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Abstract The methods known collectively as “ranking & selection” have been a
theoretical and practical success story for the optimization of simulated stochastic
systems: they are widely used in practice, have been implemented in commercial
simulation software, and research has made them more and more statistically efficient.
However, “statistically efficient” has meant minimizing the number of simulation-
generated observations required to make a selection, or maximizing the strength of the
inference given a budget of observations. Exploiting high-performance computing,
and specifically the capability to simulate many feasible solutions in parallel, has
challenged the ranking & selection paradigm. In this paper we review the challenge
and suggest an entirely different approach.

1 Introduction

A generic stochastic simulation optimization (SO) problem has the form

Maximize E[Simulated Performance]
Subject to: Resource constraints

The types of simulations that are the focus of this paper are dynamic, often nonsta-
tionary, and may be computationally expensive to execute. SO is difficult because
the lack of a mathematical expression for, or even a deterministic numerical method
to evaluate, E[Simulated Performance], implies that algorithms must make progress
by estimating the performance of specific feasible solutions. This leads to the three
sources of error in SO:

1. The SO algorithm never simulates the optimal solution.
2. The SO algorithm does not recognize the best feasible solution it simulated.
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3. The estimated performance of the sample-best solution returned by the SO
algorithm is biased.

This paper addresses methods collectively known as Ranking & Selection (R&S).
R&S originated with Bechhofer [2] and Gupta [7] in the 1950s for biostatistics and
industrial applications, such as evaluating the efficacy of three drug treatments and a
placebo. Typical problem characteristics included a small number of treatments k;
normally distributed responses; relatively equal (maybe even known) variances; and
a requirement to be easy to implement (e.g., since human subjects were involved).
At the 1983 Winter Simulation Conference Goldsman [6] presented a tutorial on
R&S and organized a session with both Bechhofer and Gupta, arguing that R&S was
useful for optimizing simulated systems as well.

Since 1983 R&S has been an area of intense theoretical and practical interest in
stochastic simulation. However, simulators were interested in problems with different
characteristics:

• Much larger numbers of “treatments” (system designs) k.
• Possibly non-normal (nominal) simulation output data.
• Significantly unequal variances across system designs.
• Intentionally induced dependence across the outputs of simulated system designs

due to Common Random Numbers (CRN).
• Highly sequential procedures to reduce the number of expensive simulation runs

required to select the best system.

R&S has been a theoretical and practical success for simulation, including innova-
tive theory; asymptotic regimes for non-normal data; and effective use of concepts
from “statistical learning.” Further, R&S is routinely applied in real problems and is
included in many commercial software packages. The appeal of R&S is that it can
control all three SO errors:

1. R&S is exhaustive, simulating all feasible solutions, so the optimal solution is
always simulated.

2. R&S is explicitly concerned with recognizing the best solution with statistical
confidence.

3. R&S may provide confidence intervals on the true performance of the selected
solution.

Thus, it is desirable to turn a SO problem into a R&S problem if at all possible,
and high-performance computing, and in particular parallel computing, would seem
to facilite treating problems with larger and larger numbers of feasible solutions
as R&S problems. Unfortunately, nearly all the methodological developments in
R&S assume single-processor computing, and define “cost” as synonymous with the
number of simulated observations. The topic of this paper is how parallel computing
changes (nearly) everything, and a suggestion for how to think differently.

Remark 1. There is a connection between R&S and multi-arm bandit (MAB) prob-
lems that will not be explored here, other than to say that the objectives of MAB
and R&S are often different (e.g., MAB minimizes regret); the MAB focus is online
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Fig. 1: Master-Worker environment.

decision making, while R&S is always offline; and the two literatures have different
standards for what constitutes a “good procedure.” See for instance [10].

Remark 2. The particular parallel computing architecture within which we implement
R&S matters, but we will not address those details other than to assume that there are
p+1 processors in a “Master-Worker” environment in which the Master processor
performs calculations and decides what jobs to send to the Worker processors; see
Figure 1. We define a “job” more precisely later.

Remark 3. While it is possible to treat many SO problems as R&S problems, clearly
not all of them can be attacked in this way. We now consider k = 10,000 systems to
be routine, but there are practical problems for which k is several orders of magnitude
larger, and can even be uncountably infinite if systems are defined by continuous-
valued decision variables. Further, the resource constraints may also be stochastic,
requiring simulation to assess feasibility.

2 R&S Basics

For notation, let the true, but unknown, expected values (means) of the k feasible
solutions (systems) be denoted by

µ1 ≤ µ2 ≤ ·· · ≤ µk−1 ≤ µk.

