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Abstract. “Virtual statistics,” as we define them, are estimators of performance measures
that are conditional on the occurrence of an event; virtual waiting time of a customer
arriving to a queue at time τ0 is one example of virtual performance. In this paper, we
describe a k-nearest-neighbor method for estimating virtual performance postsimulation
from the retained sample paths, examining both its small-sample and asymptotic prop-
erties and providing two approaches for measuring the error of the k-nearest-neighbor
estimator. We implement leave-one-replication-out cross-validation for tuning a single
parameter k to use for any time (or times) of interest and evaluate the prediction per-
formance of the k-nearest-neighbor estimator via controlled studies. As a by-product, this
paper motivates a different way of thinking about how to process the output from dy-
namic, discrete-event simulation.
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1. Introduction
The design and analysis of discrete-event, stochastic
simulation has been greatly influenced by its heritage in
queueingtheoryandthelimitationsofearlycomputers.As
with queueing, both the research and practice of simula-
tion output analysis has emphasized long-run (or sum-
mary) performance measures for stationary service
systems; these are obtained froma simulation experiment
designed to precisely estimate predetermined long-run
performancemeasures to satisfy a specific system design
or improvement objective. Although some high-level
characteristics of simulated systems can be represented
by long-run performance measures, the underlying dy-
namics of the system can be masked. Also, long-run
performance measures are typically not appropriate if
the system of interest is inherently nonstationary.

When simulation languageswere initially developed,
both dynamic and persistent memory, as well as pro-
cessing power, were dear, making it essential to com-
pute and compactly report performance statistics “on
the fly.” This view was very compatible with a focus
on predetermined long-run-average performance, but
now it is outdated and limiting. As we illustrate later,
retaining a complete record of every event and state
change that occurs in many simulations creates what
could, at most, be called “moderate-sized data” relative
to current “big data” standards.

By contrast, this paper focuses on estimating a class
of time-dependent performancemeasures for a (possibly)
nonstationary stochastic process. The class of measures
of interest we call virtual performance at time τ0, denoted
by V(τ0). Specifically, V(τ0) is some aspect of system
performance conditional on a particular event occurring
at time τ0, where the time τ0 is fixed and independent
of the system state; it may be specified arbitrarily or
perhaps be for a collection of τ0’s in a range Tstart ≤
τ0 ≤Tend. Let Fτ0 represent the distribution of V(τ0).
A virtual performance measure is some property of
V(τ0), such as its mean v(τ0) � E[V(τ0)], its q-quantile
F−1
τ0
(q), or its entire distribution Fτ0. In this paper, we

focus on the mean. Notice that a probability Fτ0(x) �
Pr{V(τ0) ≤ x} can be represented as a mean.
A familiar example of V(τ0) is the virtual waiting

time of a customer arriving to a service systemat time τ0.
Actually, this example is less “familiar” than one might
think as there are different ways to define it. By “virtual
waiting time” at τ0, one could mean the following:
(1) injected: the waiting time of a customer artificially
injected into the nominal stochastic mechanism gov-
erning arrivals; (2) phantom: the observed work ahead
of a phantom arrival at τ0 that does not actually join the
system; or (3) conditional: the waiting time encoun-
tered by one of the nominal stochastic arrivals, con-
ditional on such an arrival having occurred at time τ0.
In some settings, injected and phantom are the same but
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not always (e.g., queue disciples that are not first in, first
out or time to traverse a network in which there is
overtaking,meaning customersmaydepart in a different
order than they arrive). Our interest is in conditional,
which we define precisely in Section 3. The key dis-
tinctions are these: injected and phantom do not refer to
naturally occurring arrivals, and conditional does; in-
jected and conditional imply a customer actually arriv-
ing to the system, and phantom does not; and injected
changes the queueing process by inserting an artificial
customer, and conditional and phantom do not. See
Section 2 for an elaboration of the distinctions.

Smith andNelson (2015) consider the case of a traveler
who wants to know how long it might take to clear
security if arriving to the airport at, say, 7:30 a.m. They
use simulation to answer the question by estimating the
average time to clear security for passengers from the
nominal airport arrival process in a one-hour time bucket
containing 7:30 a.m. (i.e., no arrival is artificially injected
at 7:30 a.m.). This is a conditional performance measure
being used to answer an injected question, and the
conditional performance is approximated by averaging
over a time bucket.

A second example is the response time to a serious fire
that occurs at time τ0 as described in Carter and Ignall
(1975). In their situation, the event of interest is extremely
rare at time τ0 or any other time, so the ability to compute
conditional performance measures at any time τ0 is critical.
This is an example of phantom performance.

