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Virtual performance is a class of time-dependent performance measures conditional on a particular event

occurring at time τ0 for a (possibly) nonstationary stochastic process; virtual waiting time of a customer

arriving to a queue at time τ0 is one example. Virtual statistics are estimators of the virtual performance. In

this article, we go beyond the mean to propose estimators for the variance, and for the derivative of the mean

with respect to time, of virtual performance, examining both their small-sample and asymptotic properties.

We also provide a modified K-fold cross validation method for tuning the parameter k for the difference-

based variance estimator, and we evaluate the performance of both variance and derivative estimators via

controlled studies and a realistic illustration. The variance and derivative provide useful information that is

not apparent in the mean of virtual performance.
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1 INTRODUCTION

“Virtual statistics,” as we define them, are estimators for performance measures that are condi-
tional on the occurrence of an event at a particular time, say τ0. This class of measures we call
virtual performance at time τ0, denoted byV (τ0). Lin and Nelson (2016) and Lin et al. (2017) focus
on estimating the mean of some time-dependent virtual performance, denoted byv (τ0) = E[V (τ0)],
for a (possibly) nonstationary stochastic process using the output of computer simulation, and they
propose a k-nearest-neighbors (knn) estimator of it. Lin et al. (2017) show that knn is a simple,
easy-to-tune, robust estimator for the mean of virtual performance from time-dependent, strongly
correlated simulation sample paths. In this article, we go beyond estimation of the virtual mean
v (τ0), and we develop methods to estimate the virtual variance of V (τ0) and the derivative with
respect to time of the virtual mean dv (τ0)/dt .
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17:2 Y. Lin and B. L. Nelson

To motivate the study of virtual statistics and the need for more than just the mean, consider
an emergency department (ED). In this example, if walk-in patients find the ED is too congested
upon their arrival, then they might leave immediately to seek help elsewhere. The patients who
decide to stay are registered first and then wait for a nurse to walk them to an available bed. Some
of these patients need radiology and treatment from a doctor. From the perspective of patients and
administrators, it is of interest to know how long it might take patients to get a bed, or how long
they have to stay in the ED when further radiology and treatment are required, if they arrive to
the ED at, say, 7:30 AM. However, it is important to be aware of the probability that patients do
not wait due to congestion so that the ED can better adjust the number of nurses and doctors. The
knn estimator proposed by Lin and Nelson (2016) could be used to estimate the mean of the virtual
waiting time to get a bed for the patient who arrives at τ0 = 7:30 AM, and the virtual probability
that a patient leaves immediately if they arrive at τ0 = 7:30 AM (or any other time). Of course,
neither the patient nor the ED is likely to experience exactly the mean of the virtual waiting time
or the mean of the virtual probability. The variance (or standard deviation) of the virtual waiting
time or the virtual probability provides a more complete description of the distribution that the
patient might experience. Furthermore, if a patient arrives to the ED slightly earlier or later than
time τ0, then the ED administrators might want to know whether or not this change would lead to
a much longer expected waiting time; that is, is the mean v (τ0) changing rapidly with time? Such
a question can be answered by the derivative of the mean of the virtual waiting time with respect
to the arrival time. Therefore, it is valuable to go beyond the mean of virtual performance to study
the virtual variance and derivative.

How might we estimate the virtual variance? In regression problems when the true regression
function is unknown, a typical approach for estimating the response variance is to first estimate
the regression function, and then to derive the response variance from the residuals; this is called
residual variance estimation. There exists substantial research on residual variance estimation us-
ing nearest neighbors. For example, Liitiäinen et al. (2010) describe a residual variance estimator
using nearest neighbor statistics, and Liitiäinen et al. (2008) study variance estimation for a gen-
eral setting that covers non-additive heteroscedastic noise under non-i.i.d. sampling. We introduce
both a residual variance estimator and an alternative difference-based variance estimator adapted
to our virtual performance setting.

The derivative of the mean response reveals how the system will respond to a change in the
time that the trigger event occurs. Additionally, the derivative allows simulation users to obtain
some idea of how many time points at which they should estimate the virtual mean v (τ0) to un-
derstand the system performance profile. For example, if we estimate the mean v (τ0) at a set of
time points and find the derivatives at these points are large, then more time points are needed to
fully characterize the mean performance profile. However, if the derivative of v (τ0) is close to 0
at some time points, then it is not necessary to estimate the mean of virtual performance at times
close to τ0, because we know v (t ) changes very slowly near τ0.

The finite difference (FD) method has been widely used for derivative estimation in simulation.
Although FD is well known, we show later why it is incompatible with a nonparametric knn
approach. In addition to FD, there are many other types of derivative estimators. One of them
is similar to the residual variance estimation scheme; that is, one should estimate the unknown
regression function first by using some smooth functions such as polynomials or splines and then
compute the estimator by taking the derivative of the estimated regression function with respect to
time. For example, Zhou and Wolfe (2000) study the estimation of derivatives using splines. Gasser
and Müller (1979) and Gasser and Müller (1984) describe kernel-based derivative estimators. A
more recent derivative estimation method is based on weighted slopes of symmetric observations
around the time t = τ0 of interest. De Brabanter et al. (2013) and De Brabanter and Liu (2015)
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Variance and Derivative Estimation of Virtual Performance 17:3

study this type of estimator and show its asymptotic properties. Although all of these approaches
can apply to virtual performance settings, we focus on the weighted-slopes type of derivative
estimator, because it can be treated as an extension of our existing knn mean estimation results.

The remainder of this article is organized as follows. We start with a summary of our work on
mean estimation for virtual performance in Section 2, which includes important assumptions and
results from Lin et al. (2017). In Section 3, we formally define our variance and derivative estima-
tors for virtual performance. The asymptotic properties of the proposed estimators under specific
conditions on the system of interest and the growth rate of the tuning parameter k are offered
in Section 4. We introduce a modified K-fold cross validation method for tuning the parameter
of the difference-based variance estimator in Section 5. To evaluate the performance of the pro-
posed variance and derivative estimators, we apply our method to controlled studies in Section 6.1,
comparing the estimators with the true variance and derivative of virtual performance. We also
apply our proposed virtual statistics to a simulated ED problem in Section 6.2. Some conclusions
are provided in Section 7. Portions of this article were published in the Proceedings of the 2017
Winter Simulation Conference as Lin and Nelson (2017).

2 THE kNN METHOD FOR THE MEAN

We first present the definition of virtual performance given in Lin et al. (2017). Consider a stochas-
tic point process that begins at time Tstart ≡ 0 and ends at time Tend ≡ T where E(T 2) < ∞. The
random event times are 0 < t1 < t2 < · · · < tM ≤ T ; in the simulation setting these will typically
be the times that a common type of event occurs, such as “customer arrival” or “machine failure,”
although that is not essential. We will call all of these events “arrivals” from here on even though
they may not be.