We refer to system k, or any system tied with system k, as the best, and of course
we do not actually know which system is system k. Let Yi j be the jth output from
system i, which has mean µi and variance σ2

i . For system i we can estimate µi with a
consistent estimator, which for the purpose of this paper is the sample mean of ni
independent and identically distributed (i.i.d.) replications:
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Ȳi(ni) =
1
ni

ni

∑
j=1

Yi j.

The R&S procedure returns something like

K̂ = argmaxi∈{1,2,...,k}Ȳi(ni)

as the selected solution, where what the procedure specifies is the values of ni.
One categorization of R&S procedures is fixed-precision vs. fixed-budget. For

the former, we simulate until a prespecified confidence level is achieved, ideally
probability of correct selection (PCS): Pr{µK̂ = µk} ≥ 1−α. Since attaining this
goal can be computationally infeasible if, say, the best and second-best systems’
means are very close, a compromise is made such as the following:

• Indifference zone: Pr
{

K̂ = k | µk−µk−1 ≥ δ

}
≥ 1−α

• Good selection: Pr
{

µk−µK̂ ≤ δ
}
≥ 1−α

• Top m: Pr
{

K̂ ∈ [k,k−1, . . . ,k−m+1]
}
≥ 1−α

• Subset: Find Ŝ⊆ {1,2, . . . ,k} such that Pr{k ∈ Ŝ} ≥ 1−α

These are typically frequentist guarantees to be achieved as efficiently as possible.
Here δ is taken as the smallest difference that is practically relevant.

A fundamental building block for many fixed-precision procedures is the stan-
dardized sums of differences:[

σ2
k

nk
+

σ2
i

ni

]−1

[Ȳk(nk)− Ȳi(ni)]
D≈Bµk−µi

([
σ2

k
nk

+
σ2

i
ni

]−1)

where Bµk−µi(t) is Brownian motion (BM) with drift µk−µi and the sample sizes
nk and ni are independent of the sample means. This relationship is true in finite
samples if the Yi j are normally distributed (see [8]), and may be true asymptotically
for appropriately standardized statistics. Much is known about BM processes crossing
various boundaries (see, for instance, [12]), but for the purpose of this paper notice
that employing this building block involves k(k− 1)/2 pairwise comparisons, a
number that can become a computational bottleneck when k is large.

For fixed-budget procedures, the goal is to obtain as strong an inference as possi-
ble within a fixed computation budget. This is typically formulated as minimizing
some expected loss for the chosen solution, E[L (K̂)], and the inference is typically
Bayesian:

0-1 Loss: Maximize posterior PCS
Opportunity cost: Minimize posterior expected optimality gap

The fixed-budget paradigm is to attain information in an optimal, sequential fash-
ion; see Frazier [5]. Tools for doing so include “Expected Improvement” and the
“Knowledge Gradient (KG).” For instance if our prior is

(µ1,µ2, . . . ,µk)
> ∼ N(µµµ0,ΣΣΣ 0)
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and the simulation output are normal, then we can compute the Complete Expected
Improvement of solution i over the current sample best K̂,

CEI(i, K̂) = E
[
max{0,µi−µK̂} | Yi j’s collected through stage t

]
from N(µµµ t , ΣΣΣ t | Yi j’s collected through stage t), the posterior (normal) distribution.
Notice that, implemented naively, this statistical learning approach takes only one
simulated observation “optimally” at a time, and therefore does not exploit paral-
lelization. In addition, calculation of the posterior distribution and searching for the
maximum CEI or KG solution can be numerically challenging for large k.

Remark 4. R&S addresses a more diverse set of problems than selecting the system
with the best mean; see [1] for a comprehensive reference.

3 R&S Computation

This section is based on [9].
Instead of thinking in terms of the statistical efficiency of a R&S procedure,

here we consider the overall computation involved. All R&S procedures perform
simulation replications and numerical calculations. Therefore, we define a R&S “job”
j as the ordered list

J j ≡ {(Q j,∆ j,U j)︸ ︷︷ ︸
simulate

,(P j,C j)︸ ︷︷ ︸
calculate

}

where

• Q j ⊆ {1,2, . . . ,k} indices of systems to be simulated;
• ∆ j = {∆i j} how many replications to take from each system i ∈Q j;
• U j (optional) the assigned block of random numbers;
• C j is a list of non-simulation calculations or operations to perform; and
• P j is a list of jobs that must complete before the calculation C j.

We allow (Q j,∆ j,U j) or (P j,C j) to be null, or for a job to contain multiple simulate
and calculate sub-jobs. The random numbers U j are important to insure independence
or dependence (CRN), if desired. Since we do not discuss CRN here, we suppress
the specification of random numbers U j from here on.

