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Abstract

This paper proposes a technique for estimating steady-state quantiles from discrete-event simu-

lation models, with particular attention paid to cycle-time quantiles of manufacturing systems.

The technique is justified through an extensive empirical study and supported with mathematical

analysis. The Cornish-Fisher expansion is used as a basis for this estimation, and it is shown that

for an M/M/1 system, a system of 5 tandem M/M/1 queues, and a full factory simulation model,

the technique provides precise, accurate estimates for the most commonly estimated quantiles with

minimal data storage. The performance of the Cornish-Fisher expansion is compared to both tra-

ditional direct quantile estimation using order statistics and indirect quantile estimates obtained

from four-parameter distributions. Based on these evaluations, the Cornish-Fisher expansion is

found to be the most appealing quantile estimation technique of the three approaches because it

provides accurate results for a variety of systems and has the advantages of being easy to implement

and having extremely low data-storage requirements. It also provides the capability for estimating

all quantiles of a given random variable from a single set of multiple replications at a given design

point, negating the need to know in advance which quantile estimates are desired.

1 Introduction

The ability to quote accurate delivery times is crucial in any service-driven industry, including

manufacturing. In fact, on-time delivery is the key metric for assessing the overall customer service

level of a production facility (Gordon, 1993). An essential component of generating good lead times

is producing accurate estimates of cycle time parameters such as the mean cycle time or quantiles of

the cycle time distribution. The mean cycle time value provides the decision maker with a general

feel for the expected production time, but production managers are typically not measured against

“average” values. Instead, they prefer to know the percentage of items produced within a particular

cycle time window. Cycle time quantiles provide the decision maker with a complete picture of the

cycle time distribution, allowing delivery time quotes to be made with varying levels of confidence.

Discrete-event simulation (DES) models have been commonly used to generate estimates of
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average cycle time, with research focusing on reducing the simulation run time or on increasing

the estimation accuracy. For instance, Roeder et al. (2002) and Schruben and Roeder (2003)

discuss a resource-driven simulation methodology which executes significantly more quickly than

traditional job-driven simulation methodologies. However, even with decreasing run times, there

are not yet efficient and easily implemented methods for obtaining precise and accurate estimates

of cycle time quantiles. A significant reason for this is that quantiles are often more difficult to

estimate than simple means and can require excessive data storage. The data storage requirements

have led many industry practitioners to use crude quantile estimation techniques that require fewer

computing resources. For example, indirect estimates of cycle time quantiles are often made by

collecting the first two sample moments (equivalently sample mean and variance) of the cycle time

distribution from a simulation model and assuming the distribution to be normal. These estimates,

while extremely easy to generate, do not consider the skewness or kurtosis of the actual cycle time

distribution and, therefore, risk being grossly inaccurate for all cycle time distributions in which

skewness or kurtosis differ substantially from those of the normal distribution.

We define a direct quantile estimate to be one in which the estimate is obtained by inverting

an empirical cumulative distribution function (cdf). Order statistics are traditionally used for this

purpose. To generate an estimate of a cycle time quantile using order statistics, a DES model is run,

and the individual cycle time observations are stored. Once all observations have been collected,

the observations are sorted, and the appropriate quantile is selected from the sorted values. For

example, if 1000 observations were collected, an estimate of the 0.70 cycle time quantile would be

the 700th largest value. Smoothing and interpolation are also regularly used to improve quantile

estimates based on order statistics. With a sufficient quantity of data, order statistics provide

very accurate and precise results. However, order statistics also present the significant drawback

of requiring substantial data storage. Even with rapidly increasing computing power, sorting and

storing the millions of samples required to estimate some quantiles is still one of the fundamental

issues in quantile estimation (Chen and Kelton, 2001).

To address the data storage issue, Jain and Chlamtac (1985) developed the P2 algorithm that

yields direct quantile estimates without requiring the storage of individual cycle time observations.
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However, if estimates of several quantiles of the same variable are required, the efficiency and

accuracy of the algorithm degrades. Heidelberger and Lewis (1984) developed the maximum trans-

formation technique for reducing data storage needs when estimating quantiles from dependent,

stationary data, but the parameters of their algorithm change based on the desired quantile to

estimate, requiring simulations to be run for each quantile.

Jin, Fu, and Xiong (2003) propose a stratified quantile estimator as their own direct quantile

estimator and demonstrate that the error probability for this estimator approaches zero with ap-

propriate sample size, but the sample size grows exponentially as the problem dimension increases.

Avramadis and Wilson (1998) propose a technique for reducing bias and variance of quantile es-

timators through the use of correlation induction. Hesterberg and Nelson (1998) exploit control

variates with known quantiles to reduce the variance in estimating selected quantiles of a distri-

bution. Their technique showed significant reduction in MSE for extreme quantiles (0.9, 0.95, and

0.99), but has the disadvantage of requiring the use of control variates with known quantiles. Also

of note is the fact that both Hesterberg and Nelson (1998) and Avramadis and Wilson (1998)

require i.i.d. outputs. Chen and Kelton (2006) developed both the zoom-in algorithm for direct

quantile estimation, which uses the concepts of order statistics and φ-mixing to provide bounds

on the desired quantile at each iteration of the algorithm, and the quasi-independent procedure

which collects samples of simulation output data at long lags so that the data are independent as

measured by the runs-up test. Similarly, Chen and Kelton (2008) show how to estimate a well-

chosen set of quantiles in order to estimate the empirical distribution of a stationary-simulation

generated process. Both Chen and Kelton (2006) and Chen and Kelton (2008) are based on order

statistics and, therefore, have the desirable quality that their estimation accuracy does not depend

on the shape of the distribution from which the quantiles are being estimated. However, both

approaches also have the drawback of requiring long run lengths, especially for highly correlated

systems, which are more likely than not within a DES model. The average run length for their

quasi-independent algorithm, for example, applied to an M/M/1 system at 90% traffic intensity,

for example, is 14,792,893 customer waiting times (Chen and Kelton, 2006).

