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1. Introduction
Most real-world queueing systems exhibit some sort
of time-dependent behavior, including but not limited
to time-varying arrival and service processes. How-
ever, analysis of the time-dependent behavior of even
the simpleMt/Mt/� queueing system, having general
initial conditions, requires numerical integration of an
infinite number of differential-difference equations for
general, real-valued and integrable arrival/service-
rate functions. Although we know that the time-
dependent number of entities in the system for the
Mt/Mt/� system, with empty and idle initial condi-
tions, has a time-dependent Poisson distribution, we
do not know, in general, the value of its mean with-
out at least integrating the differential equations for
the mean (Massey and Whitt 1993).
Consider the moment differential equations (MDEs)

approach for analysis of the Mt/Mt/� system. The
MDEs are the derivatives of the moments of N�t�—
the number of entities in the system at time t—with
respect to time. The MDEs for the Mt/Mt/� sys-
tem are closed, meaning the right-hand side (RHS)
of the pth MDE contains no state probabilities and
no moments of order greater than p, just system
parameters (the time-dependent arrival and service
rates) and system moments of order p or less. As
a result, we can obtain the time-dependent expected
number in the system, E
N �t��, by solving a single
differential equation, the first MDE. If the initial
conditions are indeed empty and idle, then for any
particular time t we can numerically evaluate just
one differential equation, the first MDE, from time 0

to time t and compute individual state probabilities
via

P�N �t�= i�= �E
N �t���i

i! e−E
N �t��

for i = 0�1� � � � � For more general initial conditions
we could approximate the time-dependent distribu-
tion of the number of entities in the system at time t
via numerical integration of the first two MDEs, for
instance, and then match those two moments to some
approximate distribution; see Ong and Taaffe (1987,
1988, 1989).
In this paper we develop similar results for the

number of entities in a Pht/Pht/� system, where Pht
denotes a time-dependent generalization of a phase-
type renewal process (Neuts 1981; Taaffe and Ong
1984; Ong and Taaffe 1987, 1988, 1989). Stated differ-
ently, the interarrival-time and the service-time ran-
dom variables are each represented by the time until
absorption in a finite-state, nonstationary Markov
process having exactly one absorbing state.
Specifically, we develop the partial-moment differ-

ential equations (PMDEs) for the number of entities
currently in phase l of their service and the arrival
process in phase i. We show that the first PMDEs
are closed; i.e., there are no state probabilities on the
RHSs of the PMDEs. The corresponding MDEs are
quasi-closed, because their RHSs contain only system
parameters and system partial moments, which are
themselves closed. Therefore, the time-dependent val-
ues of, say, the mean and variance of the number of
entities in the system at time t can be computed by
numerically integrating a small number of differential
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equations whose size is a function of the number of
arrival-process and service-process phases. The stan-
dard solution methods for the state probabilities of
this system require evaluation of an infinite number
of differential equations, or a very large number of
differential equations if we truncate the state space.
The paper is organized as follows. In §2 we

briefly review major results for infinite-server, time-
dependent Markovian queueing models. In §3 we
define the Pht/Pht/� system. Section 4 develops the
MDEs and PMDEs and establishes their closure prop-
erties. We present several numerical examples in §5
and provide downloadable software for evaluating
Pht/Pht/� models. The virtual sojourn time cdf and
moment calculations are described in §6 along with
a numerical example. Finally, §7 offers a brief set of
conclusions and an indication of some extensions of
the Pht/Pht/� queue to be presented in the compan-
ion paper to this one by Nelson and Taaffe (2004).

2. Background
Infinite-server queueing models have been the subject
of research in recent years, partially because of their
central role in approximating systems with many
servers. Time-dependent arrival and service pro-
cesses for a variety of queueing models have also
received increasing attention from the applied prob-
ability research community because few real-world
systems are truly time homogeneous.
Applications for models of time-dependent, infinite-

server queueing models include population processes
in biology, migration processes, and immigration
processes. Perhaps the most interesting application
for such models is found in the wireless telecom-
munication industry. Time-dependent, infinite-server
networks of queues have become a standard model for
analysis of mobile cellular telecommunication system
design and management problems (Lee 1989).
The intersection of the two topics—time-dependent