From the perspective of the jobs required, a generic R&S procedure looks some-
thing like this:

Generic R&S Procedure

1. For job `= 1,2, . . . until termination, do

a. Simulation jobs

J` = [{(system 1,1 rep),( /0)}, . . . ,{(system i,1 rep),( /0)}, . . .]
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b. Comparison jobs

J′` = {( /0),(all jobs in J`,C`)}

where C` performs calculations on all (non-eliminated) systems.

2. Report K̂.

This generic model enforces many of the assumptions necessary for both small-
sample and asymptotic analysis by “synchronized coupling:” simulate all required
replications, perform calculations on the collected output to decide what to simulate
next, simulate all required replications, and so on.

Now suppose that we want to parallelize this. Recall that we initially have k
systems and p+1 processors, 1 Master and p Workers. Perhaps the most natural way
to think about adapting the Generic R&S Procedure to this setting is for the Master
to maintain a round robin queue of systems from which a replication is needed, and
whenever a replication result is returned from some processor the Master assigns
another system to it from its queue. Based on the returned replications the Master
then makes comparisons, eliminates systems, updates posterior distributions, etc.

The obvious problem with this approach is that when k is very large, the computa-
tions required of the Master may be so significant that the p Workers are starved for
additional simulation assignments. But there is also a more subtle issue. Define the
input sequence and output sequence as follows:

Input sequence: Xi j is the jth requested observation from system i by the Master,
with execution time Ti j.

Output sequence: Yi j is the jth returned observation to the Master from system i.

The validity of a R&S procedure is established based on properties of the returned
sequence, which will not be the same as the requested sequence when there are
p > 1 Workers and the execution times are random variables. As shown in [13], this
can lead to statistical problems, including random sample sizes, non-i.i.d. outputs
from any specific system, and a dependence induced across systems outputs by
eliminations, all of which invalidate the statistical guarantees of R&S procedures.
Of course Xi j = Yi j can be assured by having the Master wait for and reorder the
output, insuring the statistical validity but signficantly diminishing the computational
efficiency.

This suggests that when we have the capability to simulate in parallel we need to
refine our goals for R&S. We now formally define a R&S Procedure as the collection
of jobs generated by the Master: J = {J j : 1≤ j ≤M}, where M is determined by
the procedure and may be either random or fixed. Both wall-clock ending time of the
procedure and the cost of purchasing time on p+1 processors matter:

• Let 0 < Tj < ∞ be the wall-clock time job J j finishes, so

Te(J ) = max
j=1,2,...,M

Tj

is the ending time of the procedure.
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Table 1: Existing parallel R&S procedures

R&S Procedure Load Balancing
(Standard Assumptions)

Comparison Timing
(Relaxed Assumptions)

Fixed-Precision

Simple Divide and Conquer
(Chen 2005)

Vector-Filling Procedure
(Luo et al. 2015)

Good Selection Procedure
(Ni et al. 2017)

Asymptotic Parallel Selection
(Luo et al. 2015)

Fixed-Budget

Parallel OCBA
(Luo et al. 2000)

Asynchronous OCBA/KG
(Kamiński & Szufel 2018)

• c(p,s) = cost to purchase p processors for s time units.
• t(p,b) = maximum time we can purchase on p processors for budget $b

t(p,b) = max{s : c(p,s)≤ b}.

We can now define revised objectives:

Fixed precision: Requires statistical guarantees while being efficient.

minimizep,J E[βt Te(J )︸ ︷︷ ︸
time

+βc c(p,Te(J ))︸ ︷︷ ︸
cost

]

s.t. Pr{ G(K̂,k)︸ ︷︷ ︸
good event

} ≥ 1−α

where βt and βc are weights or relative costs; typically one of βt or βc is zero
and the other is one.

Fixed budget: Provides an efficiency guarantee within a budget.

minimizep,J E[L (Gc(K̂,k),J )︸ ︷︷ ︸
loss of bad event

]

s.t. t(p,b)︸ ︷︷ ︸
processor time

≤ t?

where t? is the wall-clock-time budget.

To the best of our knowledge, no one has yet formulated a parallel R&S procedure
specifically to solve one of these optimization problems. Instead, the procedures
shown in Table 1 either try to balance the Master-Worker load in a way that keeps the
Workers busy, or they weaken the assumptions behind the Generic R&S Procedure
so that it is still (at least asymptotically) valid when Xi j 6= Yi j.
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Remark 5. The clever approaches cited in Table 1 all try to adapt the existing R&S
paradigms to the parallel environment. However, if we have, say, k > 1,000,000
systems, then is it sensible to insist on locating the single best/near-best with high
probability? We should expect many bad systems, but also a lot of good ones.
Guarantees like PCS also run counter to approaches in large-scale statistical inference
of controlling “error rates.” In fact, to control PCS requires more effort/system as k
increases, while error rates such as “false discovery” can be attained with little or no
“k effect.”

