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Us’mg common random numbers (CRN) in simulation experiment design is known to reduce
the variance of estimators of differences in system performance. However, when more
than two systems are compared, exact simultaneous statistical inference in conjunction with
CRN is typically impossible. We introduce control-variate models of CRN that permit exact
statistical inference, specifically multiple comparisons with the best. These models explain the
effect of CRN via a linear regression of the simulation output on “control variates” that are
functions of the simulation inputs. We establish theoretically, and illustrate empirically, that
the control-variate models lead to sharper statistical inference in the sense that the probability
of detecting differences in systems’ performance is increased.

(Simulation; Variance Reduction; Multiple Comparisons)

1. Introduction

Stochastic simulation experiments are frequently used
to compare the performance of two or more systems,
often with the goal of selecting the best system. Sim-
> ulators know that estimators of differences in expected
performance are improved by inducing positive corre-
lation across simulation responses via “common random
numbers”’ (CRN). Even when simulators do not know
this, simulation languages make CRN the default ex-
periment design by initializing all experiments with the
same random number seeds ( careful experiment design
can further enhance the effect of CRN; see Bratley et
al. 1987, Chapter 2, and Law and Kelton 1991, Chap-
ter 11).

The beneficial effect of CRN on point estimators of
differences can be realized under fairly general condi-
tions. This paper considers the associated statistical in-
ference about those differences, where inference means
determining whether or not observed differences are
due to actual differences in expected performance, or
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are due instead to random error. Simulators usually do
not take advantage of CRN in their statistical analyses
because the induced correlations are unknown and
possibly unequal. Ideally, CRN should sharpen statis-
tical inference (e.g., reduce the widths of confidence
intervals), so that smaller differences in expected per-
formance can be discerned. We propose models that
permit exact statistical inference under CRN.

We restrict our attention to the statistical-inference
methods called multiple comparisons, and do not con-
sider the related methods of ranking and selection. See
Clark and Yang (1986) for a ranking procedure that
incorporates CRN.

The paper is organized as follows: We first review
methods for incorporating CRN into simultaneous sta-
tistical inference. Then we establish conditions under
which multiple-comparison procedures can be derived.
These conditions are satisfied by models of CRN that
are introduced in §4. Some numerical examples are
given in §5, which is followed by concluding remarks.
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2. Review
This section briefly reviews some existing methods for
statistical inference under CRN, and sets the stage for
our method. Suppose that the goal of the simulation
experiment is to compare the performance of r systems.
Let 8 = (6,, 6,, ..., 8,) be the r X 1 vector whose ith
element is the expected performance of system i, and
let the simulation output from the jth replication across
all r systems be Y; = (Y, Yy, ..., Y,), forj=1,2,
., n, where ' indicates the transpose of a vector or
matrix. We assume that § = E[Y;] for all . In simulation
experiments designed for multiple replications, Y;; is the
response of system i on replication j; in simulation ex-
periments designed for a single replication of a station-
ary process, Yj; could be the jth batch mean from system
i or an appropriate quantity accumulated over the jth
regenerative cycle of system i. '
Throughout this paper responses within a system (Y,
Yi2,...,Y,)are independent and identically distributed
(i.i.d.), but responses across systems (Yy;, Yo, ..., Y,))
may be dependent due to CRN. Stated differently, CRN
aduces a joint distribution on the elements of Y;, but

Y:, Yz, ..., Y, remain iid.
A point estimator of 8 is the sample mean
Y,
- 12 .
Y==3y-=|"
n o N
Y,

EY
When systems i and | are compared in terms of the
difference 6§, — 6;, then the natural unbiased point es-
timator is Y; — Y;, which has variance

, 1
Var[Y, = Yi] =~ (af + of = 2p40100) (1)

where ¢} = Var[Y;] and p; = Corr[Yy, Yi;]. The goal of
CRN is to induce p; > 0.

Inference about the actual difference 8, — 6, often
takes the form of a confidence interval. For example, if
r = 2 and the Yj; are normally distributed, then with
probability 1 - «,

-0, €Y, -Y, % tl—-a/z,n—lSD/‘/; (2)

where S} is the sample variance of D; = Yy; — Yy, j
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=1,2,...,n,and t,—, 241 is the 1 — & /2 quantile of

the t distribution with n — 1 degrees of freedom.
Nelson (1987) compared the performance of the

“paired-t” interval (2) and the “pooled-t" interval

b= 0, EY, = Yot tip/2-25V2/n  (3)

that is valid when p;; = 0 (no CRN) and ¢% = ¢ = 42
(S is the usual pooled estimator of ¢?). Surprisingly,
the inference provided by (3) without CRN is sharper
than the inference provided by (2) with CRN unless n
and p;; are sufficiently large (here sharper inference
means a larger probability of detecting a difference be-
tween 4, and 4,).

In this paper we are interested in comparisons among
more than two systems, but the case r = 2 illustrates
three important issues:

e CRN can reduce point-estimator variance without
sharpening the associated inference. Although point-
estimator performance is perhaps most important, the
associated inference indicates whether we can have
confidence in our conclusions.

e The dependence induced by CRN is typically un-
known. The paired-t procedure circumvents this prob-
lem by transforming the data so that Dy, D, ..., D,
are i.i.d. Valid statistical analysis under CRN must ac-
count for the induced dependence in some way.

