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1. Background
We generalize computational results for the Pht/
Pht/� queueing system in Nelson and Taaffe (2004)
to the case of the multiclass �Pht/Pht/��K queue-
ing network. This network consists of K nodes, each
of which has an infinite number of servers offering
time-dependent, phase-type service. Each of the entity
classes has its distinct independent, time-dependent,
phase-type, network-arrival process or processes. Enti-
ties of each class circulate through the network via
class-specific, time-dependent Markov routing.
Much has been written about infinite-server queues

in the last several years. One reason for this is because
infinite-server queues and infinite-server queueing
networks have proven to be useful tools for analyzing
mobile cellular telephone networks; see, for instance,
Boucherie and van Dijk (2000) and Lee (1989). Kella
and Whitt (1999) consider fluid network models, and
Massey and Whitt (1993) present a thorough analy-
sis of networks of infinite-server queues with non-
stationary Poisson input. In their work, Massey and
Whitt consider models having nonstationary Poisson
input processes. Little has been written about non-
stationary, infinite-server queueing networks having
non-Poisson nonstationary input, and that is the focus
of this paper.
In Nelson and Taaffe (2004) we developed effi-

cient algorithms for computing time-dependent per-
formance measures for the Pht/Pht/� queueing sys-

tem based on moment differential, partial-moment
differential, and marginal-moment differential equa-
tions. The key result is that collectively this set
of differential equations is closed; i.e., the moment,
partial-moment, and marginal-moment differential
equations contain no state probabilities on their right-
hand sides. This closure property implies that time-
dependent performance measures can be computed
numerically to machine precision without evalua-
tion of the entire (infinite) set of Kolmogorov for-
ward equations. In that paper we also demonstrated
that the time-dependent state distribution was not
a time-dependent Poisson distribution—unlike the
case of infinite-server queues and queueing net-
works having nonstationary Poisson input where
the time-dependent state distributions are nonstation-
ary Poisson when the initial conditions are empty
and idle.
In this paper we generalize the single-node

case to the K-node network case where we have
R independent, time-dependent, phase-type arrival
processes, perhaps representing different entity clas-
ses, and time-dependent, class-specific, Markov rout-
ing among the K nodes.
The two key results presented here are that (1) the

single-class K-node network of time-dependent,
phase-type service nodes having time-dependent
Markov routing among those nodes is mathematically
equivalent to a single-class, single-node system with a
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number of service phases equal to the total number
of service phases in the network of service nodes; and
(2) an R-class �Pht/Pht/��K queueing network with
class-specific, independent, time-dependent, phase-
type arrival processes and Markov routing is mathe-
matically equivalent to R independent �Pht/Pht/��K
queueing networks. In other words, we do not see
an exponential increase in the computing effort for
obtaining numerically exact moments when going
to the network case, even though the state space is
increasing in dimension and thus “exploding.” For
most other queueing networks, as the number of
nodes or the number of classes increases, either the
computational effort to get numerically exact results
increases exponentially, or a decomposition-type
approximation is needed to reduce the computing
effort to a nonexponential increase. Without use of any
approximations we can decompose the network and
nodal time-dependent performance measures by class
with computing effort that is linear in the number of
nodes and linear in the number of classes.
Key results 1 and 2 are not particularly surpris-

ing, and similar observations have been made for
other queueing systems (e.g., a network of Mt/Mt/�
queues is equivalent to a single Mt/Pht/� queue,
as implied by results in Whitt 1982, for instance).
Therefore, the central contribution of this paper is to
derive the network-to-single-node construction, and
actually to implement it in a computationally useful
form.
The paper is organized as follows. Section 2

presents the definitions and notation for the time-dep-
endent arrival, service, and nodal-routing processes
for the K-node, R-class network. Section 3 considers
the simplified case of a single-arrival process net-
work and proves the equivalence of the network sys-
tem to the single-node system. Section 4 describes
the multiple-entity-class network and presents a sim-
ple decomposition that requires no approximations
for its evaluation. Section 5 briefly discusses time-
dependent network-sojourn time distributions and
moments. A detailed example is presented in §6,
where diagrams illustrate the equivalence of the net-
work to a single-node system. Section 7 is a brief sum-
mary and conclusion. A description of our MAPLE code,
the code itself, and a detailed example of its use may
be found in the Online Supplement to this paper on
the journal’s website.