An indirect quantile estimate is one which is obtained without building an empirical cdf. Yang
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et al. (2005), for example, propose such an indirect estimation technique based on the Generalized

Gamma Distribution. Indirect estimation techniques have the advantage of reduced data storage

requirements, but the estimators may have less precision or less accuracy than direct estimators.

An indirect quantile estimation technique that provides high accuracy, low variability, and which

is easy to implement would be extremely useful. This paper proposes such a method for indirectly

generating steady-state cycle time quantile estimates from DES models of manufacturing systems.

The method relies on the assumption that the DES output process, Xt, t = 1, 2, 3, . . . converges

weakly to X, a limiting random variable having continuous support and finite moments of order at

least four, thus ensuring that X has well-defined quantiles. This assumption will be approximately

valid for many manufacturing simulations. Further, we assume that the raw sample moments,

n−1
∑n

t=1 Xk
t , converge almost surely to E[Xk] as n → ∞ for k = 1, 2, 3, 4. A thorough empirical

study of the technique is presented, along with some supporting mathematical analysis.

The suggested technique utilizes the first four terms of the Cornish-Fisher expansion (Cornish

and Fisher, 1937) and takes into account the first four moments of the cycle-time distribution,

allowing accurate and precise quantile estimates to be generated for even extremely non-normal

distributions. The remainder of the paper is organized as follows. In the next section, the Cornish-

Fisher expansion is discussed in more detail, and an analysis of its ability to approximate quantiles

from both the normal and exponential distributions is shown. Section 3 formally presents the

suggested steady-state quantile estimation procedure, and Section 4 discusses the sources of bias in

the procedure. Section 5 presents experimental results. Results are given for three systems which

represent a variety of cycle-time distributions: an M/M/1 system, a system of 5 tandem queues,

and a full factory model. Section 6 presents alternative methods for indirectly estimating quantiles

and compares these to the estimates obtained using the Cornish-Fisher expansion. Finally, Sections

7 and 8 provide conclusions and areas for future work.

2 Cornish-Fisher expansion

The Cornish-Fisher expansion (CFE) is an asymptotic series used to approximate normalized quan-

tiles from any distribution, given a quantile from the standard normal distribution and the dis-
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tribution’s cumulants (Cornish and Fisher, 1937). When sample cumulants are used in place of

theoretical cumulants, the approximation becomes an estimator, and, consequently, it becomes im-

portant to have consistent estimators of the cumulants. Equation (1) gives a truncated version of

the expansion, including only the first four terms. In this equation, zα is the α quantile from the

standard normal distribution, κ3 and κ4 are the third and fourth cumulants of the distribution, σ

is the standard deviation, µ is the mean, and xα is the approximation of the α quantile.

xα = µ + 1/2(σ2 + 1)zα + 1/6(z2
α − 1)κ3 + 1/24(z3

α − 3zα)κ4 − 1/36(2z3
α − 5zα)κ2

3 (1)

Equation (1) can also be written in terms of distributional moments (rather than cumulants).

This version of the CFE is shown in Equation (2), in which γ1 is the standardized central skewness,

and γ2 is the standardized central excess kurtosis. To arrive at Equation (2), the distribution is

standardized such that the expansion is in terms of x′

α, where x′

α = (xα − µ)/σ. The standardized

mean becomes 0 and the standardized variance becomes 1. As a result, the first term of Equation (1)

drops out and the second term becomes only zα, giving x′

α = zα+1/6(z2
α−1)κ3+1/24(z3

α−3zα)κ4−

1/36(2z3
α − 5zα)κ2

4. Then, given the relationships between moments and cumulants (µ2 = κ2,

µ3 = κ3, and µ4 = κ4 +3κ2
2, where µi is the ith central moment and κi represents the ith cumulant),

the cumulants κ3 and κ4 can be replaced by the skewness and the excess kurtosis, respectively.

Since µ2 is equal to 1 for a standardized distribution, the moment-cumulant relationships show

that κ4 = µ4 − 3, which is equal to the excess kurtosis. Similarly, µ3 is equivalent to the skewness.

Formulas for calculating the standardized skewness (γ1) and the standardized excess kurtosis (γ2)

are γ1 = µ3/µ
3/2
2 , and γ2 = µ4/µ

2
2 − 3 (Stuart and Ord, 1987).