The simulation also generates an output processY1,Y2, . . . that we call the performance measure.
We assume there is a unique Yi associated with each ti ; for notation, we denote this Y (ti ), which
simply means this is the Y associated with arrival time ti . In the setting we have in mind, ti < ti+1

does not necessarily imply that Y (ti ) is realized in the simulation before Y (ti+1). For instance, if
t1 < t2 are the arrival times of the first and second customers to a queue, and Y (t1) and Y (t2) their
respective sojourn times, customer 2 might depart before customer 1 if overtaking can occur. The
process {(ti ,Y (ti )); i = 1, 2, . . . ,M } is the basic data of interest in this article

For a fixed time 0 < τ0 ≤ T , let Vi (τ0)
D
= (Y (ti ) |ti = τ0). This is a random variable having the

distribution of the performance of the ith arrival, given that arrival occurred at time τ0. While
possibly interesting it its own right, we focus instead on V (τ0), where

Pr{V (τ0) ≤ y0} =
∞∑

i=1

Pr{Vi (τ0) ≤ y0}qi (τ0) (1)

and qi (τ0) = Pr{ti = τ0 |an arrival occurs at τ0}. In other words, V (τ0) is the performance Y for an
arrival at τ0, given some arrival occurred at time τ0. We refer to this as the virtual performance at τ0.

Remark. There are several definitions of “virtual” performance in the literature. Our definition
is conditional on an arrival from the nominal arrival process occurring at time τ0; other definitions
are for a real or phantom customer injected into the nominal system at τ0, or what is experienced
by an arbitrary random arrival. Our definition is particularly appropriate for profiling performance
of a nonstationary system over time.

Lin et al. (2017) propose a knn method for estimating v (τ0) = E[V (τ0)] from n independent
simulation replications and provide two approaches for measuring the error of the knn mean
estimator. Therefore, the simulation data are {(ti j ,Y (ti j )); i = 1, 2, . . . ,Mj }, j = 1, 2, . . . ,n, where
the subscript j denotes the jth replication. We assume that all these data are retained rather than
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17:4 Y. Lin and B. L. Nelson

summarized, which facilitates tuning the estimator to the characteristics of the data, and estimating
virtual performance for any time τ0 specified in advance or later. We also assume E[Y 2 (ti j )] < ∞
for all ti j , implying that the simulation-generated performance measure for each arrival has finite
mean and variance.1 In this article, we focus on the same type of stochastic ouput process but will
study different virtual statistics. The development is based on some important results from Lin
et al. (2017). Therefore, we restate the relevant assumptions and results in this section.

Denote the superposed process of all of the observed arrival times by Tn = {ti j : i =
1, 2, . . . ,Mj , j = 1, 2, . . . ,n}. The knn estimator of v (τ0), V̄ (τ0), proposed by Lin et al. (2017) is

V̄ (τ0) =
1

k

k∑

�=1

Y (τ (�,n)
0 ), (2)

where τ (1,n)
0 < τ (2,n)

0 < · · · < τ (k,n)
0 are the sorted k nearest neighbors to τ0 from the superposed

process Tn , and Y (τ (�,n)
0 ) is the corresponding observed output for � = 1, 2, . . . ,k . Notice that the

“closeness” here is based on |τ (�,n)
0 − τ0 | regardless of replication and ties are broken arbitrarily.

Thus, V̄ (τ0) is computed from a mix of independent and dependent output data that are not iden-
tically distributed in general.

The system of interest analyzed in this article satisfies the same properties assumed in Lin et al.
(2017). Let the arrival-counting process associated with ti j from a generic replication of the dy-
namic system to be denoted by {N (t ) : t ≥ 0}. For any time interval (t −w/2, t +w/2] withw > 0,
let the number of arrivals within (t −w/2, t +w/2] to be denoted by Nw (t ) = N (t +w/2) − N (t −
w/2). If τ0 is very close to the endpoint 0, then t −w/2 might be negative so that N (t −w/2) is
not defined. A similar issue occurs for τ0 that is close to T . Thus, we further define N (t ) = N (0)
for t ≤ 0, and N (t ) = N (T ) for t ≥ T . For each replication, suppose {N (t ) : t ≥ 0} satisfies the fol-
lowing properties for all t ∈ (0,T ]:

Pr
{
Nw (t ) ≥ 1

}
= λtw + o(w ) and Pr

{
Nw (t ) ≥ 2

}
= o(w ), (3)

where λt > 0 is the arrival process intensity at time t and o(w ) indicates a term for which
limw→0 o(w )/w = 0. Note that Equation (3) is weaker than the conditions for a Poisson arrival
process, because the latter also requires independent increments.

Lin et al. (2017) show that if k/n → 0 as n → ∞, then the smallest symmetric interval that con-
tains thek nearest neighbors of τ0, denoted byW k

n (τ0), converges to 0 in L2 norm and almost surely;
and the k nearest neighbors are asymptotically from distinct replications, implying that they are
asymptotically independent. These results are used to prove consistency of V̄ (τ0) for v (τ0) in Lin
et al. (2017), and they will also be important here.

3 VIRTUAL VARIANCE AND DERIVATIVE ESTIMATION

In this section, we define the variance and derivative of the mean for the virtual performance of
our stochastic process, and propose our variance and derivative estimators.

3.1 Variance Estimation

The variance of the virtual performance V (τ0) is σ 2 (τ0) = Var(V (τ0)). We define a class of knn
variance estimator to be

σ̂ 2 (τ0) =
∑

(�,m)∈V (τ0 )

ϕ�m

[
Y (τ (�,n)

0 ) − Y (τ (m,n)
0 )

]2
, (4)

1For notational simplicity, we refer to this assumption as E[Y 2 (t )] < ∞ from here on.
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where the setV (τ0) contains the indices of the pairs (τ (�,n)
0 ,τ (m,n)

0 ) used for computing σ̂ 2 (τ0) and
ϕ�m is the associated set of weights; we will consider two different sets of indices and weights.

IfV (τ0) = {(�,m) | � �m ∈ {1, 2, . . . ,k }} (i.e., all the pairs of observations are used), and we use
ϕ�m = 1/(2k (k − 1)) for all (�,m), then σ̂ 2 (τ0) coincides with the sample variance of the k nearest
neighbors; it is also called a residual-based variance estimator, which we denote by σ̂ 2

RB
(τ0) with

V (τ0) = V
RB

(τ0); i.e.,

σ̂ 2
RB

(τ0) =
∑

(�,m)∈V
RB

(τ0 )

1

2k (k − 1)

[
Y (τ (�,n)

0 ) − Y (τ (m,n)
0 )

]2
=

1

k − 1

k∑

�=1

[
Y (τ (�,n)

0 ) − V̄ (τ0)
]2
. (5)

Our residual-based variance estimator σ̂ 2
RB

(τ0) is different from a typical sample variance, which
is computed from k independent measurements at t = τ0. Since it is very unlikely we will obtain
any, much less multiple, observations at τ0 due to the nature of virtual performance, our proposed
residual-based variance estimator is constructed based on the k nearest neighbors around τ0 and
these k observations are usually dependent.