4 Thinking Differently

The section is based on [17].
We want to disassemble the R&S paradigm and start over with the expectation of

a very large number of systems k and number of parallel processors p+1. Our goals
are (a) to provide a more scalable—but still useful and understandable—error control
than PCS; and (b) avoid coupled operations and synchronization by exploiting the
idea of comparisons with a standard [15]. The result is our Parallel Adaptive Survivor
Selection (PASS) framework.

Again, let Yi1,Yi2, . . . be i.i.d. with mean µi and from here on we assume µk >
µk−1 > · · ·> µ1. For some known constant µ? that we refer to as the standard, let

Si(n) =
n

∑
j=1

(Yi j−µ
?) =

n

∑
j=1

Yi j−nµ
?.

We will employ a non-decreasing function ci(·) with the property that

Pr{Si(n)≤−ci(n), some n < ∞}

≤ α µi ≥ µ?

= 1 µi < µ?.

For normally distributed output such functions can be derived from the results in [4].
Finally, let G = {i : µi ≥ µ?}, the set of systems as good or better than the standard
µ?, which we assume is not empty; if it is empty then there is no false elimination.
For any algorithm, let E be the set of systems that the algorithm decides are are not
in G when they actually are. Then we define the expected false elimination rate for
the algorithm as EFER = E[|E |]/|G |.

Before tackling the case of unknown µ?, consider the following algorithm:

Parallel Survivor Selection (PSS)

1. given a standard µ?, an increment ∆n≥ 1 and a budget
2. let W = {1,2, . . . , p} be the set of available Workers; I= {1,2, . . . ,k} the set of

surviving systems; and ni = 0 for all i ∈ I.
3. until the budget is consumed
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a. while an available Worker in W, do in parallel:
i. remove next system i ∈ I and assign to available Worker w ∈W

ii. j = 1
iii. while j ≤ ∆n

simulate Yi,ni+ j
if Si(ni + j)≤−ci(ni + j) then eliminate system i and break loop
else j = j+1

iv. if i not eliminated then return to I= I∪{i}
v. release Worker w to available Workers W

4. return I

Notice that PSS requires no coupling and keeps the Workers constantly busy.
And from the properties of c(·), PSS maintains EFER≤ α and, if run forever, will
eliminate all systems with means < µ?. Further, the EFER is still controlled at ≤ α

and elimination of systems not in G still occurs with probability 1, if we let ∆ni
depend on the system i, and we replace µ? by µ(n)≤ µ? where µ(n)→ µ?. This is
the case because a system eliminated by a smaller standard would also have been
eliminated by a larger standard, and a system protected from a larger standard would
also be protected from a smaller one. This suggests that in the practical case in which
µ? is unknown we may be able to learn the standard in a way that still that achieves
our objectives; we call this Parallel Adaptive Survivor Selection.

Generically, we define the standard to be µ? = g(µ1,µ2, . . . ,µk). Some examples
of possibly interesting standards include

• Protect the best: µ? = µk, which we focus on here.
• Protect the top b: µ? = µk−b+1.
• Protect best and everything as good as some known value µ+: µ? =min{µ+,µk}.

We want to learn the standard’s value in a way that still avoids synchronized coupling
but does not compromise the EFER.

Consider PSS but with the adaptive standard

µ̄ =
1
|I|∑i∈I

Ȳi(ni)

which is the average of the sample means of the current survivors. Thus, the adaptive
standard acts like a bisection search. We call algorithm PSS with this standard
bi-PASS. Under some conditions, including normally distributed output, we can
show that the EFER for system k is still ≤ α [17]. Thus, we can achieve nearly
uncoupled parallelization and controlled EFER with an unknown standard. When
µ? = µk this means the chance that we eliminate the best system is ≤ α . However,
since EFER is controlled marginally, α can be set even smaller than the traditional
α = 0.1,0.05,0.01 values with little penalty on efficiency and greater protection for
system k.
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5 Conclusions

When a simulation optimization problem can be treated as a R&S problem then it can
be “solved” with statistical guarantees: that is, all three SO errors can be controlled.
High-performance, parallel computing extends the “R&S limit” to larger problems,
but introduces new statistical and computational challenges, including violation of
standard assumptions and “cost” not being captured by the number of observations.
The PASS framework introduced here replaces guarantees like PCS that do not scale
well with k, with EFER which does, while at the same time making it easier to
achieve “embarassingly parallel” speed up by comparing each system only to an
adaptive standard, rather than to each other.
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