¢ The inference should be exact under the assump-
tions of the procedure. The paired-t procedure is exact,
but extensions of it to more than two systems typically
employ conservative inequalities to obtain simultaneous
inference, leading to wide and inconclusive confidence
intervals that have true confidence level much larger
than 1 — a. See, for example, Bratley et al. (1987,
pp. 84-85) for a procedure based on the Bonferroni in-
equality.

The most thoroughly studied problem of statistical
analysis under CRN is that of estimating the p X 1-
vector parameter ¥y in the model

Y:, Y, ..., Y, ~iid N(xy, ¢’Z) (4)

where x is a fixed r X p design matrix with first column
all 1s, and E = (py) is a correlation matrix. Estimating
expected differences in performance, such as 6, — 6;,
can be formulated in this way, but more generally (4)
defines a metamodel estimation problem. The usual
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point estimator is the ordinary-least-squares estimator
¥ =(G'G)™'G"Y, where

Y, X
Y = Y:Z and G=|%
Y, x

If the r systems (more commonly called “design
points” in this context) are simulated independently,
then £ = I,,,, the r X r identity matrix. Schruben and
Margolin (1978) investigated the use of CRN and an-
tithetic variates (AV) to impart advantageous structure
to E in the special case when x is orthogonally blockable
into two blocks (AV induces negative correlation be-
tween design points). Their analysis was based on as-
suming a regular correlation structure: p; = pt>0if
design points i and ! are simulated using CRN, and p;
= —p~ < 0 if design points i and [ are simulated using
AV, where p~ < p* (Tew and Wilson (1992a) showed
that the results apply under even weaker conditions
onp).

Let 1, be an r X 1 column vector of ones. If CRN is
used across all design points in a replication, then the
assumptions of Schruben and Margolin imply that

Z=(1-p")Lx+p"11,. (5)

Combining CRN and AV according to an “‘assignment
rule” proposed by Schruben and Margolin leads to the
correlation structure

- ++ - + .1
E= (1= p ) + (”—;"—)UU' + (”—2"——)1,1;
(6)

where U = (1), —1},)'and r; and r, are the block sizes.

Let v, be the first element, and 7, the remaining p
- 1 elements, of ; and let 40 and #; be their respective
least-squares estimators. Schruben and Margolin
showed that CRN reduces the generalized variance
(determinant of the variance-covariance matrix) of
jg, but at the expense of increasing the variance of
40, when compared to simulating the design points in-
dependently. Under certain conditions the assignment
rule reduces the generalized variance of ¥ relative to
both independent simulation and CRN.

Nozari et al. (1987) exploited the regular structure of
(6) to derive statistical inference for 7, including
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(1 — &)100% simultaneous confidence intervals for vo,
for 'y, for all 1 € ®*7!, and for l'y, for all 1 € RP.
Their procedures are exact for the advertised inference,
but they are conservative when only a small number
of simple comparisons, such as differences, are desired
rather than all linear combinations of the parameters.
Of course, they depend on being able to assume the
structure of (6). Tew and Wilson (1992a) provide hy-
pothesis tests to verify the assumptions of Schruben
and Margolin.

Kleijnen (1988, 1992) considered a generalization of
(4): estimate v for the model

Y, Ya, ..., Y, ~ iid N(x7, ) (7)

where £ = Var[Y;]. When CRN is used, he proposes

point estimators and inference based on an estimate of

=, say 2. For example, he suggests using the estimated-

generalized-least-squares estimator,
§=(xZ7%)'x'27Y,

to estimate v.

Kleijnen’s— approach is at the other extreme from
Schruben and Margolin, in the sense that it makes no
assumption about the structure of Z under CRN. How-
ever, his statistical analysis is necessarily approximate
due to substituting £ for =, and conservative inequalities
are employed for simultaneous inference. Our approach
is between these two: we assume a regular structure
with some unknown parameters; then we estimate those
parameters.

3. Multiple Comparisons
with the Best

Throughout the remainder of this paper we assume that
the goal of the simulation experiment is to compare ele-
ments of the vector parameter 8 = (6y, 02, .. ., 8,)" de-
fined in the previous section. To be specific, suppose
that larger expected performance implies a better sys-
tem. For system i, the parameter 6; — max;»;f; can be
termed system i performance minus the best of the other
systems’ performances. In optimization problems, the
parameters 6; — max;6,, fori=1,..., rare often the
parameters of primary interest. This can be seen as fol-
lows.
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If 6; — max, 40, > 0, then system i is the best, because
its performance parameter is better (larger) than the
best of the other systems’ parameters. Similarly, if 6,
— maxy#; < 0, then system i is not the best, since there
is another system with larger performance parameter.
However, even when system i is not the best, if 6,
— max;x;f; > —¢, where ¢is a positive number, then sys-
temiis within ¢ of the best. Simultaneous statistical infer-
ence (i.e., confidence intervals) on 6, — max,;6,, for
1=1,...,r,is termed multiple compartsons with the
best (MCB)

We focus on MCB because of its close connection to
optimization, but many of our results apply to all-
pairwise multiple comparisons (§; — 6,, for all i # [) and
multiple comparisons with a control (6; — 4,, for all i
# r) as well. When optimization is the goal of the ex-
periment, MCB inference is typically sharper than all-
pairwise inference because fewer confidence intervals
are required to be simultaneously correct (r versus
r(r —1)/2). In addition, MCB implies the inference of
both the indifference zone and the subset selection
methodologies of ranking and selection (Hsu and Nel-
son 1988).