2. The �Pht/Pht/��K Queueing
Network

In this section we define the multiclass �Pht/Pht/��K
queueing network notation.

2.1. The Arrival Processes
We represent the class-r time-dependent, �wr + 1
-
dimensional, phase-type arrival process, �A �r��t
,
��r��t

, by its underlying Markov chain, the vector
of time-dependent Poisson rates associated with each
(nonabsorbing) state, and the vector of initial arrival-
state probabilities. Each of the arrival processes may
represent the arrival process for a different class of
entity, and any particular entity class may have mul-
tiple independent arrival processes. Let

A �r��t
≡
(A �r�

1 �t
 A �r�
2 �t


��r��t
T 0

)

be the one-step transition matrix of the Markov chain
underlying the wr -phase arrival process for class r ,
where

A �r�
1 �t
≡



a
�r�
11 �t
 · · · a

�r�
1wr
�t


���
���

���

a
�r�
wr1
�t
 · · · a

�r�
wrwr �t





is the matrix of transient-to-transient state transition
probabilities, and

A �r�
2 �t
≡



a
�r�
1�wr+1�t

���

a
�r�
wr �wr+1�t





is the vector of transition probabilities from transient
states to state wr + 1, the instantaneous absorb-
ing state representing an entity arriving to the net-
work via arrival process r . The vector ��r��t
 ≡
��
�r�
1 �t
� � � � ��

�r�
wr �t
�

T contains the initial arrival-phase
probabilities for the next entity to start through the
arrival process.
Let ��r��t
 ≡ ��

�r�
1 �t
� � � � ��

�r�
wr �t
�

T be the vector of
real-valued, integrable rate functions for transient
states of the arrival process. Thus, the �wr + 1
-
dimensional rate vector for the entire class-r phase
arrival process is ���r��t
T ���. The infinite rate corre-
sponds to the instantaneous absorbing state.
Finally, let �A�r��t
� t ≥ 0� be the random process

representing the arrival phase of the next arrival
to the network at time t from arrival process r ,
where A�r��t
 ∈ �1� � � � �wr�. The instantaneous absorb-
ing states need not be explicitly represented.

2.2. The Service Processes
We define the node-k �vk+1
-dimensional phase-type
service process, �B �k��t
���k��t

, in a manner similar
to the definition of the arrival processes.
Let

B �k��t
≡
( B �k�

1 �t
 B �k�
2 �t


��k��t
T 0

)
�
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where

B �k�
1 �t
≡



b
�k�
11 �t
 · · · b

�k�
1vk
�t


���
���

���

b
�k�
vk1
�t
 · · · b

�k�
vkvk �t





is the underlying Markov chain one-step transition
matrix for transient-to-transient service-phase transi-
tions at node k, and

B �k�
2 �t
≡



b
�k�
1�vk+1�t

���

b
�k�
vk�vk+1�t





is the matrix of transition probabilities from tran-
sient service phases to the instantaneous absorbing
state vk + 1, which represents a service completion
(a departure from node k). The vector ��k��t
T ≡
��
�k�
1 �t
� � � � ��

�k�
vk �t
�

T contains the initial service-phase
probabilities for an entity entering service node k.
Let ��k��t
 ≡ ��1�t
� � � � ��vk �t
�

T be the vector of
real-valued integrable rate functions for the transient
states of the service process, so that ���k��t
T ��� is the
�vk + 1
-dimensional rate vector for the entire node-k
phase service process.

2.3. The Class-r Time-Dependent Markov
Node-to-Node Routing Process

The class-r time-dependent Markov node-to-node
routing probabilities are defined by

P�r��t
≡
(

P�r�1 �t
 P�r�2 �t


P�r�0 �t
 0

)
�

where

P�r�1 �t
≡



p
�r�
11 �t
 · · · p

�r�
1K�t


���
� � �

���

p
�r�
K1�t
 · · · p

�r�
KK�t



 �

P�r�2 �t
≡



p
�r�
10 �t

���

p
�r�
K0�t



 �

and

P�r�0 �t
≡
(
p
�r�
01 �t
� � � � � p

�r�
0K�t


)
�

and where node 0 is the exit/entrance “node” of the
network.
Notice that we specify a different time-dependent

arrival process and node-to-node Markov routing
process for each of the entity classes. We could also

index the service-phase process parameters for each of
the R entity classes, as well as for each of the K nodes
in the network, by �B �r� k��t
���r� k��t