arrival/service processes and infinite-server (net-
work) queueing models—is the focus of some classic
papers as well as a wealth of recent applied probabil-
ity research (see, for instance, Brown and Ross 1967,
Collings and Stoneman 1976, Eick et al. 1993a, Foley
1984, Glynn and Whitt 1991, Harrison and Lemoine
1981, Massey and Whitt 1993, Mirasol 1963, Newell
1966, Whitt 1982). Massey and Whitt (1993) contains
a thorough review of what is known about time-
dependent, Poisson-arrival, infinite-server queues and
networks of time-dependent, exogeneous Poisson-
arrival, infinite-server queues.
A fundamental result for the Mt/Gt/� queue, and

thus the Mt/Pht/�, is that the distribution of the
number of entities in the system at any time t,
given that the initial conditions are empty and idle,

is the time-dependent Poisson distribution. Thus, an
ordinary differential equation for the time-dependent
mean is sufficient to characterize the time-dependent
distribution fully (Massey and Whitt 1994). There
are no similar results for time-dependent, infinite-
server queueing models where the arrival process
is not (time-dependent) Poisson. In this paper, we
extend results in the literature to the more general
case of time-dependent infinite-server models having
general �Pht� arrival. Ph-type processes are general
because the family of phase distributions is dense
over the space of probability distributions with
support on 
0���. We develop numerically exact
solutions and demonstrate that the time-dependent
distribution of the number of entities in the system
at time t is not Poisson, in general.

3. The Pht/Pht/� System
In this section we define the Pht/Pht/� queueing sys-
tem and present the Kolmogorov forward equations
for the time-dependent system state.

3.1. The Arrival Process
We represent the time-dependent phase-type arrival
process by its underlying Markov chain, the vector
of time-dependent Poisson rates associated with each
(nonabsorbing) state, and the vector of initial state
probabilities.
Let

A �t�=
(A 1�t� A 2�t�

��t�T 0

)

be the one-step transition matrix of the Markov chain
underlying the mA-phase arrival process, where

A 1�t�=




a11�t� · · · a1mA
�t�

���
� � �

���

amA1�t� · · · amAmA
�t�




is the matrix of transient-to-transient state transition
probabilities, and

A 2�t�=




a1�mA+1�t�
���

amA�mA+1�t�




is the vector of transition probabilities from transient
states to state mA + 1, the instantaneous absorbing
state representing an entity arriving to a server. The
vector ��t� = 
�1�t�� � � � ��mA

�t��T contains the initial
arrival-phase probabilities for the next entity to start
through the arrival process.
Let ��t�= 
�1�t�� � � � ��mA

�t��T be the vector of real-
valued integrable rate functions for transient states
of the arrival process. Thus, the �mA+ 1�-dimensional
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rate vector for the entire phase arrival process is

��t�T ���. The infinite rate corresponds to the instan-
taneous absorbing state.
Finally, let �A�t�� t ≥ 0� be the random process rep-

resenting the arrival phase of the next arrival to
the system at time t, where A�t� ∈ �1� � � � �mA�. The
instantaneous absorbing state need not be explicitly
represented.

3.2. The Service Process
We define the �mB+1�-dimensional phase-type service
process in a manner similar to the definition of the
arrival process. Let

B �t�=
(B 1�t� B 2�t�

��t�T 0

)
�

where

B 1�t�=




b11�t� · · · b1mB
�t�

���
� � �

���

bmB1�t� · · · bmBmB
�t�




is the underlying Markov chain one-step transition
matrix for transient-to-transient state transitions, and

B 2�t�=




b1�mB+1�t�
���

bmB�mB+1�t�




is the matrix of transition probabilities from transient
states to the instantaneous absorbing state mB + 1,
which represents a service completion (a departure
from the queue). The vector ��t�= 
�1�t�� � � � ��mB

�t��T

contains the initial service-phase probabilities for an
entity completing its arrival process (and hence begin-
ning its service process).
Let ��t�= 
�1�t�� � � � ��mB

�t��T be the vector of real-
valued integrable rate functions for the transient
states of the service process, so that 
��t�T ��� is the
�mB + 1�-dimensional rate vector for the entire phase
service process.

