand lognormal+
gamma + normal + ED offer significant improvement
on all measures over the single lognormal choice, but
lognormal + gamma + normal and the full set ^ have
inferior A-D statistics.

5. Conclusions
Model risk due to input uncertainty arises because the
fitted input distribution F̂ deviates from the true
distribution of the input data Fc. When Fc is known to
belong to a certain parametric family, it makes sense
to use statistically efficient parameter estimates, which
would often be the MLEs. Many methods for quanti-
fying the impact of input parameter uncertainty on
simulation performance estimates for this case have
been proposed.

However, at best we should expect a standard
parametric family to be a good approximation for Fc,
which means that there is error that does not disap-
pear, even as the real-world input sample sizeN → ∞.
When the input data are also used to select the family,
as is commonpractice, the possible error is compounded.

In this paper, we proposed using frequentist model
averaging as an innovative way to construct better
input models, meaning input models that yield more
faithful output performance. Since the optimalweights
are unknown, we estimated them using J-fold cross-
validation. We showed that under mild conditions
the empirically optimal model average is unique
and easily obtained and that under more restrictive
conditions the empirically optimal weights yield the

best possible weighted average distribution as the sam-
ple size increases. This method augments current input
modeling practice and requires no alternation of the
simulation model or additional simulation runs.
We also observed that the empirical distribution

(ED) is frequently a very good input-modeling choice
when the objective is to get close to the ideal output
distribution, FYc ; this seems not to be very well
known. Including the ED in the candidate set ^ for
model averaging hedges against possible inadequacy
of the ED, as occurred in some of our examples, es-
pecially when tail behavior of Y is of interest. The
JFCV(ED) input models were often the best by a sig-
nificant margin, were always very good performers in
our experiments, and seem to be a powerful addition
to the standard input modeling pallet.
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Endnote
1Many new input models have been invented, particularly for
multivariate and nonstationary inputs; the lack of progress to which
we refer is in the methods for fitting these models to data.

Table 9. Numerical Results for HRS, Tail Estimation, with
N � 100

Relative average Atail

Case Scenario JFCV AIC BIC ED JFCV (ED)

IX ^1 1.00 1.00 1.00 0.66 0.55
^2 1.00 0.85 0.85 0.70 0.57
^3 1.00 0.74 0.75 0.70 0.51
^(3)

3 1.00 1.20 1.22 1.13 0.82
^(6)

3 1.00 0.83 0.85 0.79 0.61

Table 10. Results from 1,000 Macroreplications for
N � 1,000 Observations from a Rayleigh Distribution Fc

Distributions w K-S Cv-M A-D

Gamma 1 0.034 0.501 3.137
ED 1 0.028 0.172 1.021
Gamma + ED (0.257, 0.743) 0.026 0.182 1.080
^ (0.387, 0.052, 0.017, 0.479, 0.065) 0.018 0.148 1.941

Table 11. Results from 1,000 Macroreplications for N � 100
Observations from a Pareto Distribution Fc

Distributions w K-S Cv-M A-D

Lognormal 1 0.065 0.203 1.256
Gamma 1 0.064 0.206 1.259
Weibull 1 0.054 0.144 0.931
ED 1 0.085 0.164 0.990
Logn + ED (0.748, 0.252) 0.064 0.164 1.002
Weibull + ED (0.678 0.322) 0.060 0.137 0.849
Gamma + ED (0.407, 0.593) 0.071 0.152 0.914
Logn + Weibull + ED (0.571, 0.312, 0.117) 0.056 0.143 0.875
Logn + gamma +
Weibull + ED

(0.575, 0.217, 0.098,
0.110)

0.056 0.142 0.872

^ (0.073, 0.668, 0.039,
0.118, 0.103)

0.060 0.154 1.261

Table 12. Results from 1,000 Macroreplications for N � 100
Observations from a Generalized Lambda Distribution Fc

Distributions w K-S Cv-M A-D

Logn 1 0.090 0.266 4.119
Logn + ED (0.170, 0.830) 0.080 0.162 1.079
Logn + gamma +
normal

(0.810, 0, 0.190) 0.096 0.269 4.164

Logn + gamma +
normal + ED

(0.091, 0, 0.011, 0.8) 0.079 0.163 1.091

^ (0.014, 0.381, 0.130,
0.008, 0.008, 0.459)

0.111 0.231 9.118
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