Therefore, by replacing the cumulants with the standardized skewness and standardized excess

kurtosis, the quantile from the standardized distribution is given by x′

α = zα + 1/6(z2
α − 1)γ1 +

1/24(z3
α−3zα)γ2−1/36(2z3

α−5zα)γ2
1 . This value must then be transformed back to the quantile from

the original unstandardized distribution. After performing the transformation, the final quantile

estimate from the sample distribution is found using Equation (2). This equation is equivalent to

Equation (1) and is the form of expansion used in this research. In Equation (2), xα represents

the quantile approximation from the standardized distribution, and Y α represents the quantile
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approximation from the original sample distribution.

Y α = µ + σx′

α where x′

α = zα + 1/6(z2
α − 1)γ1 + 1/24(z3

α − 3zα)γ2 − 1/36(2z3
α − 5zα)γ2

1 (2)

The principle behind the Cornish-Fisher expansion is that if a set of moments of a true and

fitted distribution agree, the quantiles of the fitted distribution can be regarded as an approximation

to the quantiles from the true distribution. In the case of the CFE, the quantiles from the fitted

distribution are expressed as an asymptotic series, which is a function of the corresponding quantiles

of the standard normal distribution. The terms of the expansion are polynomial functions of the

corresponding standardized quantile of the normal distribution, and the coefficients are functions

of the standardized moments (or cumulants, as shown in Equation 1) of the distribution of interest.

The terms are arranged so that for terms beyond the third term, the rth coefficient is of the order

O
(

na−(r/2)
)

, where a is a constant and n is a parameter assumed for practical applications to be

very large. Because of this property, in a valid application of the CFE, each consecutive term is of

smaller and smaller order, resulting in convergence for fixed r. If coefficients up to the rth are used,

convergence is guaranteed as n approaches infinity. However, for finite n, the best approximation

is not necessarily obtained with larger r; for example, we will show that four terms is best for

the exponential distribution. Typically, the CFE is used for estimation of quantiles of a random

variable, which is itself a sum of other m random variables, when the sample size m is not so large

that the Central Limit Theorem (CLT) makes the distribution normal. In these cases, the CLT

guarantees that the distribution of interest is asymptotically normal and that the cumulants ensure

that the CFE coefficients meet the O
(

na−(r/2)
)

property. The CFE is then used to improve the

normal approximation. However, while the CFE is justified as n approaches infinity, in practice it is

used with finite n, making the CFE actually a moment-based correction for a non-normal random

variable. Examples of this type of application include Chan and Cui (2003), who use the CFE

to estimate control limits for a standardized control chart of a skewed process distribution, and

Miguel and Olave (2002), who use it to obtain quantiles of the distribution representing forecast

error. This paper uses the CFE as a moment-based correction to estimate quantiles from the
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non-normal random variable representing cycle time. No specific assumptions about the cumulants

of the cycle time distributions can be made, but we argue that the distribution of the cycle time

random variable observed in most realistically sized manufacturing systems will be reasonably close

to normal (Rose, 1999 and Mittler et al., 1995), particularly in systems with FIFO dispatching.

Consequently, the adjustments made by the CFE to correct for non-normality will not be extreme,

and results from experimentation tailored to the type of distributions found in manufacturing

systems, shown in Section 5, demonstrate that the approach produces both accurate and precise

results.

2.1 Selection of number of terms

Since the CFE is an asymptotic series, it is important to determine the appropriate number of

terms to include. Adding additional terms to the CFE requires estimating progressively higher

moments, which are, in turn, more and more difficult to estimate since higher moments have

increased sensitivity to sampling fluctuation (Stuart and Ord, 1987). Moreover, for the inverse cdf

function of the random variable estimated by the CFE to be monotone (which it should be), the

order of the expansion must be even (Jaschke, 2002). Therefore, we seek to identify a small, fixed,

even number of terms that will provide accurate results while requiring the estimation of the least

number of moments from the cycle time distribution.

For a quantile estimator to be useful in estimating cycle time quantiles for manufacturing set-

tings, it should provide accurate and precise estimates for a variety of cycle time distributions. It

is important for a quantile estimation technique to have the capability of accurately generating

quantile estimates of systems that are at least approximately normally distributed. However, our

empirical evidence shows that as the utilization of a manufacturing system approaches 100%, the

distribution of the cycle times, even for complicated systems, becomes more skewed. Consequently,

the same system at different traffic intensities can have cycle time distributions ranging from ap-

proximately normal to more skewed. The ideal quantile estimation technique would be able to

produce accurate quantile estimates for both types of distributions.

For any number of terms, the CFE perfectly approximates quantiles from the normal distribu-
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tion. This is clear when it is observed that all terms in Equation (2), except the zα term, are zero in

such a case. Consequently, to determine how the number of terms used in the expansion affects the

accuracy of the quantile approximations for non-normal distributions, the exponential distribution

was used. Figure 1 demonstrates the effect that the number of terms used in the expansion has

on quantile approximations from an exponential distribution. Theoretical moment values (instead

of empirically estimated via simulation) were used to generate this figure. Figure 1 shows that

using the first four terms of the expansion clearly yields the best results for the widest variety of

quantiles from the exponential distribution. The sixth order expansion also performs well across

all quantiles, but requires estimation of the fifth moment, making it a less desirable choice than

the four-term expansion. Figure 1 also highlights the following property of the CFE: For a given

function, approximations from the CFE do not necessarily improve in accuracy as additional terms

are added (Jaschke, 2001). For the exponential distribution, it turns out that the improvements

in accuracy stop after four terms. We conjecture that as the distributions get closer to normal,

the corrections required by the CFE will be less, and a number of terms that works well for the

exponential distribution will likely work well for distributions closer to normal.