Below we describe sufficient conditions for deriving
MCB intervals. The models proposed in §4 lead to es-
timators that satisfy these conditions under CRN.

Suppose that 8 is a point estimator of 8 with the prop-
erty that

b él
6= 0:2 ~ N(8, r2A) (8)

f,

where A is known. The r X r matrix A = (64) need not
be a correlation matrix, but together r?A must be a pos-
itive definite variance-covariance matrix. In addition,
suppose there is an estimator 72 of r2 such that 72
~ 72x?/v and is independent of 8, where X2 denotes
the chi-squared distribution with » degrees of freedom.

Critical to the derivation of MCB intervals is the dis-
tribution of

b — 4,
62 - 8,’
D4 = @i—l - @i
9i+1 —0;

| b - 6
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where D is the (r — 1) X r matrix obtained by inserting
the column —1,.; between the (i — 1)st and the ith
columns of I,-;x,-1. Assumption (8) implies that

- . — 5 "
82 - 0,’
D% ~N| | 6, -6 |, -0 (9)
0i+1 - 01’
e ar_ 0,‘ -

where Q“) = DWADY,

Let w! ,, ) be the diagonal element of Q ¢ correspond~
ing to 6, — §;, and define x~ = —min{x, 0} and x*
=max{x,0}. Under model (8), and given appropriate
critical values d{”,, Chang and Hsu (1991) showed
that with probability 1 — «

6, — max 6, € [D;, D7 | (10)
I
fori=1,2,...,r, where
Dy = (min{f; — 8, + d\° #Vw? )",
19
8= {i: mm(a -6 +d2. V> 01,
19§
0 if &= {i},
D =4{ —(min{4 — 8 — ”)arV - otherwise.
leg

I#i

Let = ) be the correlation matrix of D4. The critical
value d {2, is the constant that satisfies the equation

0;
Pr {0: — (6. - 6;)
3 (l)

<d{®, forall [# i}

=Pr{T,<d’,, 1=12,...

where T' = (T, T,, ..., T,-1)is a multivariate-t random
variable with correlation matrix Z‘” and » degrees of
freedom. In general, calculation of di'_)a requires an r-
dimensional numerical integration to evaluate the left-
hand side of (11) for each candidate value of 4\, and
a search to find the value that satisfies the equality. The
calculation is computationally prohibitive unless =
has structure I (Tong 1980, p. 13):

,r—=1}=1-a (11)

1 A AR,
EO= A" 1 AN (12)
A A
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where A\ € (—1, 1). Given structure (12), probability
(11) can be rewritten as

+ +a 71 (i) ()
o fre Nz dl_au)
P —————=2-d ®(z)dF(u) =1 —
J; Jlm II-II ( vl —_ ()\,(:))2 ( ) ( ) o

(13)

where @ is the standard normal distribution function
and F is the distribution function of 7 / 7 (Hochberg and
Tamhane 1987, pp. 366-367). This integral can be ap-
proximated efficiently by double Gaussian quadrature,
so that the critical value d§i_)¢, can be obtained using a
root-finding algorithm.

A model for the simulation responses that satisfies
these conditions is the one-way model

Y, =0+ ¢ (14)

where ¢, e, . . . , €, are i.i.d. N(0, ¢’L,x,) random vari-
ables, i.e., the systems are simulated independently,
without CRN. Under (14), Y ~ N(8, r?A), where r?
= ¢? and A = I,,,/n. For all i, the correlation matrix
E®of DVY is

Thus, has structure | with A\ = 1/V2.
If CRN is employed, then A # L,/ n in general, and

Wb N P
Nl pd B
— N N—

the off-diagonal elements are unknown. Even if we are

willing to substitute an estimate for A, the implied cor-
relation matrices = may not have structure I. Thus,
CRN can prohibit exact statistical inference.

In the next section we introduce models that imply
estimators D§ whose correlation matrices " have
structure I under CRN. Since it is more natural to think
in terms of the distribution of 8 rather than the distri-
bution of D', we mention that Z ” will have structure
lif A is a diagonal matrix, or if all of the off-diagonal
elements of A are equal. These two structures are the
ones encountered in the proposed models.