3.3. The Pht/Pht/� Kolmogorov Forward
Equations

The state of the Pht/Pht/� process at time t is given
by


N�t��A�t��= 
�N1�t�� � � � �NmB
�t���A�t���

where �Ni�t�� t ≥ 0� for i = 1� � � � �mB is the random
process representing the number of entities who,
at time t, are in the ith phase of their service.
Therefore, the total number of entities in service at
time t is N�t�=∑mB

j=1Nj�t�. The instantaneous absorb-
ing state in the service process need not be explicitly
represented.

Let

P
(
t�n1� � � � �nmB

� k
)

≡ P�N1�t�= n1� � � � �NmB
�t�= nmB

� A�t�= k��

and

P
(
t�n1� � � � �nmB

� k
)′

≡ d

dt
P�N1�t�= n1� � � � �NmB

�t�= nmB
� A�t�= k��

The infinite number of Kolmogorov forward equa-
tions for the model are tedious but straightforward to
derive and are as follows:

P
(
t�n1� � � � �nmB

� k
)′

= −�k�t�P
(
t�n1� � � � �nmB

� k
)

−
mB∑
l=1

nl�l�t�
1− bll�t��P
(
t�n1� � � � �nmB

� k
)

+
mA∑
l=1

al�mA+1�t��k�t��l�t�

·
{

mB∑
h=1
I
nh>0��h�t�P

(
t�n1� � � � �nh− 1� � � � �nmB

� l
)}

+
mA∑
l=1

alk�t��l�t�P
(
t�n1� � � � �nmB

� l
)

+
mB∑
l=1

bl�mB+1�t�
nl + 1��l�t�

·P(t�n1� � � � �nl + 1� � � � �nmB
� k
)

+
mB∑
l=1
I
nl>0�

{
mB∑
h=1
h�=l

bhl�t�
nh+ 1��h�t�

·P(t�n1� � � � �nl − 1� � � � �nh+ 1� � � � �nmB
� k
)}
� (1)

where

I
a>0� ≡
(
0� a≤ 0
1� a > 0

)

for k= 1� � � � �mA, nh = 0�1� � � � ��, h= 1� � � � �mB, and
t ≥ 0. Of course we also know that for all t,

∑
k�n1� ����nmB

P
(
t�n1� � � � �nmB

� k
)= 1�

4. The MDEs, PMDEs, and Their
Closure Properties

In this section we derive the MDEs and PMDEs for
the Pht/Pht/� queueing system. For the purpose of
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intuition and motivation, we start by presenting the
first MDEs for the Mt/Mt/� and Mt/Mt/1 systems
and observe their similar structure. We also observe
that their MDEs are closed or almost closed. In §4.2 we
develop a similar structure and set of closure proper-
ties for the Pht/Pht/� system.

4.1. The Mt/Mt/� and Mt/Mt/1 First MDEs
For most queueing systems the MDEs are not closed;
i.e., the RHSs of the MDEs contain individual state
probabilities. Thus, for most time-dependent queue-
ing systems we must numerically integrate the entire
set of Kolmogorov forward equations for the state
probabilities to evaluate the set of time-dependent
moments of the number of entities in the system, or
develop an approximation algorithm to close the set
of differential equations.
The Mt/Mt/� system is an exception to this rule.

For that system the set of MDEs is closed. The first
MDE for the Mt/Mt/� system is:

d

dt
E
N �t��= ��t�−��t�E
N �t��� (2)

Thus, for the Mt/Mt/� we need only numeri-
cally integrate one MDE to obtain the set of time-
dependent first moments. This result can be obtained
by multiplying both sides of the ith Kolmogorov for-
ward equation for the Mt/Mt/� by i and summing.
When this is done all of the state probabilities on
the RHS cancel—thus, the MDE is closed. Massey
and Whitt (1993) show similar closed MDEs for the
Mt/G/� system.
The form of the first MDE for the Mt/Mt/� is intu-

itive because the positive flux is the system arrival
rate, and the negative flux is the system departure
rate. Because the first MDE is closed, an infinite
amount of numerical work can be avoided in comput-
ing the trajectory of the time-dependent first moment.
This is also true for trajectories of all higher-order
moments, as will be shown later.
Notice that for the stationary case of this model—

when the arrival and service rates are constant
with respect to time—we can easily confirm that
the steady-state value of the first moment of N ≡
limt→�N�t� is