. By doing so we
would be representing different time-dependent ser-
vice processes (or distributions in the case of station-
ary systems) for each of the entity classes at each of
the nodes. Our choice of notation for this presenta-
tion does not explicitly differentiate nodal service pro-
cesses by entity class. This notation choice allows for
less cumbersome network representation, and, as we
will show later, the R entity-class network is equiv-
alent to R independent single-class networks, so we
can evaluate network performance measures by entity
class via separate evaluations of the single-class net-
works, changing nodal-service-process parameters for
each different evaluation.

3. The �Pht/Pht/��K Single
Arrival-Process Network

We start the description of the state of the multiclass
�Pht/Pht/��K process at time t with the case of K time-
dependent, phase-type service nodes, and only one
time-dependent, phase-type arrival process. Later we
generalize to the case of R independent, phase-type
arrival processes. In this section we omit the super-
script �r� that indicates entity class for ease of reading.
The state of the process at time t is given by

�N�t
�A�t
� ≡ �N�1��t
� � � � �N�K��t
�A�t
�

≡ [(
N
�1�
1 �t
� � � � �N

�1�
v1
�t

)
� � � � �(

N
�K�
1 �t
� � � � �N �K�

vK
�t

)
�A�t


]
� (1)

where
{
N
�k�
i �t
� t ≥ 0

}
for i = 1� � � � � vk, and k =

1� � � � �K, is the random process representing the num-
ber of entities who, at time t, are in the ith phase
of their service at node k. Let the random variable
representing the total number of entities in service at
node k at time t be

N�k��t
≡
vk∑
i=1
N
�k�
i �t
�

and let the total number of entities in service in the
entire network at time t be

N�t
≡
K∑
k=1
N�k��t
�

The instantaneous absorbing states in the service pro-
cesses need not be explicitly represented.

3.1. The �Pht/Pht/��K and Pht/Pht/� Equivalence
In this section we develop a key equivalence result.
We continue to discuss the case of a network having
a single, time-dependent, phase-type arrival process
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and the ordering of the state space as indicated in (1).
We show that the network of time-dependent service
nodes can be viewed as a single time-dependent ser-
vice node. This observation leads to the result that a
single-arrival-process �Pht/Pht/��K network is equiv-
alent to a single-arrival-process Pht/Pht/� system;
thus, all of the mathematical and computational per-
formance measures developed in Nelson and Taaffe
(2004) can be directly applied to the network system
as easily as to a single-node, single-arrival-process
system.
In the single-node, single-arrival-process notation

of Nelson and Taaffe (2004) we need to construct
�B �t
���t

, where:

B �t
≡
(B 1�t
 B 2�t


��t
T 0

)
�

and ��t
 represents the time-dependent rates at each
transient phase of the service process. In constructing
the single-node equivalent �B �t
���t

 we must also
include consideration of the time-dependent Markov
routing among the nodes of the network.
Let

B 1�t
≡ P1�t
 ·G�t
+Diag
[B �i�

1 �t

]
� (2)

where

G�t
≡ �Gij �t
��

Gij �t
≡



(
b
�i�
1�vi+1�t
�

�j��t

)T

���(
b
�i�
vi�vi+1�t
�

�j��t

)T


 �

X ·Y ≡ �xijyij ��
and · indicates the matrix Hadamard product. Thus

B 1�t
=




p11�t
G11�t
+B �1�
1 �t
 p12�t
G12�t
 · · · p1K�t
G1K�t


p21�t
G21�t
 p22�t
G22�t
+B �2�
1 �t


��� p2K�t
G2K�t


���
� � �

pK1�t
GK1�t
 · · · · · · pKK�t
GKK�t
+B �K�
1 �t





is the underlying Markov chain one-step transition
matrix for transient-to-transient state transitions in the
single-node equivalent representation of the network.
Let

B 2�t
≡



p10�t
B

�1�
2 �t

���

pK0�t
B
�K�
2 �t





be the single-node equivalent matrix of transition
probabilities from transient states to the instantaneous
absorbing state �

∑K
k=1 vk
 + 1, which represents a

departure from the network.
Finally, let

��t
≡ [p01�t
��1��t
� � � � � p0K�t
��K��t
]T
contain the initial service-phase probabilities for an
entity completing its arrival process, and thus enter-
ing into service.
The total number of (nonabsorbing) service phases

in the single-node equivalent representation of the net-
work is

∑K
k=1 vk. Let the vector of rates associated with

the set of service phases be ��t
T≡ ���1��t
� � � � ���K��t
�
where, as before, ��k��t
≡ ���k�1 �t
� � � � ���k�vk �t
�T .
3.2. Construction
In this section we construct and interpret the matrix
components of B �t
. See §6 for a detailed example.
• B 1�t
 for i 	= j : The �i� j
th component of B 1�t
,

itself a matrix, represents transitions from some ter-
minal phase of node i to some initial phase of node j .
For this transition to occur an entity must complete
its time in a terminal phase of service at node i
and be routed to node j . The conditional probabil-
ity of an “absorption” or end of service, at phase s
of node i, given that the entity is ending its service
at phase s of node i at time t, is b�i�s�vi+1�t
. The con-
ditional probability that an entity ending its service
at node i proceeds to some initial phase of service
at node j at time t is pij �t
. The probability that an
entity that enters node j at time t enters it at phase l
is ��j�l �t
. Thus the �i� j
th entry of B 1�t
 is a matrix
of probabilities and the �s� l
th entry of that matrix is
b
�i�
s�vi+1�t
pij �t
�

�j�

l �t
, which represents the conditional
probability of an entity that is finishing service in
phase s of node i proceeding to leave node i and enter
node j in phase l at time t.

• B 1�t
 for i= j : There are two terms that compose
each element of the diagonal entries in B 1�t
 for i= j .
They are pii�t
Gii�t
 and B �i�

1 �t
, and they have the fol-
lowing interpretation:
The first term, pii�t
Gii�t
, is a matrix whose ele-

ments are b
�i�
s�vi+1�t
pii�t
�

�i�
l �t
. This is the case of

immediate feedback from node i to node i, similar to
the description above.



Nelson and Taaffe: The �Pht/Pht/��K Queueing System: Part II—The Multiclass Network
INFORMS Journal on Computing 16(3), pp. 275–283, © 2004 INFORMS 279

The second term, B �i�
1 �t
, contains the conditional

probabilities guiding state transitions from a node i
transient phase to another node i transient phase
without passing through an instantaneous end-of-
service or “absorption” phase at node i. Therefore the
�s� l
th entry of B �i�

1 �t
, for l 	= vi+ 1, is b�i�sl �t
, the con-
ditional probability that an entity exiting phase s of
node i proceeds directly to phase l of node i without
having completed its service at node i.
• B 2�t
: The ith component of B 2�t
, itself a

column vector, represents network departures from
node i at time t. The ith vector entry in B 2�t
 con-
tains the conditional probabilities of an entity exiting
node i, given that the entity is finishing service at
some phase of node i at time t, and that this entity
then leaves the network. Specifically, the sth element
of the ith row of B 2�t
 is b

�i�
s�0�t
pi0�t
, the condi-

tional probability that an entity completing service at
phase s of node i exits the network at time t.
• ��t
: The ith element of the vector ��t
,

p0i�t
�
�i��t
T , is a vector of conditional probabilities

representing the entry node, and the entry phase
within a node, of a newly arriving entity to the net-
work. The p0i�t
 factor represents the probability that
node i is the entry node for an arrival at time t. The
conditional probability of an arriving entity entering
node i at phase s, given that node i is the entry node,
is the sth element of the vector ��i��t
.
Thus, the single-arrival process �Pht/Pht/��K

queueing network is equivalent to a Pht/Pht/� queue.
Next we show why a network having R indepen-
dent, time-dependent, phase-type arrival processes is
equivalent to R independent, single-arrival-process
networks.