4. Control-variate Models of CRN

As an experiment-design strategy, CRN is implemented
at the level of the pseudorandom numbers in the sim-
ulation experiment. “CRN" means assigning the same
pseudorandom numbers, for the same purpose, to the
simulation of different systems.
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Random-variate generation is the process of trans-
forming pseudorandom numbers into observations from
prespecified input distributions; examples of inputs in-
clude the service-time and interarrival-time random
variables in queueing simulations, the demand and lead-
time random variables in inventory simulations, and
the activity-duration random variables in stochastic-
activity-network simulations. For CRN to be effective,
the dependence induced at the pseudorandom-number
level must be transmitted to the simulation inputs, and
then to the simulation responses (outputs) of interest.

Our approach is to approximate the relationship be-
tween the simulation inputs and outputs by a linear
model with unknown parameters. Specifically, let C;
be a g X 1 vector of (possibly functions of) simulation
input random variables from the jth replication of sys-
tem i, and let u; = E[C;]; we assume that p; is known
since the simulator specifies the distribution of the sim-
ulation inputs. We propose the model

Y;=0; +(Cj— mi)Bi + mj (15)

where 8; is a g X 1 vector of unknown parameters and
the residuals ; are i.i.d. N(0, r?) random variables for
all i and j. The random variables C;; are called control
variates in the variance-reduction literature (e.g., Nelson
1990).

Let n; = (mj, mj, - - - » M) denote the residuals across
systems on replication j. The relationship (15) between
the response and control variates on replication j can
also be represented as

Y; = Xjy + 0 (16)

forj=1,2,...,n, where 8 forms the first r elements
of the column vector v; the definition of X; and the
remainder of v depend;on additional assumptions dis-
cussed in the next two subsections. v

The control-variate point estimator of 8 is 8, the
first r elements of the least-squares estimator ¥
= (G'G)"'G’Y, where

X;
G-|%
X
The generic estimator of 72 is #2=|Y - G¥[?/v, where
the degrees of freedom », depend on the case considered.
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Assuming model (16) pertains, # has the following
properties under CRN:

(1) The conditional distribution §|C ~ N(8, r2A),
where A = A(C) is a function of C alone, and C is the
set of all control variates C;, for all i, j;

(2) The conditional correlation matrix = ) of D"§
has structure I;

(3) The estimator 72 is conditionally independent of
8 and is distributed 2x2 /v, and v is known.

Given properties (1)-(3), Chang and Hsu (1991)
implies that

Pr{6; — max 6, € [D;,D{] forall i|C}=1-a
1#i

(17)

where D7 and D are defined by (10). Since the prob-
ability on the right-hand side of (17) does not depend
on C, the intervals [Di, D] are unconditionally
(1 — a)100% simultaneous confidence intervals for
0 —max;.6,i=1,2,...,r.

MCB inference derived under model (16) is exact.
However, assuming a linear relationship between the
simulation inputs and outputs is nearly always an ap-
proximation (although less so than assuming such a
relationship between the pseudorandom numbers and
the responses). Nelson (1990) showed that inference
based on control-variate estimators is robust to nonlin-
earity, provided the sample size is not too small.

Someé additional comments regarding model (16) are
in order:

® Model (16) assumes that ny, 72, ..., 3, are i.i.d.
(0, 7°L,x,) random variables, which implies that all of
the dependence due to CRN is explained by the control
variates C;;. This is in contrast to the control-variate
model of Tew and Wilson (1992b), in which the control
variates are independent and all the dependence due
to CRN is explained by the residuals.

* The residuals n; are assumed to be normally dis-
tributed. We do not assume that the responses Y;
are normally distributed, as is typical for multiple-
~ comparison procedures.

® The residuals 7; are assumed to have common
variance 7%, We do not assume that the responses Y
‘have common variance, as in the one-way model (14).

All of these assumptions are approximations, but no-
tice that they can be checked empirically using standard
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tools for examining the residuals from a least-squares
regression.

In the subsections that follow we introduce two spe-
cific control-variate models and examine their advan-
tages and disadvantages. The proofs of all theorems are
given in the Appendix and Nelson and Hsu (1990).

4.1. The Model of Yang and Nelson
In model (16), let

0
B
v=| 6 (18)
8,
be anr(g + 1) X 1 vector of unknown parameters, and
let X; = [Lx,, C]"], where
(Cyj — m1)’ 0
cr = g (19)
0’ (Cr; - ur),

is an r X rq matrix of control variates. This model, which
generalizes the model in Yang and Nelson (1991), is
appropriate if different control variates are available in
each system, or if the relationship between the response
and control variates may be different across systems
(ie., Bi # B fori #l). Although we have assumed that
there are the same number of control variates g, asso-
ciated with each system, this is only for convenience of
exposition; see Nelson and Hsu (1990) for the gener-
alization to different numbers of control variates.

THEOREM 4.1.  If model (16) with y defined by (18)
and X; defined by (19) pertains, then §]C ~ N(8, r?A)
and A = diag(d11, 822, ..., 8,), where

1 = -
6{i=;+ (G —ui)ScH(Ci —w),  (20)

n—1
with C; the sample mean, and Sc, the sample variance-
covariance matrix, of the control variates from system i.
In addition, conditional on C, v7* /77 has a chi-squared
distribution with v = r(n — q — 1) degrees of freedom and
is independent of 8.