E
N �= �

�
�

This result is obtained by setting dE
N �/dt = 0 in (2)
and solving for E
N �.
Now consider the Mt/Mt/1 system. If we multiply

both sides of the ith Kolmogorov forward equation
by i and sum we get the following first MDE:

d

dt
E
N �t��= ��t�−��t�
1− P0�t��� (3)

see Ong and Taaffe (1987). Observe the similarity in
the structure of the first MDEs for these two models.
Interpreting E
N �t�� on the RHS of Equation (2) as
the expected number of busy servers at time t for the
Mt/Mt/�, and 1−P0�t� on the RHS of Equation (3) as
the expected number of busy servers at time t for the
Mt/Mt/1, we see that the two MDEs have exactly the
same form.
The truncated versions of these models—the

Mt/Mt/c/c and Mt/Mt/1/k systems—have the follow-
ing first MDEs:

d

dt
E
N �t��= ��t�
1− Pc�t��−��t�E
N �t��� and

d

dt
E
N �t��= ��t�
1− Pk�t��−��t�
1− P0�t���

respectively. We can interpret 1−Pc�t� and 1−Pk�t� as
being the probabilities that the system is in a state that
would allow for entities arriving at time t to be admit-
ted to the system (for the Mt/Mt/� and the Mt/Mt/1
this probability is 1). Thus, for all four of these sys-
tems the positive flux in the first-moment differential
equation is the actual or effective system arrival rate,
and the negative flux is the actual or effective system
departure rate. We will demonstrate similar results
and interpretations for the Pht/Pht/� system.
For the Mt/Mt/1 system the existence of one proba-

bility (or two probabilities for the Mt/Mt/1/k) on the
RHS implies that the MDEs are not closed. Taaffe and
Ong (1984) develop approximations for P0�t� and Pk�t�
that are functions of the first two moments which
then close the set of the first and second MDEs. We
call a set of MDEs that require a closure approxima-
tion pseudo-closed. Ong and Taaffe (1987, 1988, 1989)
develop closure approximations for a variety of non-
stationary phase-type queueing models each having
sets of pseudo-closed MDEs. In the cited papers the
closure approximations are termed surrogate distribu-
tion approximations, or SDAs, but we now use the term
closure approximations, as in Rothkopf and Oren (1979).

4.2. The MDEs and PMDEs for the Pht/Pht/�
System

Here we establish our key results for the Pht/Pht/�
queue. All of the proofs involve tedious summing and
index-shifting operations, and are omitted. The details
are given in the Online Supplement to this paper,
available on the website of this journal.

Theorem 1. The Pht/Pht/� first MDE is:

d

dt
E
N �t�� =

mA∑
l=1

�l�t�al�mA+1�t�P�t� ·� l�

−
mB∑
j=1

�j�t�bj�mB+1�t�E
Nj�t��� (4)



Nelson and Taaffe: The Pht/Pht/� Queueing System: Part I—The Single Node
270 INFORMS Journal on Computing 16(3), pp. 266–274, © 2004 INFORMS

where P�t� ·� l� is the marginal probability that the arrival
process is in state l at time t.

If we interpret each of the E
Nj�t�� terms as the
expected number of servers busy in phase j of ser-
vice, and interpret �l�t�al�mA+1�t�P�t� ·� l� as the system
arrival rate via arrival phase l, then the first MDEs
positive flux is the effective system arrival rate and
the negative flux is the effective system departure
rate, analogous to the simple models of the previous
section.
Notice that the RHS of the first MDE for Pht/Pht/�

is not closed because it contains expressions other
than simply the system parameters (rates) and the
current value of the first moment. Specifically, it
includes the marginal moments of the number of
entities in a particular phase of service at time t,
E
Nj�t��, and marginal arrival-process state probabili-
ties, P�t� ·� l�.
In this section we develop the arrival-process state-

probability differential equations (ADEs) and show that
they are closed. We also develop the marginal-moment
differential equations (MMDEs) and show that they are
not closed. We then show that the set consisting of the
ADEs and the MMDEs together is closed. Therefore,
the first moment of the overall systems size can be
computed by summing the first marginal moments,
and we can evaluate the time-dependent behavior of
the first moment of the overall system size without
numerically integrating any of the individual system-
state probabilities. Thus, no closure approximation
is needed for this system. We call MDEs with this
property quasi-closed; i.e., the system first MDE is not
closed, but the first moment can be computed as a
function of a set of other variables whose associated
set of differential equations is closed.
However, we can do more than the first moment.