The residual-based variance estimator in Equation (5) involves the pairs (τ (�,n)
0 ,τ (m,n)

0 ) from
the k nearest neighbors. By contrast, Rice (1984) proposes a first-order difference-based variance
estimator, denoted by σ̂ 2

DB
(τ0), that only contains the pairs of any two successive observations; thus

the corresponding index setV (τ0) becomesV
DB

(τ0) = {(�,m) | m = � − 1, � ∈ {2, . . . ,k }} and the
associated weights are ϕ�m = 1/(2(k − 1)), so

σ̂ 2
DB

(τ0) =
∑

(�,m)∈V
DB

(τ0 )

1

2(k − 1)

[
Y (τ (�,n)

0 ) − Y (τ (m,n)
0 )

]2
=

1

2(k − 1)

k∑

�=2

[
Y (τ (�,n)

0 ) − Y (τ (�−1,n)
0 )

]2
.

(6)

Compared with the residual-based variance estimator defined in Equation (5), a difference-based
variance estimator like Equation (6) removes the trend in the mean. There exist other variations of
difference-based variance estimators. For example, Gasser et al. (1986) introduce pseudo-residuals
to construct their difference-based variance estimator, which assigns each squared difference its
own weight based on their distances to the point of interest. Typically, equally weighted difference-
based variance estimators are applied for problems with equi-spaced design points, and many rel-
evant papers like Rice (1984) assume independence among the observations. However, the super-
posed arrivals in Tn could be very dense if either the arrival intensity or the number of replications
n is large, so all observations within the superposed sample path Tn are close to each other and
the impact of the differing distances will be less significant. As for the independence assumption,
we will establish the asymptotic independence for the k nearest neighbors around τ0 under certain
conditions on the system and the growth rate of k . Therefore, we suggest the equally-weighted
difference-based variance estimator defined in Equation (6).

To further compare these two knn variance estimators, σ̂ 2
RB

(τ0) and σ̂ 2
DB

(τ0), we establish their

asymptotic properties in Section 4, and propose a parameter-tuning approach for σ̂ 2
DB

(τ0) in
Section 5.

3.2 Derivative Estimation

The derivative of v (t ) evaluated at t = τ0 is v ′(τ0) = dv (t )/dt |t=τ0 . As mentioned in Section 1, the
traditional FD method cannot be effectively used in a virtual statistics problem. If the FD δ is small,
as it should be for low bias, then the arrival times ti j in the interval [τ0,τ0 + δ] or [τ0 − δ ,τ0 + δ]
may be nearly the same, and therefore cancel in a FD estimator.
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17:6 Y. Lin and B. L. Nelson

Fig. 1. An example of constructing β̂SW D (τ0) based on four nearest neighbors. The 	 and � indicate the

neighbors that are paired.

A näive derivative estimator forv ′(t ) at t = τ0 is (Y (τ (�,n)
0 ) − Y (τ (m,n)

0 ))/(τ (�,n)
0 − τ (m,n)

0 ), where

(τ (�,n)
0 ,Y (τ (�,n)

0 )) and (τ (m,n)
0 ,Y (τ (m,n)

0 )) are two observations near τ0. Motivated by this insight,
we define a class of derivative estimators for v ′(τ0):

β̂ (τ0) =
∑

(�,m)∈D (τ0 )

ω�m

⎡⎢⎢⎢⎢⎣
Y (τ (�,n)

0 ) − Y (τ (m,n)
0 )

τ (�,n)
0 − τ (m,n)

0

⎤⎥⎥⎥⎥⎦
, where ω�m =

(τ (�,n)
0 − τ (m,n)

0 )2

∑
(r,s )∈D (τ0 ) (τ

(r,n)
0 − τ (s,n)

0 )2
.

(7)
The derivative estimator defined in Equation (7) is the weighted average of the slopes of two

neighbors within D (τ0), and the weight ωlm is proportional to the difference between τ (�,n)
0 and

τ (m,n)
0 . Similar to the index set V (τ0) in the variance estimator, D (τ0) contains the indices of all

pairs (τ (�,n)
0 ,τ (m,n)

0 ) used for computing β̂ (τ0).
A natural choice of D (τ0) is to employ the same k nearest neighbors used in estimating the

mean, V̄ (τ0). Then D (τ0) = {(�,m) | � �m ∈ {1, 2, . . . ,k }}. In this case, we can express β̂ (τ0) as

β̂ (τ0) =
k∑

��m

(τ (�,n)
0 − τ (m,n)

0 )2

∑k
r�s (τ (r,n)

0 − τ (s,n)
0 )2

·
Y (τ (�,n)

0 ) − Y (τ (m,n)
0 )

τ (�,n)
0 − τ (m,n)

0

=

∑k
�=1 (τ (�,n)

0 − t̄ ) (Y (τ (�,n)
0 ) − V̄ (τ0))

∑k
�=1 (τ (�,n)

0 − t̄ )2
,

where t̄ =
∑k

�=1 τ
(�,n)
0 /k . For this choice of D (τ0), the derivative estimator defined in Equation (7)

coincides with the ordinary least squares (OLS) estimator. Such a derivative estimator, denoted

by β̂
O LS

(τ0) associated with D
O LS

(τ0), can also be viewed as the estimated slope coefficient for a
linear regression model of the k nearest neighbors to τ0.

De Brabanter et al. (2013) and De Brabanter and Liu (2015) propose a different choice of D (τ0)

for constructing β̂ (τ0). Instead of using all (τ (�,n)
0 ,τ (m,n)

0 ), they only choose the pairs where τ (�,n)
0

and τ (m,n)
0 are symmetric around τ0. We call such a derivative estimator the symmetric weighted

difference (SWD) estimator, and the corresponding index set becomes D
SW D

(τ0) = {(�,m) | � +
m = 2k̃ + 1, � > m ∈ {1, 2, . . . , k̃ }}, where k̃ is the number of involved pairs (i.e., slopes).

A simple illustration for constructing β̂
SW D

(τ0) is shown in Figure 1. Suppose we use the four

nearest neighbors around τ0 to construct β̂ (τ0), then β̂
O LS

(τ0) will involve all 4 × (4 − 1) = 12 pairs

of (τ (�,n)
0 ,τ (m,n)

0 ) while β̂
SW D

(τ0) will only include two pairs: (τ (4,n)
0 ,τ (1,n)

0 ) and (τ (3,n)
0 ,τ (2,n)

0 ).