4. Multiple Entity Classes
We now generalize the model to include several entity
classes. Each entity class may have multiple indepen-
dent, time-dependent, phase-type arrival processes. In
this section we will simply refer to “multiple arrival
sources” or “multiple arrival processes” to include
both multiple entity classes and entity classes having
more than one arrival process.
In the simple Jackson network (either the station-

ary or the time-dependent case) when there is more
than one (time-dependent) Poisson network-arrival
process, the superposition property of independent
Poisson processes results in a composite (time-
dependent) Poisson network-arrival process. Like-
wise, the (time-dependent) Markov splitting of a
(time-dependent) Poisson process results in (time-
dependent) independent Poisson processes. This is
not the case for any other continuous-time stochas-
tic point process. In fact, in the stationary case, the
splitting or superposition of independent renewal

(but non-Poisson) processes results in a process or
processes that are not renewal processes (Kao 1997).
As a result, we cannot superpose several indepen-
dent Pht processes and represent the overall network-
arrival process as a single Pht process. We therefore
present a generalization of the network model to
include the case of having multiple independent
entity-arrival sources.
Consider the R-class �Pht/Pht/��K network. The

state of the process at time t is given by

�N�t
�A�t
� ≡ [(
N�1�1��t
� � � � �N�1�K��t


)
� � � � �(

N�R�1��t
� � � � �N�R�K��t

)
�A�t


]
�

where

N�r� k��t
≡ (N�r�k�
1 �t
� � � � �N

�r�k�
vk �t


)
�

and
A�t
≡ (A�1��t
� � � � �A�R��t
)�

Let A�r��t
 be the state of arrival process r at time t,
and A�t
 be the R-dimensional vector containing the
A�r��t
 terms. Let

N�k��t
 ≡
R∑
r=1

N�r� k��t
= (N�k�
1 �t
� � � � �N

�k�
vk
�t

)

be the vector of random variables describing the total
number of entities across all entity classes in each of
the service phases at node k at time t. Let

N�r�k��t
≡
vk∑
i=1
N
�r�k�
i �t


be the random variable describing the total number
of entities of entity class r at node k at time t, and let

N�k��t
≡
R∑
r=1
N�r�k��t


be the random variable describing the total number
of entities across all entity classes at node k at time t.
Likewise, let

N�r� ·��t
≡
K∑
k=1
N�r�k��t


be the random variable describing the total number
of class-r entities in the network at time t.
The �Pht/Pht/��K network for systems having R

arrival sources (or entity classes) can be represented
by R single-arrival-source �Pht/Pht/��K networks.
The key idea is that the entities never contend with
one another for access to the servers because there is
an infinite number of servers at every node; i.e., the
entity classes are stochastically independent. Because
of this independence, the single-node network model
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(and software) can be used to analyze each of the
entity classes separately (at the nodal and network
levels). Furthermore, because of the independence,
overall network performance measures across all
entity classes are also simple (mathematically) to com-
pute. For instance,

E�N �t
�= E
[ R∑
r=1
N�r� ·��t


]
=

R∑
r=1
E
[
N�r� ·��t


]
�

and

Var�N �t
�=Var
[ R∑
r=1
N�r� ·��t


]
=

R∑
r=1
Var

[
N�r� ·��t


]
�

5. Network Virtual Sojourn Time
LetW�r�

t be the sojourn time of a virtual entity emanat-
ing from network arrival source r (or entity class r),
at time t. Because there is an infinite number of
servers at each node, the virtual sojourn time through
the entire network has no impact on the sojourn
times of other entities in the network before or after
time t, regardless of the entity’s class or network-
arrival source.
Because of the equivalence of the R-arrival-process

�Pht/Pht/��K network to R single-arrival-process
�Pht/Pht/��K networks, and because of the equiva-
lence of the �Pht/Pht/��K network to the Pht/Pht/�
node, the time-dependent virtual sojourn time for a
single-class, single-node system from Nelson and
Taaffe (2004) is also the method required to compute
the time-dependent, class-specific, virtual sojourn
time for the network system.
In Nelson and Taaffe (2004) a method is described

for evaluating the time-dependent virtual sojourn time
for a single-class, single-node Pht/Pht/� queueing
system based on equivalence of the time-dependent
virtual-waiting-time distribution at time t and the
time-dependent probability of having an empty sys-
tem at times greater than t for a system that has
exactly one entity present at time t and has no previ-
ous or future arrivals.