We also show that we can evaluate the RHSs of the
system MMDEs for moments greater than 1 by eval-
uating the marginal moments, arrival-state probabil-
ities, and a set of partial moments. An example of a
partial moment is:

E
Nj�t��A�t�= k�≡
�∑

nj=0
njP�Nj�t�= nj� A�t�= k�

for j = 1� � � � �mB, k = 1� � � � �mA. The conditional first
moment E
Nj�t� �A�t�= k� is obtained by dividing the
partial moment by P�A�t�= k� when P�A�t�= k� �= 0.
We show that the set of time-dependent moments

for the Pht/Pht/� system can be evaluated via the set
of PMDEs, which is closed. The fact that the small set
of PMDEs is closed eliminates the need for evalua-
tion of the infinite set of state probabilities. We give
specific formulas for the MDEs of orders one and
two, allowing us to obtain the time-dependent mean,
E
N �t��, and variance, Var
N �t��, of number in the
system.

Define the following notation:

• Ej �t�≡ E
Nj�t��
First Marginal Moment

• P�t� ·� k�≡ ∑
n1�n2� ����nmB

P
(
t�n1� � � � �nmB

� k
)

Arrival-Process State Probability

• Epj� k�t�≡ E
N p
j �t��A�t�= k�

pth Partial Moment

• Eqij� k�t�≡ E
N q
i �t�Nj�t��A�t�= k�

�q�1�th-order Cross-Product Partial Moment

Theorem 2. The Pht/Pht/� marginal first-moment
differential equations (MMDEs) are:

Ej �t�
′ ≡ d

dt
Ej �t� = �j�t�

mA∑
l=1

al�mA+1�t��l�t�P�t� ·� l�

+
mB∑
l=1

blj �t��l�t�El�t�−�j�t�Ej �t�

for j = 1� � � � �mB.

Notice that the RHSs of the MMDEs contain some
arrival-process state probabilities; thus, the set of
MMDEs is not closed. To evaluate the RHSs of the
MMDEs we need to develop the ADEs.

Theorem 3. The Pht/Pht/� arrival-process state-
probability differential equations (ADE’s) are:

P�t� ·� k�′ = �k�t�
mA∑
l=1

al�mA+1�t��l�t�P�t� ·� l�

+
mA∑
l=1

alk�t��l�t�P�t� ·� l�−�k�t�P�t� ·� k�

for k= 1� � � � �mA.

Clearly, the set of ADEs is closed. The theorem is
quite intuitive, and detailed proofs can be found in
the Online Supplement to this paper on the journal’s
website.
Notice that the sum of Ej �t�′ over all j results in

the first MDE, E�t�′, and that neither the set Ej �t�′,
j = 1� � � � �mB, nor E�t�′, is closed. However, collec-
tively, the set of first MMDEs given in Theorem 2
and the ADEs given in Theorem 3 are closed. Because
the set consisting of the MMDEs and ADEs is closed,
the time-dependent first moment can be evaluated by
numerically integrating the set of MMDEs and ADEs
and combining the results as E
N �t��=∑mB

j=1 Ej �t�.
We can represent this system of simultaneous, lin-

ear differential equations in the following compact
matrix form:

E�t�′ = ��t�
[A 2�t�

TDiag
P�t����t�
]

+ [B 1�t�
T − I]Diag
E�t����t�� and

P�t�′ =��t�
[A 2�t�

TDiag
P�t����t�
]

+ [A 1�t�
T − I]Diag
P�t����t��
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where

E�t�= 
E1�t�� � � � �EmB
�t��T �

P�t�= 
P�t� ·�1�� � � � �P�t� ·�mA��
T �

E�t�′ = 
E1�t�
′� � � � �EmB

�t�′�T �

P�t�′ = 
P�t� ·�1�′� � � � �P�t� ·�mA�
′�T �

Diag
X� is defined to be a matrix whose diagonal is
composed of the elements of the vector X and 0s else-
where, and I is the identity matrix of the appropriate
dimension.
In this form, it is easy to obtain steady-state results

for the stationary case where ��t� = �, ��t� = �,
��t� = �, and ��t� = �. Let E ≡ limt→� E�t� and P ≡
limt→� P�t�. Then