The number of involved slopes k̃ must satisfy k̃ ≤ k/2. In the simple example shown above,

k̃ = 2 when four nearest neighbors are chosen, which is the best situation. If τ (2,n)
0 also locates

on the same side of τ0 as τ (3,n)
0 and τ (4,n)

0 , then β̂
SW D

(τ0) will only contain one slope computed

from (τ (2,n)
0 ,τ (1,n)

0 ). The worst case is that all these four nearest neighbors are on one side of τ0,

so that we cannot construct β̂
SW D

(τ0) according to its definition. Therefore, to construct a SWD

estimator β̂
SW D

(τ0), we do not use the original k nearest neighbors. Instead, we choose the k
nearest neighbors to τ0 from (0,τ0] and another k nearest neighbors to τ0 from (τ0,T ], and sort

these 2k neighbors as τ (1,n)
0,SW D < τ (2,n)

0,SW D < · · · < τ (2k,n)
0,SW D . Then the index set D (τ0) for β̂

SW D
(τ0) is
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D
SW D

(τ0) = {(�,m) | � +m = 2k + 1, � > m ∈ {1, 2, . . . ,k }} so that β̂
SW D

(τ0) is constructed on k
pairs of symmetric observations around τ0. Note that these 2k neighbors might not be the 2k near-

est neighbors to τ0. The asymptotic properties of β̂
O LS

(τ0) and β̂
SW D

(τ0) are established in Section 4.

Remark. Typically OLS and SWD estimators are used when data are independent and ho-
moscedastic, but the retained simulation data of interest to us is very unlikely to satisfy these
two conditions, which is the main difference between our setting and the existing literature. How-
ever, we can establish similar asymptotic properties under certain conditions on the system and
the growth rate of k . More details are provided in Section 4.

4 ASYMPTOTIC PROPERTIES OF VARIANCE AND DERIVATIVE ESTIMATORS

In this section, we establish the asymptotic properties of the proposed variance and derivative
estimators. The proofs for all the asymptotic results are provided in Appendices A–E.

Theorem 4.1. Suppose that the system of interest satisfies E[Y 2 (t )] < ∞ and its arrival-counting

process satisfies Equation (3), and that the true response surfacev (t ) and the marginal variance σ 2 (t )
are Lipschitz continuous with finite Lipschitz constants L1,L2 > 0 for any t1, t2 ∈ [0,T ]. If k/n → 0
as k,n → ∞, then

(i) the residual-based variance estimator σ̂ 2
RB

(τ0) is asymptotically unbiased and consistent for

σ 2 (τ0);
(ii) the difference-based variance estimator σ̂ 2

DB
(τ0) is asymptotically unbiased for σ 2 (τ0);

(iii) if in addition, E[T 4] < ∞ and E[V 4 (τ0)] is also Lipschitz continuous with finite Lipschitz

constant L3 > 0 for any t1, t2 ∈ [0,T ], then σ̂ 2
DB

(τ0) is asymptotically consistent for σ 2 (τ0).

De Brabanter and Liu (2015) show the asymptotic unbiasedness and consistency for the deriv-

ative estimator β̂
SW D

(τ0), but they only consider cases where all observations are independent
and homoscedastic. We employ the key part of their proof and then extend it to our problem in
which the observations might be dependent and heteroscedastic. Before establishing the asymp-

totic properties for β̂
SW D

(τ0), we need to establish the following lemma.

Lemma 4.2. Suppose that the system of interest satisfies E[Y 2 (t )] < ∞ and its arrival-counting

process satisfies (3). Let τ (1,n)
0,SW D < τ (2,n)

0,SW D < · · · < τ (2k,n)
0,SW D be the sorted 2k observations used for com-

puting β̂
SW D

(τ0). DefineW 2k
SW D

(τ0) = τ (2k,n)
0,SW D − τ

(1,n)
0,SW D as the smallest interval that contains these 2k

observations, and

I 2k
SW D

(τ0) =
⎧⎪⎨⎪⎩

1, if τ (1,n)
0,SW D ,τ

(2,n)
0,SW D , . . . ,τ

(2k,n)
0,SW D are from distinct replications

0, otherwise.
.

If k/n → 0 as n → ∞, then

(i) W 2k
SW D

(τ0)
L2

→ 0, implying that lim n → ∞
k/n → 0

E[(W 2k
SW D

(τ0))2] = 0; andW 2k
SW D

(τ0)
a .s .→ 0; further

(ii) Pr{I 2k
SW D

(τ0) = 1} → 1; that is, {Y (τ (1,n)
0,SW D ),Y (τ (2,n)

0,SW D ), . . . ,Y (τ (2k,n)
0,SW D )} are asymptotically

independent.

Theorem 4.3. Suppose that the system of interest satisfies E[Y 2 (t )] < ∞ and its arrival-counting

process satisfies Equation (3), and that v (t ) is twice continuously differentiable with v ′′(t ) < ∞ and

supt ∈[0,T ] σ
2 (t ) = σ 2

sup
< ∞. If k/n → 0 as k,n → ∞, then
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(i) β̂
SW D

(τ0) is asymptotically unbiased for v ′(τ0);

(ii) if in addition, k3/2/n → ∞ as k,n → ∞, then β̂
SW D

(τ0) is asymptotically consistent for

v ′(τ0).

We can use the same proof of the asymptotic unbiasedness of β̂
SW D

(τ0) from De Brabanter and
Liu (2015) for proving part (i) in Theorem 4.3, since neither the independence nor homoscedasticity
assumption is required for showing asymptotic unbiasedness. The proof for part (ii) is also based
on De Brabanter and Liu (2015), but we need to transform our problem into their situation where
both the independence and homoscedasticity assumption are required; see Appendix E. The proof
for Theorem 4.4 is similar to the one for Theorem 4.3.

Theorem 4.4. Suppose that the system of interest satisfies E[Y 2 (t )] < ∞ and its arrival-counting

process satisfies Equation (3), and that v (t ) is twice continuously differentiable with v ′′(t ) < ∞ and

supt ∈[0,T ] σ
2 (t ) = σ 2

sup
< ∞. If k/n → 0 as k,n → ∞, then

(i) β̂
O LS

(τ0) is asymptotically unbiased for v ′(τ0);

(ii) if in addition, k2/n → ∞ as k,n → ∞, then β̂
O LS

(τ0) is asymptotically consistent for v ′(τ0).

From Theorems 4.3–4.4, we see that k should not increase faster than n but should not increase
too slowly either. The growth rate of k affects the width of the interval W 2k

SW D
(τ0). If k grows

too slowly, then W 2k
SW D

(τ0) might be too narrow such that the observations are too close to each
other, which is harmful in derivative estimation. Specifically, the number of nearest neighbors k

for β̂
SW D

(τ0) should increase faster than the k for β̂
O LS

(τ0). This is because β̂
O LS

(τ0) uses many
more weighted slopes so its variance can be better controlled.

5 PRACTICAL APPROACH

In practice, we need to determine the tuning parameter k to construct good variance and deriv-
ative estimators based on finite sample paths. We discuss how to tune the parameter k in this
section.