[Figure 1 Here]

To further support the selection of four terms, Figure 2 shows the relative percent difference be-

tween the true quantiles for an exponential distribution and the approximated quantiles generated

from the first four terms of the CFE using the distribution’s true moments. For most quantiles of

interest to manufacturers, the first four terms of the CFE produce a reasonably accurate approx-

imation for the exponential distribution. This behavior is not entirely surprising, however, since

the CFE is known to produce less and less reliable approximations as the probability associated

with the quantile being estimated approaches 0 or 1 (Jaschke, 2001). For all quantiles above 0.45,

though, the approximated value is within 5% of the theoretical value, and in a manufacturing set-

ting, it is unlikely that estimates of the lower cycle time quantiles would be useful for quoting lead

times. Customer delivery dates generated based on an estimate of the 0.3 quantile, for example,

would result in only 30% of product being delivered on time.
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Also, it should be noted that, for a given quantile, the CFE does not produce approximations

at the same level of accuracy for all non-normal distributions. Estimates of the same quantile from

two random variables (with nonidentical distributions) could have different levels of accuracy. As

the distribution from which quantiles are estimated gets closer to normal, however, the quality

of the estimates improves for all quantiles. We use the fact that the exponential distribution

is as severely non-normal a cycle time distribution as is likely to be found in manufacturing to

represent an outer limit of the behavior that the CFE is likely to produce for cycle time quantile

estimation. Accordingly, we assume that a given number of terms that works well for the exponential

distribution will also be likely to work well for distributions closer to normal. Based on this

assumption and the results of Figures 1 and 2, the selection of four terms is reasonable.

[Figure 2 Here]

3 Quantile estimation procedure

The results presented in the remainder of this paper use the first four terms of the CFE as an

indirect steady-state quantile estimator for DES models. To implement the approach, the following

procedure is used. Step 1 gives the procedure setup, while Step 2 details the moment estimation

process, which takes place within each simulation replication. We use the moment estimates from

each replication to obtain a single quantile estimate (Step 3), and we obtain quantile estimates

across replications so that they are independent and we can build confidence intervals (Steps 4 –

5). The procedure is based on independent simulation replications, but batch means can also be

used (see the comments after the procedure).

The output process for the procedure is defined by {xik, i = 1, 2, . . . , n, k = 1, 2, . . . , l}, where

where i is the replication index, and k is an index representing the number of observations within

a given replication. For each i, xi1, xi2, . . . is a stationary stochastic process; we assume that the

user of this procedure will handle the initialization bias independently of this procedure.

1. Select a value for n, the number of independent simulation replications, l, the number of

observations in each replication, and m, a variable used for grouping quantile estimates to
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form confidence intervals, where n ≥10 and an integer divisible by m. We recommend m ≥

5. Suggestions for appropriate simulation run lengths can be found in Whitt (1989), and

suggestions for determining the number of replications can be found in Banks, et al. (2004)

or Law and Kelton (2000).

2. For i = 1 to n:

(a) Run simulation replication i and calculate estimates of the sample mean (µ̂i), the sample

standard deviation, (σ̂i), the sample central, standardized skewness (γ̂1i), and the sample

central, standardized, excess kurtosis (γ̂2i). The formulas used to calculate the sample

moments are given in Equations (3)–(6) (Kenny and Keeping, 1954). In these equations,

l represents the total number of sample data points, and to minimize data storage

requirements, the only values that should be stored during replication i are running

totals of xik, x2
ik, x3

ik, and x4
ik.

µ̂i =
1

l

l
∑

k=1

xik (3)

σ̂2
i =

1

l − 1

(

l
∑

k=1

x2
ik − 2µ̂i

l
∑

k=1

xik + µ̂2
i

)

(4)

γ̂1i =
l

(l − 1)(l − 2)σ̂
3/2
i

(

l
∑

k=1

x3
ik − 3µ̂i

l
∑

k=1

x2
ik + 3µ̂2

i

l
∑

k=1

xik − µ̂3
i

)

(5)

γ̂2i =
l2

(l − 1)(l − 2)(l − 3)σ̂2
i

[

(

l + 1

l

)

(

l
∑

k=1

x4
ik − 4µ̂i

l
∑

k=1

x3
ik + 6µ̂2

i

l
∑

k=1

x2
ik

− 4µ̂3
i

l
∑

k=1

xik + µ̂4
i

)

− 3 (l − 1)

l2

(

l
∑

k=1

x2
ik − 2µ̂i

l
∑

k=1

xik + µ̂2
i

)2


 (6)
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(b) Obtain a point estimate of the α quantile, Y α
i .

Y α
i = µ̂i + σ̂ix

′

α where x′

α = zα +1/6(z2
α −1)γ̂1i +1/24(z3

α −3zα)γ̂2i −1/36(2z3
α −5zα)γ̂2

1i

3. Calculate the sample mean estimate of the α quantile, Yα.

Y
α

=
1

n

n
∑

i=1

Y α
i n

4. Calculate the mean, Y
α
j , of v = n/m subsets of Y α

i values.