In the airport arrival situation considered by Smith and
Nelson (2015), one expects that arrivals near 7:30 a.m.
do regularly occur, and therefore, the observed waiting
times of those travelers can be used to estimate properties
of V(7:30). For the rare-event situation of Carter and
Ignall (1975), the method we introduce is asymptotically
valid for a conditional version of the problem, but for
realistic numbers of replications, few if any of the ob-
served serious fires will be “near” any specific time τ0
and a k-nearest-neighbor (knn) estimator, such as we
propose, will be significantly biased. Loosely speaking,
we address situations in which the conditioning event is
likely to occur near the time of interest on every simu-
lation replication.

Estimating properties of V(τ0) is greatly facilitated by
retaining sample path information from many simulation
replications.This is incontrast toasimulationexperiment
specifically designed to estimate virtual performance or
virtual statistics that are computed on the fly as the
simulation executes as in Smith and Nelson (2015). Al-
though we do not introduce a specific data structure in
thispaper,whatwehaveinmindissomethinglikea time-
stamped trace of all events and state changes throughout
the simulation run; this sort of trace is available in nearly
all commercial simulation languages although the tools
to query it are not (yet). However, our methods only
require a small subset of this data to be retained, as

described later, so a complete trace is not necessary.
Retaining, rather than summarizing, data allows us to
estimate a globally optimal tuning parameter k⋆ for the
entire time range [Tstart,Tend] and toquickly compute the
knn virtual statistic for any τ0 in this range, whether
chosen in advance or required later.
The reuse of retained simulation output data has been

considered by others, notably Zhao et al. (2006, 2007),
Zhao and Vakili (2008), Rosenbaum and Staum (2015),
and Feng and Staum (2015). However, in these papers,
the reasons to retain the data are to improve the pre-
cision of new simulation experiments (e.g., by gener-
ating control variates) or to massage the retained data
so that they represent a system not actually simulated
(thereby avoiding the additional simulation). Our ap-
proach is an example of “simulation analytics” (Nelson
2016). Simulation analytics treats stochastic simulation
as data analytics for systems that do not yet exist and
extends traditional performance estimation and system
optimization to uncovering underlying patterns and
the key drivers and dynamics of system behavior.
See Nelson (2016) for an argument in favor of a data-
analytics approach to simulation output analysis.
Our virtual statistics illustrate one of the benefits of
retaining simulation sample paths rather than auto-
matically summarizing them: the ability to estimate
dynamic, conditional performance and to answer
questions not originally anticipated without rerunning
the simulation.
The remainder of this paper is organized as follows.

We start with issues in defining and estimating vir-
tual performance in Section 2. A more detailed problem
description of virtual statistics is provided, and the knn
point estimator for the mean of virtual performance is
formally defined in Section 3. In Section 4, we present the
asymptotic properties of the proposed point estimator
under specific conditions on the system of interest and
the growth rate of the tuning parameter k. To mea-
sure the error of the knn mean estimator, we propose
two variance estimators and analyze their properties in
Section 5.We discuss how to adapt cross-validation (CV)
to our problem setting in Section 6. To evaluate the
prediction performance of the knn estimator, we apply
our method to controlled studies in Section 7, comparing
our point estimator and a natural competitor with the
truemean of virtual performance and examining the two
variance estimators. Some conclusions and future work
are offered in Section 8. A less fully developed and
technically incomplete preliminary version of this work
was reported in Lin and Nelson (2016).

2. Issues in Defining and Estimating
Virtual Performance

There has been substantial work on the concept of
virtual performance, including virtual waiting time, in
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the queueing literature. The famous result that “Poisson
arrivals see time averages” or PASTAdiscussed inWolff
(1982) is of this type. Loosely translated in the queueing
context, PASTA indicates that the distribution of the
number of customers in the system observed by arrivals
from a Poisson process is the same as the time-average
number of customers in the system provided the system
in no way anticipates the customer’s arrival. PASTA
relates to what the random arrivals see, not arrivals
conditioned on a fixed time as we consider here.

For a queueing system in which time-dependent state
probabilities can be represented or approximated with
a finite number of differential equations, whether it be
Kolmogorov equations or moment differential equa-
tions, we can compute some virtual performance mea-
sures of the system using numerical integration. See Ong
and Taaffe (1989) and Nelson and Taaffe (2004) for ex-
amples. We use this method to construct test problems
with known solutions in Section 7 and describe how we
do it in Appendix F of the online supplement.