We know σ̂ 2
RB

(τ0) is the sample variance of the k nearest neighbors, so it is natural to use the

same optimal k�, denoted by k�
mean

, tuned from the mean estimation procedure. Lin et al. (2017)

introduce a leave-one-replication-out cross validation (LORO CV) method to obtain k�
mean

. For the

difference-based variance estimator σ̂ 2
DB

(τ0), we suggest two k values: one is simply k�
mean

, which

we recommend if estimating v (τ0) is also of interest; the other, denoted by k�
db

, is obtained by

tuning k directly without the mean estimation, as described in Algorithm 1. Both k�
mean

and k�
db

are tuned once, using all of the output data, and then applied for any τ0 ∈ [0,T ].
A simple example to illustrate how Algorithm 1 works is provided in Appendix F. Since the

variance is not directly observable, Algorithm 1 does cross validation at a set of user-chosen test

points by computing the sample variance of observations close to these test points, but all coming
from different replications so they are independent. These sample variances then stand in for the
usual observed response in typical CV.

Tuning the parameter for σ̂ 2
DB

(τ0) via Algorithm 1 is computationally cheaper than what we do

for σ̂ 2
RB

(τ0). For instance, for a single trial value of k , say k0, the computational effort required for

computing the EMSE(k0) of σ̂ 2
DB

(τ0) is O (KMtest log(
∑n

j=1 Mj )), where Mtest is the number of test

points chosen in Algorithm 1. However, the computational effort required by σ̂ 2
RB

(τ0) to compute
EMSE(k0) is the same as for virtual mean estimation, which is O ((

∑n
j=1 Mj ) log(

∑n
j=1 Mj )). Typi-

cally, we have
∑n

j=1 Mj 
 KMtest, because
∑n

j=1 Mj increases rapidly as we increase the number of

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 3, Article 17. Publication date: July 2018.



Variance and Derivative Estimation of Virtual Performance 17:9

ALGORITHM 1: knn method via K-fold cross validation for σ̂ 2
DB

(τ0)

1: Input fixed test vector ttest = {t1, t2, . . . , tMtest } and search range kL < kU , NN = “nearest neigh-
bors.”

2: Randomly divide the n replications into K folds of approximately equal size.
3: for � = 1, 2, . . . ,K do

4: Stest ← {Yj , tj ; j = 1, 2, . . . ,n� }, where tj = {t1j , t2j , . . . , tMj j }, Yj = {Y (t1j ),Y (t2j ), . . . ,

Y (tMj j )}, and n� is the number of replications in the �th fold.
5: Strain ← all data except Stest.
6: Find the one nearest neighbor from each tj ∈ Stest for each tm ∈ ttest.
7: Compute the sample variance S2

�
(tm ) using these independent n� observations for each

tm ∈ ttest.
8: Find kU NN in Strain to each tm ∈ ttest.
9: Store the indices of the kU NN to each tm ∈ ttest into an index matrix Mind ∈ �Mtest×kU ,

where the ith row in Mind contains the indices of the kU NN to tm ∈ ttest.
10: for k ∈ [kL,kU ] do

11: Extract the first k columns from Mind.
12: Find the k NN to each tm ∈ ttest and compute the difference-based estimator

σ̂ 2
DB, �

(tm ,k ).

13: end for

14: end for

15: for k ∈ [kL,kU ] do

16: Compute EMSE(k ) =
(∑K

�=1

∑Mtest

m=1 [S2
�
(tm ) − σ̂ 2

DB, �
(tm ,k )]2

)
/(Mtest × K ).

17: end for

18: Choose k�
db

that results in the minimum EMSE(k ).

replications n, or if we have a very dense arrival counting process, while the number of folds K
for CV is usually 10 and the number of test points Mtest is often chosen to be much smaller than
the number of arrivals in any repliation Mj .

Taking one queueing system we are going to analyze in Section 6.1 as an example,
∑100

j=1 Mj =

30,852 while KMtest = 10 × 15 = 150. Hence, if one is only interested in the variance ofV (τ0), then
obtaining a difference-based variance estimator σ̂ 2

DB
(τ0) from Algorithm 1 is much cheaper.

As for the two derivative estimators, we propose to use the same optimal k�
mean

value as we use

for virtual mean estimation. That is, we use the same k�
mean

nearest neighbors to fit a linear regres-

sion model and the estimated slope coefficient is β̂
O LS

(τ0). For β̂
SW D

(τ0), we choose k�
mean

nearest

neighbors to τ0 from each side of τ0 and then use these 2k�
mean

neighbors to compute β̂
SW D

(τ0).

Note that there might be fewer than k�
mean

observations (e.g., only k̃ < k�
mean

observations) on one

side of τ0 if τ0 is close to the end points 0 or T . If that happens, then we only choose k̃ nearest

neighbors from each side of τ0 such that β̂
SW D

(τ0) will be constructed from k̃ slopes.

6 EXPERIMENTS

In this section, we first study a series of phase-type queueing systems for which we can compute
the virtual performance measures as controlled studies, and then we apply our methods to the
simulated ED problem introduced in Section 1.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 3, Article 17. Publication date: July 2018.
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Fig. 2. Arrival rates for the hyperexponential (dashed) and Erlang (solid) arrival processes.

Fig. 3. Sample paths of 10 replications for the three queueing systems.

6.1 Controlled Studies

Lin et al. (2017) study the virtual waiting times for a series of phase-type queueing models to
evaluate the performance of V̄ (τ0). In this article, we use the same phase-type queueing models to
evaluate the performance of the proposed variance and derivative estimators.

We study three phase-type FIFO queueing models: H2 (t )/M/s/c , E2 (t )/M/s/c , and E4 (t )/E4/s/c ,
where H2 stands for two-phase hyperexponential distribution, E2 (or E4) stands for two-phase
(or four-phase) Erlang distribution, and M stands for exponential distribution. The nonstationary
arrival rate functions are piecewise linear (see Figure 2), the service rate is μ = 20, the number
of servers is s = 1, the system capacity is c = 50, and the mixing probability p within the H2 (t )
distribution is 0.4. Sample paths from ten replications, which illustrate the trend and variability
for these three systems, are shown in Figure 3. We see that the actual waiting time for each arrival
varies over time for all three systems, which indicates the nonstationarity of the systems. Taking
E4 (t )/E4/1/c as an example, the waiting time for many arrivals occurring from t = 0 to t = 5 is 0
while the waiting time could be as long as 2–2.5min for the arrivals that occur from t = 10 to t = 15.
However, the long-run average waiting time is about 1.3min. Therefore, it would be misleading
to use the long-run average waiting time as an estimator for the mean virtual waiting time at a
specific t = τ0, which is why we need virtual statistics.