E=−Diag
��−1(B T
1 − I

)−1
�A T

2 Diag
P��� and (5)

P=−Diag
��−1(A T
1 − I

)−1
�A T

2 Diag
P��� (6)

Thus, the steady-state expected number in the sys-
tem for the stationary case (5) can be obtained by
inverting a matrix of size mB by mB. Although the
steady-state arrival-state probabilities are required to
solve (5), they are easily obtained via any standard
method for calculating the steady-state distribution of
a small Markov process, including solving a set of
simultaneous linear equations, uniformization-based
methods (Tijms 1995), or the so-called GTH algorithm
(Kao 1997). Iterative methods to solve (6) directly
should also work well here because the state space is
relatively small and we have the condition that the
sum of the probabilities is always equal to one.
If the expected number of entities in a Pht/Pht/�

system had a time-dependent Poisson distribution,
then computing E
N �t�� would be sufficient to char-
acterize the entire time-dependent state distribution.
Unfortunately, as we demonstrate in §5.2, the distri-
bution of N�t� (even assuming empty and idle initial
conditions) and limt→�N�t� need not be Poisson. Fur-
ther, none of the Nj�t� are Poisson in general, and
neither are any of the Nj�t� or N�t� when condi-
tioned on the arrival-process state. This is in contrast
to the Mt/Gt/� system where the distribution of N�t�
is Poisson when the initial condition is empty and
idle. Because N�t� for the Pht/Pht/� system is not,
in general, Poisson, N�t� will not necessarily have
equal mean and variance. Thus, we develop higher-
order MDEs, MMDEs, and PMDEs to evaluate the
higher-order moments of system size, concentrating
on Var
N �t�� in particular.

Theorem 4. The Pht/Pht/� pth partial-moment dif-
ferential equations (pth PMDE’s) are:

Epj� k�t�
′ ≡ d

dt
Epj� k�t�

= −�k(t)Epj� k�t�

+�j�t�
1− bjj �t��
p−1∑
q=0

(
p

q

)
Eq+1j� k �t��−1�p−q

+�k�t�
mA∑
l=1

�l�t�al�mA+1�t�E
p

j� l�t�

+�k�t��j�t�
mA∑
l=1

�l�t�al�mA+1�t�
p−1∑
q=0

(
p

q

)
Eqj� l�t�

+
mA∑
l=1

�l�t�alk�t�E
p

j� l�t�

+
mB∑
l=1
l �=j

�l�t�blj �t� ·
p−1∑
q=0

(
p

q

)
Eqjl� k�t�

for i= 1� � � � �mA, j = 1� � � � �mB, and p= 0�1� � � � �
First observe that if p = 0 we retrieve the ADEs.

Observe that these pth PMDEs are not closed because
of the presence of �q�1�th-order cross-product terms
of
∑p−1

q=0
(
p
q

)
Eqjl� k�t� on the RHS; thus, PMDEs for these

�q�1�th-order cross-product terms would need to be
developed to evaluate higher-order moments numer-
ically. However, if one is interested in only the mean
and variance of the number of entities in the system at
time t, as we are in this paper, then the �q�1�th-order
cross-product terms simplify considerably. Observe
that for q = 1 the �q�1�th-order cross-product terms
simplify to El� k�t�; thus the first PMDE is indeed
closed. Also observe that for q = 2 the �q�1�th-order
cross-product terms simplify to a sum of a first
partial-moment and simple first-order cross-product
partial-moment terms, �Eh�k�t� + 2Ejh� k�t��. Although
the second PMDE is not closed, the only cross-product
terms present are simple first-order cross-product
partial-moment terms. We next present the first-order
cross-product PMDE so that we can evaluate both the
2nd PMDEs and Var
N �t��.

Theorem 5. The Pht/Pht/� first-order cross-product
partial-moment differential equations are:

Eij� k�t�
′ ≡ d

dt
Eij� k�t�

=
mB∑
l=1

bli�t��lElj� k�t�+
mB∑
l=1

blj �t��lEli� k�t�

− bij �t��i�t�Ei� k�t�− bji�t��j�t�Ej� k�t�

− 
�i�t�+�j�t��Eij� k�t�−�k�t�Eij� k�t�

+
mA∑
l=1

�l�t�alk�t�Eij� l�t�

+�k�t�
mA∑
l=1

�l�t�al�mA+1�t�Eij� l�t�
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+�i�t��k�t�
mA∑
l=1

�l�t�al�mA+1�t�Ej� l�t�

+�j�t��k�t�
mA∑
l=1

�l�t�al�mA+1�t�Ei� l�t�

for k= 1� � � � �mA, i= 1� � � � �mB, j = 1� � � � �mB, and i �= j .