Theorem 4.1 implies that the conditional correlation
matrix E ) of D8 has structure | with

(M _  /_ G
A \ 8i + on
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The form of (21) does not depend on the use of CRN.
However, properties of M, and thus certain properties
of the resulting intervals, do depend on it. We investi-
gate those properties in a later subsection.

4.2. The Model of Nozari, Arnold and Pegden
In model (16), let
s
vy =
- 8

be an (r + g) X 1 vector of unknown parameters, and
let X; = [I,x,, C]*P], where

(22)

(ij - )
C;\ap = (CZ" -‘- “'2) (23)
(Cy— )’

This is model (15) with 8; = 8 for all i. In addition,
we assume that the C; have a common distribution for
all i and j (implying common expectation ). This model
is a special case of the model considered by Nozari et
al. (1984), and it is appropriate when the same control
variates are available in each system and it is believed
that the relationship between the response and control
variates is the same across all systems. The inventory
model in Subsection 5.1 is an example for which this
model is plausible. ‘

Nozari et al. (1984) analyzed § when the control
variates are independent across systems. The conditional
correlation matrix of D’ does not have structure ! in
that case. However, if CRN causes the control variates
to take identical values across systems, then properties
(1)-(3) are satisfied.

THEOREM 4.2. If model (16) with v defined by (22)
and X; defined by (23) pertains, and CRN causes the control
variates to take identical values across systems, then
8|C ~ N(8, r*A) and

1 1

A==l +—r
n " r(n-1)

(C - wsc(C-w1lr (24)

with C the sample mean, and Sc the sample variance-
covariance matrix, of all of the control variates. In addition,
conditional on C, »7*/72 has a chi-squared distribution
with v = rn — r — q degrees of freedom and is independent
of 8.
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It is easy to show that the conditional correlation ma-
trix = of D¥8 has structure | with A" = 1/V2 for
all .

4.3. Comparison of the Models

The previous subsections introduced two models of the
dependence induced via CRN; we refer to them as YN,
for Yang and Nelson, and NAP, for Nozari, Arnold and
Pegden. This subsection provides summary compari-
sons.

Point-estimator performance is at least as important
as inference, so it is worthwhile to compare the variance
of the control-variate point estimator to the sample
mean, both under CRN. We compare the pairwise dif-
ferences ; — 8, and Y; — Y,, rather than the MCB dif-
ferences f; — max;«;0; and Y; — max;»;Y;, because they
illustrate the effect of CRN while avoiding the compli-
cations introduced by the maximum operator. We also
add the assumption that (Y;;, C};) are jointly normal so
that we can obtain easily comparable expressions.

THEOREM 4.3. If model (15) pertains, then the vari-
ance of Y; — Y, is minimized when 8; = B8, for all i, and
the control variates are identical across systems under CRN.
In that case

~

Var[DWY] = In— [Loiomt + Loa1imy]
which implies that
.
VarlY; - Y] = —;- .

Theorem 4.3 establishes the case of model (15) for
which CRN is the most effective in reducing the variance
of the sample-mean differences. The following theorems
give the corresponding variances of the control-variate
estimators for the same case.

THEOREM 4.4. Under the same conditions as Theorem
4.1, and assuming (Y;, C}) are jointly normal,

_ 2
Var[D("é] = (__n___Z__) . [L-1xr-1 + 1m117-1]

n—qg—2/n
which implies that

Var[éi—(}[]=( n—2 )_z_ﬁ

n—-q-2) n’
Thus, under CRN the sample mean may be more
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precise than the control-variate point estimator when
YN pertains, but the difference is negligible when n is
large.

THEOREM 4.5. Under the same conditions as Theorem
4.2, and assuming (Y;;, C};) are jointly normal,

TZ

Var[D"§] = pral LESDERT S 0% Ly

which implies that
2
Var[@,- - 9,] = ﬁ-
n
Thus, we completely recover the variance reduction
achieved by the sample mean (Theorem 4.3) when NAP
pertains and we make use of that knowledge. This is
true because having common control variates and com-
mon & imply a common control-variate effect across
systems, and this effect cancels when we take differ-
ences. In fact, we can show that §; — 6, = Y, — Y, for
this case. ‘
For completeness, we mention that under the con-
ditions of Theorem 4.2, but without CRN,
2
Var[é,- - 91] = (_______rn —r-1 )*2:—

m-—r—g—1 (25)

n

(Nozari et al. 1984). Comparing (25) to Theorem 4.5
shows that CRN yields a variance reduction under NAP;
notice that CRN has no effect on point-estimator vari-
ance under YN.

In summary, when both models YN and NAP pertain,
NAP leads to a more precise point estimator and greater
degrees of freedom for MCB inference than YN, so it is
clearly superior. In large samples both models lead to
point estimators with precision that is competitive with
the sample mean under CRN, while still permitting MCB
inference.