Y
α
j =

1

m

jm
∑

i=(j−1)m+1

Y α
i j = 1, 2 . . . , v

5. Obtain an approximate 1 − β confidence interval around the Y
α
j values on the α cycle time

quantile, where S is the sample standard deviation of all Y
α
j values.

Y α ± tβ,v−1
S√
v

Note that the Central Limit Theorem supports the approximation that the means of the subsets

used in Steps 4 and 5 are becoming closer to normal as m gets sufficiently larger, and the value of

m can be increased if concerns about normality are present. Additionally, the subsets are generated

only to improve normality for building a confidence interval; if a point estimate and standard error

are sufficient, choosing m = 1 is best. Also note that the batch means approach could easily be sub-

stituted in place of independent replications. In this case, n would represent the number of batches

rather than the number of independent replications, and l would represent the batch size rather

than the replication length. From each batch, moment estimates and corresponding steady-state

quantile estimates would be calculated (Steps 2a and b). Using the quantile estimates from each

batch, and assuming that the batches were large enough to yield independent quantile estimates,

Steps 4 - 5 would be identical to those presented for the independent replications approach. For

more information on the batch means approach, see Banks, et al. (2004) or Law and Kelton (2000).
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4 Estimator bias

Attention should be given to the fact that there are several sources of bias present in the algorithm

in Section 3: initialization bias, moment-estimation bias, and bias resulting from the CFE approxi-

mation. Initialization bias is inherent in all random, steady-state simulation models and goes away

with run length. The moment-estimation bias results from the fact that simulation output data are

autocorrelated: however, we will show that the standardized central moments used in this paper

are consistent, despite the presence of bias due to non-i.i.d. data.

THEOREM 1. Suppose that:

The process Xt, t = 1, 2, 3, . . . is stationary,

the estimator of E[(X −µ)k] is µ̂′

k = n−1
∑n

t=1(Xt −xn)k for k ≥ 2, where xn = n−1
∑n

t=1 Xt, and

E[Xk
t ] < ∞.

Then, if n−1
∑n

t=1 Xk
t

n→∞−→ E[Xk], a.s. for k = 1, 2, 3, . . . ,m, then µ̂′

k → µk for k = 1, 2, 3, . . . ,m.

PROOF. Expanding the estimator for µ̂′

k, we get

µ̂′

k =
1

n

n
∑

t=1





k
∑

j=0

(

k

j

)

Xj
t X k−j

n (−1)k−j



 =

k
∑

jl=0

(−1)k−j

(

k

j

)

(

1

n

n
∑

t=1

Xj
t

)

X k−j
n

We then compare this estimator with the following expansion of E[(x − µ)k].

E[(X − µ)k] =

k
∑

j=0

(−1)k−j

(

k

j

)

E[Xj ]µk−j.

Then, by the Continuous Mapping Theorem, µ̂′

k → E[(x − µ)k].

Corollary. For the moment estimators, γ̂1 and γ̂2, given in Section 3, γ̂k → γk for k = 1, 2.

Proof. The two sets of moments are related as follows:

σ̂ = µ̂′

2, γ̂1 =
µ̂′

3

σ̂3/2
, γ̂1 =

µ̂′

4

σ̂2
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Since µ̂′

k → µk for k = 1, 2, 3, . . . ,m, by the Continuous Mapping Theorem, γ̂1 → µ′

3

σ3/2
and γ̂2 →

µ′

2

σ4 .

REMARK. The assumptions made by this theorem are not especially restrictive. Dai and Meyn

(1995), for instance, show that the conditions hold for open multiclass queueing networks. Addi-

tionally, any stationary processes that is also ergodic meets the conditions, having sample moments

that converge to the true population moments (Robinson, 1996). An example of such a process is a

φ−mixing process, which is commonly used to characterize the output process from discrete-event

simulation models; see Glynn and Iglehart (1990), Chen and Kelton (2000), and Steiger and Wilson

(2002), for example.

Consequently, the terms of the CFE are asymptotically consistent. However, it should also be

noted that there is no method for knowing a priori how long a run should be to ensure low biased

moment estimates. Typically, the more heavily utilized a system is, the longer the bias takes to

diminish.

In summary, in the limit both the moment-estimation bias and the initialization bias disappear

with increasing run length. The bias resulting from the CFE approximation remains, but the results

shown in the following section indicate that it does not significantly impact the accuracy of the

quantile estimates.

5 Results

To evaluate the accuracy and precision of the CFE in estimating quantiles from DES models

when estimates of sample moments are all that are available, three systems were examined: a

single M/M/1 queue, 5 identical M/M/1 queues in tandem, and a full factory model based on a

semiconductor manufacturing process. In all systems, First-In-First-Out (FIFO) dispatching was

employed at all workstations. For the tandem queuing systems, all experimentation was performed

using a discrete event simulator written in C++ , while experimentation for the full factory model

was done using the commercial simulation package, Factory Explorer (Chance, 1995). Additionally,

for all experimentation, n was set to 30, m was set to 5, while l was set at 1,000,000 for traffic
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intensities of 0.9 or lower and 2,000,000 for traffic intensities above 0.9. For all precision-related

results, confidence intervals on indirect estimates were built using the procedure described in Section

3. Similarly, all confidence intervals around direct estimates were built based on order statistic

estimates obtained from independent simulation runs. The independent estimates were grouped,

and the average of each group was calculated, and a standard t-confidence interval was built around

the group averages.