The reason we choose these phase-type queueing models for the empirical study is that we can
compute the virtual performance measures of interest. Lin et al. (2017) describe how to compute
the expected value of virtual waiting time using Kolmogorov forward equations (KFEs), and we
can compute the variance and derivative based on the same technique. Refer to Appendix G for
details. Overall, the proposed variance and derivative estimators turn out to estimate the true values

very well for all three systems.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 3, Article 17. Publication date: July 2018.
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Fig. 4. Performance of σ̂ 2
RB

(τ0) vs. σ̂ 2
DB

(τ0) for H2 (t )/M/1/c system.

Fig. 5. Performance of σ̂ 2
RB

(τ0) vs. σ̂ 2
DB

(τ0) for E2 (t )/M/1/c system.

Fig. 6. Performance of σ̂ 2
RB

(τ0) vs. σ̂ 2
DB

(τ0) for E4 (t )/E4/1/c system.

We first present the simulation results for the variance estimators. In Section 5, we have dis-
cussed how to choose appropriate k values for the knn variance estimators. We use k�

mean
tuned

from LORO CV for σ̂ 2
RB

(τ0); and we try two k values for σ̂ 2
DB

(τ0): one is k�
mean

and the other is

k�
db

tuned directly from Algorithm 1. The performance of the variance estimators averaged across
100 macro-replications for the three systems are presented in Figures 4–6, where n indicates the
number of replications within each macro-replication. In the figures, • corresponds to σ̂ 2

RB
(τ0)
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using k�
mean

; � corresponds to σ̂ 2
DB

(τ0) using k�
mean

; � corresponds to σ̂ 2
DB

(τ0) using k�
db

; and ∗
corresponds to the true value of σ 2 (τ0).

From the figures we can see that the performance of the variance estimators is good overall in
the sense that they track the true variances; in fact, the difference-based variance estimators tend
to be very close to the true variance when the system has low variability, as in Figure 6. However,
all of the variance estimators are a little bit biased when the system is highly variable andn is small,
which manifests itself by under estimating the true variance. For example, both the H2 (t )/M/1/c
and E2 (t )/M/1/c queues are more variable than the E4 (t )/E4/1/c , as shown in Figure 3, especially
during the time period of t = 7 to t = 10. When only 10 replications are used we find that all of
the variance estimators tend to be lower than the true variance in this time period. However, the
bias largely disappears as n increases from 10 to 100; see Figures 4 and 5. Some bias is inevitable in
virtual statistics, since observing an arrival at exactly τ0 is almost certain not to happen; the goal
of cross validation is to balance bias and variance.

In these examples, we find both k�
mean

and k�
db

are larger than the number of replications n
so there always exist dependence among the k nearest neighbors. Thus, the variance estimators
tend to underestimate the variance due to positive correlation, especially when the system has
high variability; in other words, the more variable the system is, the more biased the variance
estimators could be if the number of replications n is too small. This is because the optimal k value
tuned from either LORO CV or K-fold CV is larger when the system has higher variability (e.g.,
k�

mean
≈ 200 for H2 (t )/M/1/c and k�

mean
≈ 50 for E4 (t )/E4/1/c when n = 10 for both of these two

systems). Thus, the dependence issue is more severe for the more variable system. Nevertheless,
we still provide good estimates—as shown in the figures—even in the presence of this dependence,
which means CV is effectively accounting for it.

Remark. Notice that even though it is possible for k�
mean

and k�
db

to be greater than the number of
replications, n, they will never be greater than the total number of elementary observations Y (ti j ),
because we fit them via CV; i.e., we cannot test a value of k larger than the number of elementary
observations we have. Eventually, as n becomes large enough, we will find k� < n, because bias
will dominate variance.

To assess the variability of these variance estimators, we ran R = 100 macro-replications
for all scenarios. Take σ̂ 2

DB
(τ0) as an example: We estimate its variance by

∑R
r=1[σ̂ 2

DB,r
(τ0) −

σ̂ 2
DB

(τ0)]2/(R − 1), where σ̂ 2
DB,r

(τ0) is the difference-based variance estimator computed from the

r th macro-replication and σ̂ 2
DB

(τ0) =
∑R

r=1 σ̂
2
DB,r

(τ0)/R. We find that the variance of σ̂ 2
RB

(τ0) is very

close to the variance of σ̂ 2
DB

(τ0) with k�
mean

. Even though σ̂ 2
RB

(τ0) includes many more pairs of ob-

servations, σ̂ 2
DB

(τ0) removes the trend in the mean response function such that the variance caused
by the regression function can be effectively reduced. As for the other knn difference-based vari-
ance estimator, σ̂ 2

DB
(τ0) with k�

db
, the optimal k�

db
tuned from Algorithm 1 is much larger than

k�
mean

. Hence, the variance of σ̂ 2
DB

(τ0) with k�
db

can be further reduced and it is smaller than the
variance of the other two estimators.

The performance of the derivative estimators is provided in Figures 7–9. In the figures, • corre-

sponds to β̂
O LS

(τ0); � corresponds to β̂
SW D

(τ0); and ∗ corresponds to the true value of the deriva-

tive. Overall, both β̂
SW D

(τ0) and β̂
O LS

(τ0) estimate the true derivative well, but β̂
SW D

(τ0) performs

better than β̂
O LS

(τ0) in terms of both bias and variance. Specifically, we find that β̂
O LS

(τ0) is more
biased when the variability dominates the trend in the system, e.g., during the time period of t = 7
to t = 10. This is because the true regression function is not necessarily a linear function and

β̂
O LS

(τ0) assigns non-zero weight to every single pair of (τ (�,n)
0 ,τ (m,n)

0 ) for (�,m) ∈ D
O LS

(τ0) so
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Fig. 7. Performance of β̂O LS (τ0) vs. β̂SW D (τ0) for H2 (t )/M/1/c system.

Fig. 8. Performance of β̂O LS (τ0) vs. β̂SW D (τ0) for E2 (t )/M/1/c system.

Fig. 9. Performance of β̂O LS (τ0) vs. β̂SW D (τ0) for E4 (t )/E4/1/c system.

that the bias is very likely to be increased due to lack of symmetry. We also estimated the variance

of these estimators from R = 100 macro-replications of the experiment: even though β̂
O LS

(τ0) in-

cludes many more slopes, the slopes used in β̂
SW D

(τ0) are less variable and less biased, because the

pairs (τ (�,n)
0,SW D ,τ

(m,n)
0,SW D ) are well spread and symmetric around τ0, so β̂

SW D
(τ0) has smaller variance.