Of course, the assumptions behind NAP are more
stringent than YN: common control variates across sys-
tems, common relationship between the response and
control variates across systems, and identical values of
the control variates under CRN (in addition to the lin-
earity, normality and common residual variance as-
sumptions that both models must satisfy). YN is more
general, since it allows for different control variates—
even different numbers of control variates—across sys-
tems, and it does not require the use of CRN to derive
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MCB inference. However, there is a secondary benefit
from using CRN in conjunction with YN, as we show
in the next subsection.

4.4. The Effect of CRN
Yang and Nelson (1991) studied model YN, defined by
(18)and(19), in the special case when the distribution
of the control variate C;;, does not depend on the system
i. They assumed that the control variates take identical
values across all r systems under CRN, but the rela-
tionship between the response and the control variates
may be different across systems (i.e., 8; # 8, fori # ).
These assumptions imply that §; = &, for all { and !,
and thus A" = 1/ V2 for all I.

Yang and Nelson compared, theoretically and em-
pirically, the inference derived from this special case of

YN (with CRN) and the inference derived from the

one-way model (14) (without CRN); recall that exact
inference is not possible under the one-way model with
CRN. They showed that, as the sample size n increases,
inference under YN yields a larger probability of iden-
tifying differences in system performance. These results
generalize directly to inference under the general YN
model and to NAP. Thus, the control-variate procedures
provide sharper inference than the one-way model.

Theorem 4.1 extends the results of Yang and Nelson
to include control variates that may be different across
systems, and may be either independent or dependent.
When the control variates are different across systems,
A" is a function of the control variates, and thus is a
random variable; therefore, d 5"_2, is also a random vari-
able. Asymptotically, however, the value of d{”_ is the
same as the case of identical control variates.

THEOREM 4.6. Under the same conditions as Theorem
4.1, > 1/V2as n — o where 2 denotes convergence
in probability. This result holds even if the number of con-
trol variates differs across systems.

Apparently there is little direct benefit from using
CRN in conjunction with YN: the variance of the point
estimator is the same with or without CRN; the degrees
of freedom for inference is not changed by CRN; and
the critical value 4 §’_)a is the same with or without CRN
in large samples.

There are, however, some secondary benefits from
CRN when the control variates can be made identical.
Most importantly, d Qa is a constant, which eliminates
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a source of variability in the confidence-interval width.
In addition, d‘f.’a is the same for all i, andisthe 1 — a
quantile of the maximum of an (r — 1)-dimensional
multivariate-t random variable with common correlation
1/2and r(n — q — 1) degrees of freedom. Quantiles of
this random variable can be found in tables (e.g., Hoch-
berg and Tamhane 1987, Appendix 3, Table 4; Nelson
1992a, Table 102.5). ’

In the general case, the critical values cannot be pre-
computed and the value of d ﬁi_’,, that satisfies (13) must
be found numerically. Since software for computing
these critical values is not yet generally available, we
present a conservative approximation:

THEOREM 4.7. Let o) be the minimum element of =,
fori=1,2,...,r.Fori= 1,2,...,r,setd§i_),,equalto
the 1 — a quantile of the maximum of an
(r — 1)-dimensional multivariate-t random variable with
common correlation .. Then the resulting MCB intervals
are conservative.

The conservative approximation is only needed for
the YN model when the controls are not identical across
systems. In that case

0ii
n .
twkwi V(85 + 6u) (85 + Ouk)

LD =

Hochberg and Tamhane (1987, Appendix 3, Table 4)
give critical values for the maximum of a multivariate-
t random variable with common correlation 0.1, 0.3, 0.5
or 0.7. To use these tables, or any others, the largest
correlation that is less than or equal to " is selected.

5. Examples :
Following some preliminaries, this section presents two
simple examples that illustrate the potential benefits,
and shortcomings, of the models of CRN proposed
above. In both cases the true system performance pa-
rameters §;, i = 1, 2, ..., r, are known, so the perfor-
mance of the MCB procedures can be evaluated.
Selecting control variates is a critical decision. A suf-
ficient condition for the linear relationship (15) to hold
is that (Y;;, C},) are jointly normal. In some simulation
experiments it is possible to insure that this condition
holds asymptotically (as the length of the simulation
goes to infinity) by the choice of control variate. Wilson
and Pritsker (1984 ) showed that a standardized average
of the input processes in queueing simulations is
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asymptotically normal with mean 0 and variance 1.
Specifically, if Zji, Zia, . . ., Zijm is a sequence of i.i.d.
random variables from the jth replication of system i,
each with expectation u and variance ¢, then the stan-
dardized average is

C. = Z;rn=1 (lek ) )
! oVm
If Y, is itself an average accumulated over the jth rep-
lication, then it is plausible that (Y, C};) are approxi-
mately jointly normal, and thus linearly related. We use
standardized averages of input processes as the control
variates in our examples.

5.1. Inventory System Example

Consider an (s, S) inventory system in which some dis-
crete item is periodically reviewed. If the inventory level
is found to be below s units, then an order is issued to
bring the inventory level up to S units; otherwise no
additional items are ordered. Different (s, ) inventory
policies result in different inventory systems. Koenig
and Law (1985) used this example to illustrate a subset
selection procedure; see their paper for a detailed de-
scription of the model.