5.1 M/M/1 system

Empirical results demonstrate that both the direct (using order statistics) and indirect (using the

CFE) estimates provide very accurate results for predicting the 0.90 cycle time quantile; neither

estimation technique provides an estimate further than 2% from the true value at any traffic

intensity between 0.5 and 0.97. Figure 3 shows the 95% confidence interval surrounding the 0.90

quantile obtained using both of the estimation techniques. Results show that the confidence interval

surrounding the direct estimates is slightly narrower across all traffic intensities, indicating that in

this experimentation there is less variability when using order statistics to estimate quantiles from

an M/M/1 system than when using the CFE to indirectly produce estimates. For a more in depth

discussion of the M/M/1 case, see McNeill et al. (2003).

[Figure 3 Here]

5.2 System of five tandem queues

The cycle time distribution from a system of 5 identical M/M/1 queues in tandem is significantly

closer to normal than the distribution from the M/M/1 system. As a result, the CFE should

produce better quantile estimates for this system than for the M/M/1 system. Figure 4 shows the

95% confidence interval on the difference between the estimated and theoretical 0.90 cycle time

quantile for the system of 5 tandem M/M/1 queues. Figure 4 illustrates that neither the direct

nor the indirect quantile estimates were off by more than 2% from the theoretical value at any of

the simulated points. The direct estimates maintain a very similar level of accuracy and precisior
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to what they showed for the M/M/1 system, where accuracy indicates the closeness of the point

estimate to the theoretical value and precision indicates the width of the confidence interval.

The indirect estimates, however, produce noticeably more accurate results with greater precision

than they did for the M/M/1 system. Additionally, the mean percentage deviation from theoretical

for the direct estimates seems to depend more on the traffic intensity of the system than do the

percentage deviations for the indirect estimates.

[Figure 4 Here]

In addition to comparing the confidence intervals of the direct and indirect quantile estimation

techniques, Figure 5 shows the robustness of the CFE in estimating different cycle time quantiles

from the system of five tandem queues. Unlike the results from the M/M/1 system, the accuracy of

the CFE does not degrade severely as the quantile to be estimated gets lower. Figure 5 demonstrates

that for all quantiles estimated, from 0.30 to 0.98, the CFE produces estimates within 1.5% of the

theoretical value. This improvement in estimation accuracy and robustness over the M/M/1 system

can be explained by the cycle time distribution being closer to normality.

[Figure 5 Here]

Generating a chart analogous to Figure 5 for estimates obtained using order statistics would

have been significantly more difficult both in terms of storage and post-processing requirements.

For example, direct estimation would have required storage of 1 million observations at a time, 180

times (6 design points * 30 runs), to generate Figure 5, while using the CFE required storage of

only 4 moment estimates and the number of observations for each of the 180 runs. Additionally,

using the CFE, all the quantile estimates shown in Figure 5 were generated from a single set of

simulation runs at each design point. Once the moments at any traffic intensity were estimated, the

only necessary step in obtaining multiple quantile estimates at that traffic intensity using the CFE

was adjusting zα in Equation (2) to the appropriate value. Also, should data beyond the initial

sample have been collected, it would be substantially easier to use this data for updating moment

estimates than it would have been to update the sorted list of individual cycle time values.
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Table 1 summarizes these differences between the two quantile estimation techniques. It illus-

trates the benefits in computer storage and computing effort of using the CFE vs. order statistics

at a single design point. These advantages are magnified as the number of design points of interest

increases. Of note is the fact that Table 1 assumes the most traditional application of order statis-

tics. Procedures exist (i.e. Jain and Chlamtac, 1985), which modify traditional order statistics by

requiring the storage of only a small subset of the observations. Assuming the desired quantiles

were known in advance, using such procedures would reduce the storage requirements for direct

estimation reported in Table 1.

Table 1: Computational requirements for direct and indirect quantile estimation for the system
of 5 tandem M/M/1 queues.

Estimation

Technique

Number of

Data Val-

ues Stored

Post-Processing Effort to Obtain a New

Quantile Estimate

Indirect Estima-
tion
(CF Expansion)

5 Evaluate the CF Expansion
(virtually instantaneous us-
ing a spreadsheet)

Change zα value in the CF ex-
pansion (also done using simple
spreadsheet)

Direct Estimation
(Order Statistics)

1,000,000 Sort data and retrieve value
(requires computer program)

Retrieve new value from the
sorted list

5.3 Full factory model

Finally, in addition to testing the CFE on a simple M/M/1 queuing system and on the system

of 5 M/M/1 queues in tandem, experimentation was also performed on a more complex model

representing a full semiconductor manufacturing factory. The model was taken from the website

of the Modeling and Analysis of Semiconductor Manufacturing (MASM) lab at Arizona State

University, www.fulton.asu.edu/~ie/research/labs/masm. Testbed Data Set #1 was used as

the basis for the full factory model; details about the system are given in Table 2.

An example of the cycle time distribution for the full factory model run at a 60% traffic intensity

at the bottleneck (the most heavily utilized workstation) is shown in Figure 6. As expected,

at this moderate traffic intensity, the distribution looks closer to normal (though with a longer

right tail) than even the system of 5 tandem queues. Consequently, the expectation is that for
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Table 2: Description of full factory model.