More generally, one can consider the work in the
system at time τ0, where work is defined as some
measure of service pending or in process; see Wolff
(1989), chapters 5 and 10, for a thorough discussion.
One relevant measure of work at time τ0 is the sum of
the service times of all customers in the queue plus the
remaining service times of those customers in service at
τ0. In a single channel queue with no overtaking, the
virtual work and the virtual (phantom or injected)
waiting time at time τ0 coincide. Just like the perfor-
mance measure of number in the system, virtual work
is observable at any time τ0, so each simulated repli-
cation provides one unbiased observation.

Many real-world systems are much more complex so
thatPASTAorvirtualworkcannotbeapplieddirectly. In
fact, virtual waiting time in queueing theory is typically
for stationary systems in steady state. Further, the cus-
tomers in a multiserver, multistation system could pass
each other, so the aforementioned measure of work at
time τ0 might not coincide with the virtual waiting time
at τ0. The arrivals of interest may not even be from
outside the system; they could be arrivals to an internal
queue in a network that are departures from other
queues. A nonqueueing context is the virtual recovery
time of a manufacturing system if a failure occurs at τ0.
Although we use conditional virtual waiting time for
(external or internal) arrivals to a queue as our example
throughout this paper, our goal is to develop a more
general approach to estimate virtual performance for
complex systems. Notice that the “virtual” aspect of
virtual performance in our conditional sense reflects the
fact that the particular event need not actually occur in
the simulated sample paths, and in many cases, it has
probability zero. This is very different from, say, the
waiting time of the nth arriving customer, which is ob-
servable on every replication.

There are roles for injected, phantom, and condi-
tional virtual performance, but they are distinctly
different concepts, and using one could be misleading
when interpreted as the other. As a simple illustration,
consider a single-queue system with a fairly regular
(low-variance) arrival process having rate one; this
could be achieved, say, by independent and identically
distributed (i.i.d.) Erlang interarrival times for which
the Erlang distribution has a large number of phases.
Now suppose we are interested in the virtual waiting
time of outside arrivals at a collection of times τ0 �
1, 2, 3, .... Injected would insert a customer every time
unit, effectively doubling the arrival rate and increasing
the waiting time; in fact, the injected system might not
even be stable. Injected makes the most sense when we
really want to know what would happen if we impose
unexpected arrivals on a background arrival process,
for instance, high-priority rush orders. Phantomwould
not affect the arrival rate or evolution of this system but
would obtain a virtual waiting time from each sample
path of the queueing simulation at, say, time τ0 � 5
even if no arrival occurred at or near time τ0 � 5.
Phantom is an outside observer’s perspective on the
(unconditional) state of the system at a particular time.
Conditional, on the other hand, refers to sample paths
that actually have arrivals at time τ0 � 5; therefore,
conditional is not the outside observer’s perspective but
rather is from the perspective of customers who are on
sample paths that yield an arrival at, say, τ0 � 5. When
it is possible to define phantom, it may be close to
conditional. However, if the arrival process is non-
stationary with arrivals near time τ0 � 5 being rare,
sample paths with arrivals near that time will be dis-
tinctly different from the generic sample path, and thus,
phantom and conditional virtual waiting time will be
quite different.

3. Problem and Method
We begin with an abstract definition of virtual perfor-
mance, then specialize to the simulation setting. Con-
sider a stochastic point process and an interval that
begins at time Tstart ≡ 0 and ends at time Tend ≡ T,
where E(T2)<∞. The random event times are 0< t1 <
t2 <⋯< tM ≤T, where M is also random; in the simu-
lation setting, these will typically be the times that
a common type of event occurs, such as “customer arrival
to station 4” or “machine failure in work center G,” al-
though that is not essential. From here on, we call all of
these events “arrivals” even though they may not be.
Associated with event time ti is a random performance
variable Yi � Y(ti), where we use the latter notation to
emphasize the importance of time. In the simulation
setting, thismight be the sojourn time for the ith customer
who arrived at time ti or the time until the system is
restored after the ith failure that happened at time ti.
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For a fixed time 0≤ τ0 ≤T and a fixed arrival i, define
the random variable

Vi(τ0) �D (Y(ti)|ti � τ0)
as a random variable with the same distribution as Y(ti)
conditional on the timing event being equal to τ0. For
instance, if (ti,Y(ti)) have a joint density fti ,Yi and at τ0
the marginal density fti(τ0)> 0, then for any y0 ∈R

Pr{Vi(τ0) ≤ y0} �
∫

y0

−∞
fti ,Yi(τ0, y)
fti(τ0) dy.