In contrast to variance estimation, positive correlation is not that harmful for derivative esti-
mation. Think about an extreme case where the true mean waiting time is a linear function of
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Table 1. MSE of Variance and Derivative Estimators for E2 (t )/M/1/c with n = 100

True MSE True MSE

τ0 σ 2 (τ0) σ̂ 2
RB

(τ0) σ̂ 2
DB

(τ0) with k�
mean

σ̂ 2
DB

(τ0) with k�
db

v ′(τ0) β̂
O LS

(τ0) β̂
SW D

(τ0)

1 0.0024 9.60×10−7 9.35×10−7 1.37×10−5 0.0195 3.76×10−4 8.03×10−5

2 0.0054 4.09×10−6 4.44×10−6 9.02×10−6 0.0344 1.77×10−3 3.60×10−4

3 0.0128 1.92×10−5 1.95×10−5 3.18×10−5 0.0668 6.01×10−3 1.49×10−3

4 0.0325 6.70×10−5 6.97×10−5 8.84×10−5 0.1343 2.76×10−2 4.33×10−3

5 0.0794 2.66×10−4 2.59×10−4 2.64×10−4 0.2551 5.93×10−2 1.09×10−2

6 0.1639 8.51×10−4 8.99×10−4 6.11×10−4 0.4254 1.34×10−1 2.51×10−2

7 0.2618 1.65×10−3 1.86×10−3 1.13×10−3 0.4081 3.32×10−1 3.87×10−2

8 0.3204 1.60×10−3 1.87×10−3 1.40×10−3 0.3455 4.10×10−1 3.59×10−2

9 0.3162 2.15×10−3 2.34×10−3 1.58×10−3 0.2621 2.64×10−1 4.30×10−2

10 0.2712 1.81×10−3 2.15×10−3 1.51×10−3 0.1862 1.67×10−1 2.95×10−2

11 0.2151 1.75×10−3 1.72×10−3 1.32×10−3 0.1166 1.98×10−1 2.51×10−2

12 0.1720 1.14×10−3 1.22×10−3 8.67×10−4 0.0623 1.36×10−1 1.56×10−2

13 0.1544 7.27×10−4 7.11×10−4 5.02×10−4 −0.0546 6.03×10−2 1.18×10−2

14 0.1680 8.38×10−4 8.85×10−4 6.64×10−4 −0.1982 5.07×10−2 5.99×10−3

15 0.2057 1.24×10−3 1.32×10−3 1.55×10−3 −0.4689 2.48×10−2 4.28×10−3

time and all the k nearest neighbors are from a single replication. If these k nearest neighbors are
perfectly correlated (i.e., ρ = 1), then the derivative estimator is unbiased and has zero variance
but the variance estimator will be very poor. Thus, the positive correlation actually improves the
performance of the derivative estimators in this situation.

In addition to the graphical presentation, we also display the mean squared error (MSE) for one
case, the E2 (t )/M/1/c system; see Table 1. Overall, the MSE of all the variance estimators and the

β̂
SW D

(τ0) derivative estimator are at least an order of magnitude smaller than the quantity being

estimated. Notice that β̂
SW D

(τ0) has substantially smaller MSE than β̂
O LS

(τ0) for some τ0, which is

what we expect due to the symmetry of the observations involved in β̂
SW D

(τ0).
To better interpret the simulation results, we choose τ0 = 6 for E2 (t )/M/1/c system as an illus-

tration. If a customer arrives to this system at τ0 = 6, then the mean estimate of the waiting time in
the queue for this customer is 0.71min (obtained from Lin et al. (2017)), and the variance estimate
for the waiting time is 0.16, i.e., the standard deviation is 0.4min (Figure 5). The SWD estimate is

β̂
SW D

(6) ≈ 0.45, meaning that the rate of change in the waiting time at τ0 = 6 is 0.45min per time
unit, so very rapidly changing relative to the mean of 0.71min.

6.2 Emergency Department Example

Section 6.1 presents a series of controlled studies in which we can evaluate the performance of vir-
tual statistics by comparing them with the true values of virtual performances. In this section, we
describe a small ED model as a more realistic illustration and apply our proposed virtual statistics.2

This ED model consists of a waiting area, a registration desk, a triage room, a radiology station,
a billing area, six beds, and four rooms that are used for patients that are admitted into the hospital.
Patients enter the ED through the front door and go directly to the registration desk. If the arriving
patient finds that there are more than six patients waiting in the triage room or the current average

2This model is adapted from HospitalEmergencyDepartment.spfx, a standard example that is contained in the Simio

simulation software (www.simio.com).
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Fig. 10. Emergency department model.

waiting time to get a bed is longer than 0.6h, then they will leave this ED department immediately;
otherwise, they will stay and get registered. After they are registered, they wait in the waiting area
to be sent to the triage room. After they are seen in the triage room, they wait in the waiting area
for an available bed. When a bed and a nurse are both available, the nurse greets the patient and
walks them to the bed. The patient waits in the bed for an available doctor, who is accompanied
by a nurse. They finish treating the patient and the patient either visits billing before exiting the
ED or is sent to the radiology room. If a patient is seen at radiology, then they are either sent to
billing and then sent home, or admitted into a room for a longer stay. Once admitted into a room,
the patient is again visited by a doctor and a nurse and then released to billing and then home.
Figure 10 illustrates this entire process.

The patient arrivals follow a nonstationary Poisson process with piecewise constant arrival
rates. In our simulation, the arrivals are generated from t = 0 to t = 24 and the arrival rate changes
hourly. The service times at different stations follow triangular distributions with different param-
eters, and this ED has six nurses and four doctors. This is a complicated stochastic process with
many working stations and nonstationarity, and we are interested in three particular virtual per-
formance measures:

(i) the virtual waiting time to get a bed for a patient who arrives at τ0 and does not leave,
denoted by V

wait
(τ0);

(ii) the virtual time in system for a patient who arrives at τ0 and is admitted to a room,
denoted by V

T I S
(τ0); and

(iii) the virtual probability that a patient will not leave immediately if arriving at τ0, denoted
by V

pr ob
(τ0).

The first two virtual performance measures, V
wait

(τ0) and V
T I S

(τ0), target different types of pa-
tients. Specifically, V

wait
(τ0) applies to all the patients who stay in the system while V

T I S
(τ0) only

applies to patients who are admitted to a room for further treatment after radiology. The last vir-
tual performance V

pr ob
(τ0) is different from all the virtual performances we have studied before,

because it is a probability. This information is quite useful, because it indicates the fraction of pa-
tients who fail to receive treatment due to the limited resources at the ED. For all these virtual
performance measures, we will present the knn mean estimator, the two variance estimators, and
the two derivative estimators.

We start with the first two virtual performance measures, V
wait

(τ0) and V
T I S

(τ0), since they are
both time-related performance measures. We choose 24 time points at t = 0:30, 1:30, . . . , 23:30 to
test. Figure 11 shows the 10-replication sample paths of these two performance measures, which
displays the nonstationarity of the system. The knn mean estimators, denoted by V̄

wait
(τ0) and

V̄
T I S

(τ0), are obtained from 100 replications of data, as shown in Figure 12. The corresponding
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Fig. 11. Ten-replication sample paths of waiting time and TIS.