Product type Non-volatile memory

Number of products 1

Number of processing steps 232

Number of tool groups 83

Number of operator groups 32

Rework modeled? Yes

Machine breakdown modeled? Yes

Machine loading/unloading? Yes

lower traffic intensities, the CFE will provide very accurate quantile estimates for this system.

Figure 6 also gives an example of the cycle time distribution for the same system at 97% traffic

intensity. Clearly, at this traffic intensity the system is less normally distributed, and, therefore,

estimation of higher moments plays more of a role in generating accurate quantile estimates. Since

the theoretical quantiles are unknown, however, assessment of the indirect estimation technique is

made by comparing with direct estimates obtained using order statistics. It is assumed that after

simulating for a very long time, the direct estimates provide a good estimate of the true quantiles.

Therefore, an indirect estimation technique that provides results similar to the direct estimates is

assumed to be accurate as well.

[Figure 6 Here]

For estimates of the 0.9 cycle time quantile at traffic intensities between 0.5 and 0.98, the direct

and indirect quantile estimates for this system were never more than 2% different from each other.

Also, the width of the 95% confidence interval surrounding the 0.9 quantile was not more than 3%

different than the directly estimated quantile at any of the simulated points. For a variety of other

quantiles, the percentage difference between the direct and indirect estimates for this system is

never more than 4%, and there does not appear to be any relationship between the quantile being

estimated and the quantity by which the two estimates differ, indicating that the CFE is capable

of producing equally accurate results for both high and low quantiles.

Figure 7 illustrates one of the benefits to the decision maker of generating multiple quantile

estimates from a single set of simulation runs. This plot was generated from the output of a
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single set of runs and gives the complete range of cycle time quantiles for the full factory model

at 90% traffic intensity. The figure gives an estimate of the inverse of the cycle time distribution’s

cdf at this traffic intensity and provides a valuable tool for quoting lead times. For example, it

illustrates that if the factory was being run at 90% traffic intensity, a lead time of 1400 hours could

be met approximately 90% of the time, while a quoted lead time of 1300 hrs could only be met

approximately 50% of the time. Additional discussion on the full factory model can be found in

McNeill et al. (2003).

[Figure 7 Here]

6 Other quantile estimation techniques

The CFE directly translates sample moments from a distribution into quantile estimates. Another

technique is to use these moment estimates to generate an estimate of the cycle-time distribution’s

cdf. From the cdf, quantile estimates can then be generated by taking the inverse. Since both the

skewness and kurtosis are important in describing a distribution, and since estimates of the first four

moments were already available from previous experimentation with the CFE, four parameter dis-

tributions were chosen for this experimentation. Additionally, distributions were sought that could

accurately capture the shape of the normal distribution and the shape of distributions with more

prominent skewness. Specifically, the following four-parameter distributions were investigated: the

Pearson family of distributions, the Johnson family of distributions, and the Generalized Lambda

Distribution. The Pearson and Johnson families were ruled out quickly based on experimentation

with the exponential distribution, where they generated quantile estimates that were very poor.

The generalized lambda distribution (GLD) is a four parameter family of distributions that

has the capability of modeling both the normal and the exponential distributions quite well. The

quantile function of the GLD is given below, where λ1 and λ2 are location and scale parameters and

λ3 and λ4 determine the skewness of the distribution. The regions that produce a valid distribution

can be found in Karian and Dudewicz (2000).

19



F−1(y) = Q(y : λ1, λ2, λ3, λ4) = λ1 +
yλ3 − (1 − y)λ4

λ2

To fit the distribution using estimates of the first four moments, a numerical search algorithm,

written in Maple (Heck, 2003) and available from Karian and Dudewicz (2000), can be used. This

algorithm takes as inputs the sample moment estimates and a starting point for the numerical

search algorithm. The starting point for the algorithm can be obtained from a table, also available

in Karian and Dudewicz (2000). The outputs of the algorithm are the distribution parameters that

are used to generate the cdf, which, in turn, allows the calculation of any quantile.

Figure 8 shows estimates of various quantiles for the M/M/1 system using the GLD. The

sample moment estimates used in this experimentation were identical to those used in the M/M/1

experimentation with the CFE. As a whole, the estimates appear to be slightly more accurate than

those obtained using the CFE, especially at lower traffic intensities and for lower quantiles. The

improvement in accuracy is not universal, however, and is not substantial enough to justify the

extra work of looking up and providing a starting point for the numerical search algorithm for each

simulation replication at each traffic intensity.

[Figure 8 Here]

Experimentation with the GLD was also performed on the system of 5 tandem queues to

determine how well the GLD could estimate quantiles of a system with more normally distributed

cycle-times. Results from this experimentation showed that the accuracy is very comparable to

those obtained using the CFE.