The only input process in the simulation is the de-
mand for inventory in each period, which is assumed
to be a sequence of i.i.d. Poisson random variables with
common mean 25; we use a standardized average of
the demands as a control variate.

Five (s, S) inventory policies are considered. We sim-
ulate and apply MCB to determine which policy has
the minimum expected cost per period for 30 periods
(minimization problems are addressed by considering
the parameters 6; — min;6, fori =1,2,...,7). An
experiment consists of n = 60 replications of each policy,
each replication 30 periods in length.

5.2. Machine-repair Example :
Consider a manufacturing system consisting of ten ma-
chines and four spares, where the machines are subject
to failure. Failed machines are repaired by one of s re-
pairmen who each work at rate u machines repaired /
unit time. Suppose that a fixed overall repair rate, su
= 12, can be achieved through different combinations
of equipment and personnel. Iglehart (1977) used this
example to illustrate a ranking and selection procedure;
see his paper for a detailed description of the model.
There are two input processes in the simulation: the
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sequence of machine times-to-failure—a sequence of
Li.d. exponential random variables with common mean
l—and the sequence of repair times—a sequence of
L.i.d. exponential random variables with common mean
1/u. We use standardized averages of these two pro-
cesses as control variates.

The five (s, ) combinations (1, 12), (2, 6), (3, 4),
(4, 3) and (6, 2) were considered. We simulate and
apply MCB to determine which (s, #) combination
maximizes the steady-state expected number of ma-
chines in use. _

An experiment consists of n = 60 replications of each
system, each replication 300 machine failures in length,
with statistics cleared after the first 100 failures to reduce
initial-condition bias.

5.3. Experiment Results

For both examples we estimated the probability of cor-
rect inference @, and correct and useful inference @
A U, for nominal 95% MCB confidence intervals, If the
procedure is performing as desired, then Pr{€} ~ 0.95;
this is the probability that the intervals simultaneously
contain all r parameters 4, — maxy, fori=1,2,.. .,
r. The event @ N U is the event that the intervals si-
multaneously contain all the parameters but do not
contain 0 when §; — max;4;6, # 0. While MCB always
bounds the differences 6; — max; 46, # 0, a correct and
useful outcome means that we declare conclusively (and
correctly) which system is the best. The probabilities
we report were estimated by replicating each experiment
1,000 times, both with and without CRN.

The Pr{ @ N U} is a measure of the sharpness of the
inference, and we would like it to be as large as possible.
Unfortunately, it is always the case that Pr{@ N ¥ }
< Pr{@}. Designing an experiment (i.e., choosing the
number of replications n) to achieve a particular

Table 1

Pr{@N U} is an open problem. Our examples illustrate
that CRN in conjunction with the control-variate models
can significantly increase Pr{ @ N U} relative to using
the one-way model with or without CRN.

Experiment results for the inventory simulation are
displayed in Table 1. When the five inventory policies
are simulated independently, both the one-way model
and the YN model are appropriate (NAP assumes that
the control variates take on identical values across sys-
tems). Both models approximately achieve the nominal
95% coverage probability, but the control-variate pro-
cedure increases the probability of correct and useful
inference from 0.45 to 0.63.

If the five inventory policies are simulated using CRN
on the single input process then the NAP model is also
appropriate. Notice that the one-way model becomes
conservative (Pr{€} ~ 1). The control-variate pro-
cedures improve their performance under CRN.

Experiment results for the machine-repair simulation
are displayed in Table 2. When the five (s, 1) combi-
nations are simulated independently, both the one-way
model and the YN model approximately achieve the
nominal 95% coverage probability, but the control-
variate procedure nearly triples the probability of correct
and useful inference. '

Because the simulation run length is a fixed number
of machine failures, CRN causes the time-to-failure
random variables to be identical across the systems. The
experiment “CRN-failures” employs CRN only on the
failure times, and samples the repair times indepen-
dently across systems. The models “YN-failures” and
NAP make use of only the single failure-time control
variate, while the model “YN-all” uses both the failure-
time and repair-time control variates. All four models
are conservative (Pr{€} > 0.95), and the use of CRN
on the failure times does not significantly increase the

Estimated Probability of Correct, and Correct and Useful Inference
for the Inventory-system Example
Model
one way YN ‘ NAP
Data Pr{e} Pr{e N u} Prie} Pr{e N u) Pr{e} Pr{é N}
independent 0.94 0.45 0.63
CRN 1.00 0.43 0.77 0.95 0.74
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Table 2

Estimated Probability of Correct, and Correct and Useful Inference for the Machine-repair Exampie
Model
one way YN-failures YN-ali NAP
Data Prie} Prie N U} Pr{@} Prie N U} Pr{€} Pr{€ NU} Pr{@) PrieNU
independent 0.96 0.16 0.94 0.46
CRN-failures 1.00 0.10 0.97 0.22 0.98 0.48 0.97 0.22
CRN-ail 1.00 0.00 1.00 0.46

probability of correct and useful inference for YN-all.
When CRN is used on both input processes (“CRN-
all”), the probability of correct and useful inference
drops dramatically for the one-way model. This occurs
because CRN reduces the variance of the point estimator
(Y; — max;4Y;), so that the confidence intervals are
more nearly centered on the true parameters, but it does
not reduce the length of the intervals (in fact, they have
the same expected length with or without CRN for the
one-way model).