The entire set of differential equations described
by Theorems 1, 2, 3, and 5 are collectively closed;
thus Var
N �t�� can be evaluated in a small number
of differential equations rather than the infinite set
of differential equations described in Equation (1).
Specifically,

Var
N �t��=
mB∑
j=1

mA∑
k=1
E2j� k�t�−

[mB∑
j=1
Ej �t�

]2
�

The number of differential equations required to eval-
uate E
N �t�� is mA + mB − 1, and the number of
additional differential equations required to evalu-
ate Var
N �t�� numerically (by evaluating E
N �t�2�) is
mAmB�mB + 1�.

5. Examples
In this section we present a series of examples that
illustrate some of the types of models that can be rep-
resented within our general framework. The MAPLE
software used to do the numerical calculations and an
illustrative MAPLE session can be found in the Online
Supplement to this paper on the journal’s website.

5.1. Mt/Pht/�
Consider an infinite-server queue in which arrivals
occur according to a nonstationary Poisson process,
and the service time is represented by a nonstationary
phase distribution. Specifically, let

A �t�=
[
0 1
1 0

]
�

��t� = 
1+ sin�t�� be the phase representation of the
nonstationary Poisson arrival process. Let

B �t�=

0�0 0�6 0�4
0�3 0�0 0�7
0�1 0�9 0�0


 �

and ��t�= 
0�75+0�1 sin�2t��1+0�5 sin�3t��T represent
the nonstationary phase service process. For reference,
��t� and ��t� are plotted in Figure 1. Assuming that
the queue is empty and idle at time 0, the mean and
variance of the total number of entities in the queue
are shown in Figure 2. Because the number in queue
is a nonstationary Poisson process for this system, the
mean and variance are identical.

5.2. E10/H2/�
Consider an infinite-server queue in which arrivals
occur according to a stationary renewal process with

t

λ       (t)

µ2(t )

µ1(t )

2

1.5

0.5

0
2 4 6 8 10

1

Figure 1 Arrival Rate and Service-Process Rates for the Mt/Pht/�
Example

the interarrival times modeled as an Erlang order 10
random variable, where each phase has mean 1/50;
thus the coefficient of variation of the time between
arrivals is 1/

√
10≈ 0�32. Suppose that the service time

is represented by a stationary hyper-exponential dis-
tribution where the actual service time is equally likely
to be exponential with mean 2 or mean 0.5 time units.
Assuming that the queue is empty and idle at

time 0, the mean and variance of the total number of
entities in the queue is shown in Figure 3. Notice that
the curves do not coincide, so the number of entities
in the queue is not Poisson for this system.

5.3. Ph/Ph/�
Consider an infinite-server queue in which arrivals
occur according to a stationary renewal process with
renewal times and service times represented by phase
distributions. Specifically, let

A �t�=

 0�2 0�1 0�7
0�4 0�2 0�4
0�8 0�2 0�0


 �

��t�= 
7�9�T ,

B �t�=

 0�3 0�4 0�3
0�4 0�2 0�4
0�1 0�9 0�0


 �

and let ��t�= 
1�2�T .
Assuming that the queue is empty and idle at

time 0, the mean and variance of the total number of

2.5

2

1.5

1

0.5

0 5 10 15 20

E[N(t )]
and
Var[N(t )]

t

Figure 2 Mean and Variance of the Number in Queue for the
Mt/Pht/� Example
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1
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E[N (t )] and

V[N(t )]

t

Figure 3 Mean and Variance of the Number in Queue for the E10/H2/�
Example

entities in the queue are close in value but differ. For
example, at time t = 0�5, we have E
N �t�� = 1�98045
and Var
N �t�� = 1�96084; this demonstrates that the
distribution of the number of entities in the system is
not Poisson.