6. Example
Next we present an example. We show both its net-
work representation and equivalent single-node rep-
resentation. We also calculate several time-dependent
performance measures for this example using the
MAPLE code that we have made available in download-
able form via the Online Supplement for this paper.
The example is designed to illustrate our results,
rather than to represent any particular real queueing
system.
Consider the two-node network illustrated in Fig-

ure 1. A single-arrival process feeds the network,
which includes immediate feedback at node 1 and

2-Node Network

p01(t)

p02(t)

p11(t)

p12(t)

p21(t)

p20(t)Node 1 Network
Exit

Node 2

Network
Arrival
Process

Figure 1 Diagram of the Two-Node Network

feedback from node 2 to node 1. The time between
arrivals is modeled by a time-dependent phase-
type distribution with three phases, as illustrated in
Figure 2. When we solve this problem numerically we
use the specific values

A �t
=




0 1
3 + 1

3 cos
(
1
4(t

)
2
3 − 1

3 cos
(
1
4(t

)
0

0 0 0 1

0 0�3 0 0�7

0�8 0�2 0 0


 �

and

��t
=
(
5�8�10+ 5 sin

(
1
5
(t

))
�

The service processes at each node are also rep-
resented by three-phase, phase-type distributions, as
shown in Figures 3 and 4, with specific values

B �t
�1� =




0 0�4 0�6 0

0 0 1
4 + 1

4 sin
(
1
6(t

)
3
4 − 1

4 sin
(
1
6(t

)
0 0 0�2 0�8

0�5 0 0�5 0


 �

��t
�1� = �3�4�7�5
�

B �t
�2� =




0 0�5 0�5 0

0 0 2
3

1
3

0 1
3

1
3

1
3

0�5 0 0�5 0


 � and

��t
�2� = �2�2�2
�
The Markov routing matrix among the nodes is

P=




1
2 + 1

2 sin
(
1
4(t

)
1
2 − 1

2 sin
(
1
4(t

)
0

0�15 0 0�85

0�7 0�3 0


 �

Thus, there are nonstationary components in the
arrival, service, and routing processes. We illustrate
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Figure 2 Diagram of the Time-Dependent Three-Phase Phase-Type Arrival Process
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Figure 3 Diagram of the Time-Dependent Three-Phase Phase-Type Node-1 Service Process
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Figure 4 Diagram of the Time-Dependent Three-Phase Phase-Type Node-2 Service Process
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Figure 5 The Single-Node Equivalent Representation of the Two-Node Network

only a single entity class because having R classes is
equivalent to R independent K-node networks and
thus introduces no new complexity.
Figure 5 expands Figure 1 to show the phase-type

service process within each node. A key result of
this paper is that a network of Pht/Pht/� queues is
equivalent to a single Pht/Pht/� node; our software
constructs this equivalent representation automati-
cally. The bold line in Figure 5 indicates the single
node.
Using our MAPLE software, or any other software for

numerically integrating systems of differential equa-
tions, we can compute time-dependent performance
measures. Figure 6 displays the mean or expected
number of entities in the network as a whole, and at
each node in the network, from time t = 0 to t = 10,
when the system begins empty and idle.
The variance of the number in the system and at

each node for the same time period is shown in Fig-
ure 7. Notice that even though the curves in both
figures have the same shape, they do not represent
the same values. This establishes that the number in
the system or at each node does not have a time-
dependent Poisson distribution, because if they did,
the mean and variance would be equal.

For a virtual entity arriving to the network, we can
compute the mean, variance, and cdf of its sojourn
time by applying the technique described in Nelson
and Taaffe (2004) to the single-node representation.
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2
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2 4 6 8 10

t

E[N2(t )]

E[N(t )]

E[N1(t )]

Figure 6 Plot of the Time-Dependent Mean Number of Entities in the
Network and at Each Node
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Figure 7 Plot of the Time-Dependent Variance of the Number of Enti-
ties in the Network and at Each Node

For example, a virtual entity arriving to our example
network at time t = 5 would expect to spend 2.5 time
units in the system, with a standard deviation of 2.2
time units. The cdf of the entity’s sojourn time can be
computed using our MAPLE software available via the
Online Supplement.

7. Conclusions
In this paper we have shown the rather pleasing
result that the �Pht/Pht/��K queueing network can be
viewed as a single Pht/Pht/� queue. We have also
demonstrated that such networks having multiple
entity classes can be decomposed into separate single-
node, single-class queueing systems. As a result the

computational effort to analyze the time-dependent
nodal and network behavior by entity class is a linear
function of the number of nodes and the number of
entity classes. All of the MAPLE code to evaluate such
networks is in downloadable form via the Online
Supplement.
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