Why are the control-variate models effective for the
inventory example but not as effective for the machine-
repair example? A partial answer can be obtained by
looking at correlation matrices.

The matrix (26) is an estimate of the correlation matrix
of Y; = (Yy, Yy, ..., Ys) for the inventory example
under CRN (i.e., the correlations across systems induced
by CRN). The correlations are all positive, as desired.

1.00 0.49 0.85 0.41 0.65

’ 1.00 0.46 0.93 0.42
1.00 0.38 0.59 (26)

1.00 0.37

1.00

The matrix (27) is an estimate of the correlation matrix
of nj = (mj, myj, ..., ns5;)" after fitting the YN model.
Notice that in most cases the correlations are greatly
reduced, meaning that the model is doing an adequate
job of explaining the dependence induced via CRN.

1.00 -0.10 0.50 -0.03 0.20
1.00 -0.06 091 0.04
1.00 -0.03 0.13 (27)
1.00 0.06
1.00

Similarly, the matrix (28) is an estimate of the cor-
relation matrix of Y; = (Yy;, Yy, ..., Y5)' for the
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machine-repair example under CRN. The correlations
are all positive and nearly 1.

1.00 099 0.97 0.95
1.00 0.99 0.97

1.00 0.99

1.00

0.91
0.92
0.94
0.97
1.00

(28)

The matrix (29) is an estimate of the correlation matrix
of m; = (my, mj, . . ., msj)" after fitting the YN-all model.
The correlations are still quite large. Apparently the
control-variate model does not do an adequate job of
explaining the dependence due to CRN in this example.
Although a different choice of control variates might
improve performance, the alternative choice is not ob-
vious. However, we can take some comfort in the fact
that the control-variate models performed better than
the one-way model, and that all the models yielded
conservative results.

1.00 0.97 093 0.88 0.78

1.00  0.96 0.92 0.81
1.00 0.96 0.85 (29)

1.00 0.90

1.00

Our experience is that the machine-repair example—
in which the control-variate models were able to explain
very little of the dependence due to CRN—is an extreme
case. In practice, the simulator can determine whether
or not the control-variate model has been effective by
examining the residual dependence, as we did here. We
are currently working on methods for modeling the re-
sidual dependence, as well.

6. Concluding Remarks
Yang and Nelson (1991) established the first exact
multiple-comparison procedures under CRN, where
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““exact’” means that no conservative probabilistic in-
equalities are required. We have generalized their results
to allow the systems to have different control variates
(i.e., different input processes), so that the method is
potentially applicable in any stochastic simulation ex-
periment where comparisons among a small, finite
number of systems are desired. We have also explored
the effect of assuming even more structure than Yang
and Nelson—that the relationship between the response
and the control variates is common across systems—
and found benefits, specifically reduced point-estimator
variance and increased degrees of freedom for inference.
Of course, our MCB inference is exact only if the as-
sumed control-variate model is correct. However, our
examples show that we can expect some benefit from
the control-variate models, in terms of sharper inference,
even when the models are not entirely adequate. We
hope eventually to prove that MCB based on the
control-variate model is conservative when the control
variates do not entirely explain the effect of CRN.
Nelson (1992b) gives instructions for implementing
the control-variate MCB procedure, but realistically the
approach will not be widely used until it is embedded
in commercial simulation software and is transparent
to the user. We feel that this is an important next step.’

! This material is based upon work supported by National Science
Foundation Grant No. DDM-8922721. The authors acknowledge the
careful, k}elpful review of the Department Editor and Associate Editor.

Appendix
The proofs of Theorems 4.1-4.5 are straightforward but tedious, and
are given in Nelson and Hsu (1990).

PROOF OF THEOREM 4.6, From Theorem 5.2.3 in Anderson (1984),
nCiSelC S x? +, where “ denotes convergence in distribution.
Thus

( )csa,‘(:,-—o
n-—1

by Slutsky’s theorem and the fact that convergence in distribution to
a constant implies convergence in probability as well. Thus, né, —
1. The result then follows by application of Slutsky’s theorem for the
ratio of random variables.

Notice that the result does not depend on having the same number
of control variates from each system. O

PROOF OF THEOREM 4.7. Dropping the superscript (i) for conve-
nience, let

1000

A = (1 - ")lv—lxr—l + 111-11:—11

where ¢ is the minimum element of Z. Let d;_, be the critical value
such that

PrA{T,sdl-a,l=1,..‘,r—1};=1~a

where (T;, Ta, ..., T,-1) is a multivariate-t random variable with
correlation matrix indicated by the subscript on Pr. Since A = = element
by element, Theorems 3.1.1 and 2.1.1 in Tong (1980) imply that

Pre{Tisdiol=1,...,r=1}2Pr{Tisdi., I=1,...,r—1}.

Thus, the critical value d,-, is conservative. [
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