6. Virtual Sojourn Time
Let Wt be the sojourn time of a virtual entity arriv-
ing at time t. Because there are an infinite number
of servers, the sojourn time is just the entity’s ser-
vice time, which is the absorption time in a time-
dependent finite-state Markov process having exactly
one absorbing state. In this section we show how to
obtain the cdf and moments of virtual sojourn time
from the first-moment differential equations for num-
ber in each phase of service.
Let N�t�=∑mB

j=1Nj�t� be the total number of entities
in the queue at time t. Suppose that no entities are
permitted to arrive before time t, a single entity
arrives at time t, and no further arrivals are per-
mitted after t. Therefore N�t + x� for all x ≥ 0, is
a Bernoulli random variable because under this sce-
nario N�t + x� is either 0 (if the entity has departed)
or 1 (if the entity is still in the queue). Thus
E
N �t+ x��= P�N �t+ x�= 1�.
Let

Wt = inf�* + * ≥ 0� N �t+ *�= 0��
and therefore

1− FWt
�x� ≡ P�Wt > x�

FWt
�x� = 1−P�Wt > x�

= 1−P�N �t+ x� > 0�= 1−P�N �t+ x�= 1�

= 1−E
N �t+ x��

= 1−
mB∑
j=1
E
Nj�t+ x��= 1−

mB∑
j=1
Ej �t+ x�� (7)

To evaluate (7) numerically, we set �k�t+ x�= 0 for
all x ≥ 0 and k= 1� � � � �mA, and initialize the number
in the queue at time t to be one. The first-moment
differential equations for number in service phase j
simplify to

Ej �t�
′ =

mB∑
l=1

blj �t��l�t�El�t�−�j�t�Ej �t� (8)

for j = 1� � � � �mB. Because the single arrival at time t
could start in any initial phase of service, the initial
conditions become Ej �t�= �j�t�, j = 1� � � � �mB.
Of course, given the cdf of sojourn time we can

evaluate the pth moment of sojourn time (for positive
integer p) as

E
[
W

p
t

]= ∫ �

0+
pxp−1�1− FWt

�x�� dx� (9)

We can in fact evaluate the pth moment of sojourn
time simply by adding another differential equation
to our system of equations (8), and then numerically
integrate this differential equation along with those
for Ej �t�. Let

E
[
W

p
t �*�

]= ∫ *

0+
pxp−1�1− FWt

�x�� dx�

which is the pth moment of sojourn time if we let
* →�. Thus,
-

-*
E
[
W

p
t �*�

] = p*p−1�1− FWt
�*��

= p*p−1
E1�t+ *�+ · · ·+EmB
�t+ *��� (10)

By numerically integrating this differential equation
until * is large we obtain the pth moment of sojourn
time for an arrival at time t.
For example, consider the Mt/Pht/� queue in §5.1.

Using this approach, we can calculate that for
an arrival at time t = 10, E
W10� ≈ 1�80 and
Var
W10�≈ 3�65. The cdf of sojourn time for this entity
can be plotted using our software as can be seen in the
MAPLE examples found in the Online Supplement
for this paper on the journal’s website.

7. Conclusions
In this paper we have presented efficient computa-
tional procedures for analyzing the time-dependent
behavior of Pht/Pht/� queueing systems in which
no truncation of the state space is required. We
did this by developing finite and relatively small
sets of differential equations that can be integrated
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numerically to calculate the time-dependent behavior
of this queue.
Downloadable copies of MAPLE code used to do

the evaluations described in this paper and an illus-
trative MAPLE session can be found in the Online
Supplement for this paper on the journal’s website.
We verified the code by evaluating many cases and
comparing the answers provided by the MAPLE code
to solutions for the few cases where analytic answers
are known, and to Monte Carlo simulation experi-
ments for more general cases. In all cases the MAPLE
code provided accurate solutions. The details of the
proofs of the key results in the paper can be found in
the Online Supplement for this paper on the website
for this journal.
If we are interested in individual state probabilities,

then the results of this paper can be used to match
two systems-size moments (or conditional moments)
to a two-parameter approximating distribution, such
as the Polya Eggenberger distribution (Johnson and
Kotz 1977). The state probabilities can then be approx-
imated by the Polya Eggenberger probabilities. This
is the approach that provided many accurate approx-
imations to a variety of time-dependent queueing
models in Ong and Taaffe (1987, 1988, 1989).
In the companion paper, Nelson and Taaffe (2004),

we present a network generalization of the Pht/Pht/�
system.
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