Fig. 12. knn mean estimators of waiting time and TIS.

error bars are constructed on±2τ̂�, where τ̂�
2

is the bootstrap variance estimator for theknn mean
estimator; refer to Lin et al. (2017) for more details on the bootstrap variance estimator. Although
we do not have the true values ofv

wait
(τ0) andv

T I S
(τ0), we can see that the knn estimators capture

the trend of the system well. Notice that we should tune the parameter k separately for these two
virtual statistics. The optimal k tuned via LORO CV for V̄

wait
(τ0) is k�

wait
= 651 and the one for

V̄
T I S

(τ0) is k�
T I S
= 232. We find k�

wait
> k�

T I S
, because the patients who are admitted to a room are

simply a subset of all the patients who do not leave immediately upon their arrivals. Because the
arrivals of the patients admitted to a room are less dense, the corresponding knn mean estimators
are more variable.

In addition to the mean, we compute both the residual-based and difference-based variance
estimators to estimate Var[V

wait
(τ0)] and Var[V

T I S
(τ0)]. For the difference-based variance estimator

σ̂ 2
DB

(τ0), we use the optimal k� obtained via LORO CV directly, because we find that σ̂ 2
DB

(τ0) does
not change much with different k values in the controlled studies. Figure 13 shows the variance
estimators for these two virtual performance measures, from which we see that σ̂ 2

RB
(τ0) and σ̂ 2

DB
(τ0)

have very similar results. In the figures, the � corresponds to σ̂
RB

(τ0); and the • corresponds to
σ̂ 2

DB
(τ0).

The derivative estimation is more complicated as we notice that the derivative estimators, espe-

cially the ordinary least squares estimator β̂
O LS

(τ0), are highly variable such that the two derivative
estimators might have very different values at some time points. Therefore, we report two cases

obtained from two different data sets (i.e., macro replications): one is a good case where β̂
O LS

(τ0)
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Fig. 13. Variance estimators of waiting time and TIS.

Fig. 14. Two cases of derivative estimators of waiting time and the 100-macro-replications result.

and β̂
SW D

(τ0) are close to each other, and the other is a bad case where β̂
O LS

(τ0) and β̂
SW D

(τ0) differ
a lot at some time points. The simulation results for the virtual waiting time derivatives are offered

in Figure 14. In the figures, the � corresponds to β̂
O LS

(τ0) and the • corresponds to β̂
SW D

(τ0).
Even in the bad situations, the two derivative estimators are close to each other at most of the

time points, and the big discrepancy occurs at t = 9:30, 10:30, 11:30. From the sample paths in Fig-
ure 11, we see that the variability of the system dominates the trend from t = 9:00 to t = 12:00.
The high variability in this time period is also reflected in the variance estimation results shown
in Figure 13. Since the derivative estimators are more variable, we ran a side-experiment with 100
macro-replications and report the average derivative estimators with ±2 standard errors in Fig-
ure 14. We see that the two types of derivative estimators averaged across 100 macro-replications
become much closer to each other, and the SWD estimator is less variable than the OLS estimator,
as we discussed in Section 6.1. Similar to the results we presented for waiting time, we present two
cases of single-macro-replication results and a 100-macro-replications result for the derivative es-
timators of true TIS in Figure 15. We see that the big discrepancy of the two derivative estimators
occurs at t = 15:30 in the bad case, which makes sense, because the sample paths of TIS in Fig-

ure 11 indicate that TIS is more variable in the afternoon. Furthermore, we notice that β̂
SW D

(τ0) is

more variable than β̂
O LS

(τ0) at the two endpoints t = 0:30, 23:30 for TIS from the third plot of Fig-
ure 15. This is because the arrivals of admitted patients are not dense enough to generate at least
k�

T I S
pairs of symmetric observations around these two endpoints. Thus, the SWD estimators at

the endpoints are constructed on fewer pairs of observations so that the corresponding variability
becomes higher.
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Fig. 15. Two cases of derivative estimators of TIS and the 100-macro-replications result.

Fig. 16. 10-replication sample path and knn mean estimator of the probability that patients do not leave

immediately.

The 10-replication sample path for indicating whether or not the patients stays in the system
upon their arrivals is given in Figure 16, where 1 means a patient stays in the system and 0 means
a patient leaves immediately. We can see that most of the patients who come early or late in
the day stay in the system while many patients arriving around noon have to leave, because the
ED is much more congested during that time. Based on 100 replications of data, we apply LORO
CV to obtain the optimal k�

pr ob
= 1,060, and then construct the knn estimators and the associated

bootstrap variance estimators. The reason k�
pr ob
> k�

wait
is that the patients who wait for a bed

are a subset of all the patients generated from the arrival process. From Figure 16, we find that
the probability for a patient to stay in the system is quite high in the morning and evening time
and the variance of the mean estimator is very close to 0, but the patient is more likely to leave
immediately if arriving around noon. For example, the probability that a patient arriving at 11:30
leaves the ED immediately is 0.55, and the knn probability estimator also becomes more variable
due to the variability of the system during this time.

We use the same optimal k�
pr ob
= 1,060 to compute the two variance estimators, and they have

very similar performance, as shown in Figure 17. As for the derivative estimation, we still report
two specific cases as well as the 100-macro-replications result. Similar to what we have found
previously for the two virtual performance measures, we see that the big discrepancy between
these two derivative estimators of the probability still only occurs at a couple of time points in the
bad case, as shown in Figure 18. Additionally, both these two derivative estimators become more
variable from 9:30 to 12:30, especially the OLS estimator.
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Fig. 17. Variance estimators of the probability that patients do not leave immediately.

Fig. 18. Two cases of derivative estimators of probability that patients do not leave immediately and the

100-macro-replications result.

From this example, we see that our virtual statistics can be applied easily to a complicated real-
world simulation, and we can also examine various virtual performance measures at the same time
without running additional simulation experiments.

7 CONCLUSIONS

Virtual performance measures add insight into system performance that goes beyond the usual
suite of long-run-average performance measures generated by stochastic simulations: They fa-
cilitate a time-indexed profile of system performance, which is particularly relevant for non-
stationary or finite-horizon situations.

In this article, we propose two variance estimators and two derivative estimators for virtual
performance based on retained sample paths from simulation experiments, as an addition to the
virtual mean estimator of Lin and Nelson (2016) and Lin et al. (2017). We show the asymptotic
properties of these new virtual statistics and propose a parameter tuning algorithm for the knn
difference-based variance estimator. The controlled studies show that employing a single, globally
optimal k�

mean
obtained via cross validation for mean estimation works for both virtual variance

and derivative estimation as well. Thus, estimating the mean, derivative of the mean with respect
to time, and the variance of virtual performance can be done efficiently from the retained output
data. However, allowing k� to be a function of time—say larger during time periods when the
simulation output is more variable and smaller when the mean is changing more rapidly—could
lead to further improvement and is a topic of ongoing research.
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