In summary, the GLD, while capable of providing accurate quantile estimates for both the

exponential and normal distributions, does not provide enough of an improvement over the CFE

to warrant its use. The numerical search algorithm used to fit the distribution is fairly sensitive to

the starting point, and the necessity of providing this starting point severely degrades the ease of

use. As a result, neither the GLD nor the Pearson and Johnson distributions mentioned previously

are recommended over the CFE for quantile estimation from DES models.
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7 Conclusions

While the paper presents some mathematical support for the CFE-based quantile estimation ap-

proach, the real demonstration of the technique’s value comes from the fact that we have used it

successfully in extensive experiments specialized to the kind of data we expect to find in manu-

facturing. The results from the M/M/1 system, the system of 5 tandem M/M/1 queues, and the

full factory model illustrate that the CFE can be effectively used as an indirect cycle time quantile

estimator for manufacturing systems. Specifically, the experimentation supports the approach for

estimating quantiles higher than 0.5 in systems operating under FIFO dispatching. Also, despite

the fact that the direct estimates obtained using order statistics provided slightly more accurate

quantile estimates with less variability than the indirect estimates, particularly for the M/M/1

system, the gains in accuracy were offset by the ease of implementation and data storage require-

ments. Similarly, fitting the GLD using its cdf to generate quantile estimates provided slightly

more accurate results than the CFE for the M/M/1 system and comparable results for the system

of 5 tandem queues. However, the requirement of providing a starting point for the algorithm

makes the technique significantly more difficult to implement and outweighs the relatively minor

improvement in accuracy.

In summary, the CFE provides an indirect steady-state quantile estimation technique that is

easy to implement and has the advantage of being able to generate multiple quantile estimates from

a single set of simulation runs, allowing charts like Figure 7 to be easily generated. Furthermore,

perhaps equally important to the savings in computing time is the savings in computer storage

required by the CFE. To make a direct quantile estimate using order statistics, storage of each

cycle time observation is required. The CFE, on the other hand, requires storage of only four

values used to calculate sample moments, regardless of the number of cycle time observations

collected. Consequently, as the number of cycle time observations increases, so does the savings in

computer memory, again highlighting the compactness of the representation of a system provided

by the CFE. These low data storage requirements also make the CFE-based quantile estimation

technique an attractive method to add to a commercial manufacturing simulation package such as

Factory Explorer. Finally, if there is a need to collect additional data, adding this new data to
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moment estimates for indirect estimation is much easier than adding the data to a sorted list of cycle

time observations used for direct estimation. As such, it is generally preferable to direct estimation

using order statistics and indirect estimation from four-parameter distributions. Moreover, specific

attention has been paid in this paper to the manufacturing industry because certain assumptions

about the cycle time distribution can be made, but the application of the CFE to quantile estimation

need not be limited to these applications. The method is also applicable for service systems, and,

in fact, any type of queueing system.

8 Future work

The empirical results in this paper have shown that the CFE can provide accurate quantile estimates

for a variety of cycle time distributions for systems operating under FIFO dispatching. An assump-

tion of this work is that the cycle time distribution from which quantiles are desired will not be so

far from the normal distribution that the CFE will have to make major adjustments. Therefore, we

are very confident recommending the approach for any system operating under FIFO dispatching.

However, it is unclear that this assumption will hold in the case of non-FIFO dispatching at any

workstation. Preliminary experimentation indicates that the approach is promising for the Earliest

Due Date (EDD) and random dispatching policies; in preliminary experimentation on a system of

5 tandem M/M/1 queues, the quantile estimation technique presented in Section 3 yielded results

within 4% of the corresponding quantiles estimated using order statistics for quantiles between 0.5

and 0.99. However, the same experimenation with Last-In-First-Out (LIFO) dispatching, Short-

est Processing Time (SPT) dispatching, and Critical Ratio (CR) dispatching gave much poorer

results (quantile estimates were more than 300% off in some cases), indicating that an alternative

approach must be used. Bekki et al. (2006) indicate that a power transformation, which brings

the CT distribution closer to normal, may be effective in such situations. Further experimentation

should be performed before applying this technique to systems which employ a dispatching policy

other than FIFO at a bottleneck workstation.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 7
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Figure 8
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Figure 1: Relative percent deviation between approximated and theoretical quantiles from the
exponential distribution as a function of the number of terms included in the expansion.
The Cornish-Fisher expansion, provided with normalized, theoretical moments, was used to
compute the approximations.

Figure 2: Relative percent difference between estimated and theoretical quantiles for the exponen-
tial distribution. Estimates were computed using the first four terms of the Cornish-Fisher
expansion and theoretical moments.

Figure 3: 95% Confidence interval on percentage difference between estimated and the theoretical
0.90 cycle time quantile for an M/M/1 system. Direct estimates were computed using order
statistics, and indirect estimates were computed using the first four terms of the Cornish-
Fisher expansion.

Figure 4: 95% Confidence interval on the relative percent difference between theoretical and
estimated 0.90 cycle-time quantile for a system of 5 tandem M/M/1 queues. Direct estimates
were computed using order statistics, and indirect estimates were computed using the first
four terms of the Cornish-Fisher expansion.

Figure 5: Relative percent difference between indirectly estimated and theoretical quantiles for a
system of 5 tandem M/M/1 queues. Indirect estimates were computed using the first four
terms of the Cornish-Fisher expansion.

Figure 6: Sample cycle-time distribution from full factory model run at a traffic intensity of 60%
at the bottleneck (left) and a traffic intensity of 97% at the bottleneck (right).

Figure 7: Complete range of quantile estimates at 90% traffic intensity for the full factory model.
Quantile estimates were computed using the first four terms of the Cornish-Fisher expansion.

Figure 8: Relative percent difference from theoretical quantiles for an M/M/1 system. Quantile
estimates were computed from the lambda distribution.
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