The random variable Vi(τ0) could be called the virtual
performance of the ith arrival at time τ0, which might
be of use in some contexts. Instead, we are interested in
V(τ0), where

Pr{V(τ0) ≤ y0} �
∑∞
i�1

Pr{Vi(τ0) ≤ y0} qi(τ0) (1)

and qi(τ0) � Pr{ti � τ0|an arrival occurs at τ0}. In words,
V(τ0) is the performance Y for an arrival at τ0 given
that some arrival occurred at time τ0. We refer to this as
the virtual performance at τ0. Notice that this is con-
ditional performance, and the conditioning is on the
natural arrival process, not an injected or a phantom
arrival.

Our goal in this paper is to estimate v(τ0) � E[V(τ0)]
and also the error in our estimate of it from n inde-
pendent simulation replications. Therefore, our simula-
tion data are {(tij,Y(tij)); i � 1, 2, . . . ,Mj, j � 1, 2, . . . , n},
where the subscript j denotes the jth replication, andMj

is the (possibly random) number of arrivals in the jth
replication. We describe our specific assumptions about
this process in the next section.

Remark 1. {(ti,Y(ti)); i � 1, 2, . . . , } looks superficially
like amarked point process (MPP), but this is inconsistent
with standard terminology. In our setting, {(ti,Y(ti));
i � 1, 2, . . . , } is a process that is typically derived from,
or embedded in, a more complex stochastic process.
Therefore, it is more like a P-MPP, a process jointly with
an MPP (Sigman 1995). The performance measure Y(ti)
depends on the complex process as well as (possibly)
the “mark.”

Remark 2. One may wonder when the conditional
probabilities qi(τ0) in Equation (1) will be nonzero.
A sufficient condition is that {t1, t2, . . . , tm} have a joint
density on (0,T] givenM � m arrivals, but even weaker
conditions will also suffice.

Smith and Nelson (2015) use the observed outputs
{Y(tij) : tij ∈ [tL, tU]} to estimate v(τ0), where tL ≤ τ0 ≤ tU
and [tL, tU] is a predefined time bucket. Their primary
assumption is that the outputs within a time bucket

are approximately stationary. There is a bias–variance
trade-off in choosing Δ � tU − tL: large Δ reduces var-
iance but increases bias; small Δ increases variance but
may reduce bias unless the probability of an empty
bucket becomes too large. A modification is to use
a window [τ0 − δ, τ0 + δ] centered at τ0 instead. This is
probably an improvement and is feasible if all of the τ0
values of interest are known in advance. The same
bias–variance trade-off still exists.
In this paper, we propose constructing a knn esti-

mator from the simulation data provided that all
outputs (Y(tij), tij) are retained. In contrast to designing
a time bucket in advance, as in Smith and Nelson
(2015), our method uses the average performance of
the k nearest arrivals around τ0 to estimate v(τ0) and
“tunes” the value of k using the data to minimize mean
squared error.
Denote the superposed process of all the observed

arrival times by

7n � {tij : i � 1, 2, . . . ,Mj, j � 1, 2, . . . ,n}. (2)

The knn estimator of v(τ0), V̄(τ0), is

V̄(τ0) � 1
k

∑k
ℓ�1

Y(τ(ℓ,n)0 ), (3)

where τ(1,n)0 < τ(2,n)0 <⋯< τ(k,n)0 are the sorted k nearest
neighbors to τ0 from the superposed process 7n and
Y(τ(ℓ,n)0 ) is the corresponding observed output for
ℓ � 1, 2, . . . , k. Notice that the “closeness” here is based
on |τ

(ℓ,n)
0 − τ0 | regardless of replication, and ties are

broken arbitrarily.
From the perspective of data analytics, knn is a non-

parametric supervised learning approach that is suit-
able for problemswith low dimension and independent
observations. The dimension of a problem is deter-
mined by the number of predictors included in a knn
model, which affects the required computer memory,
computation time, and smoothness of the regression
function. Because the time when trigger events, such as
customer arrivals, occur is the only predictor for virtual
performance, the dimension is one, which is ideal.
Nevertheless, the independence assumption is usually
violated because the observed outputs and predictors
are obtained from a (possibly) strongly dependent
sample pathwithin each replication. Thus, dealing with
the correlation among observations is one of the most
challenging issues. In fact, the observations from the
same replication are dependent, but the ones obtained
across distinct replications are independent, so in gen-
eral, the k nearest neighbors are a mix of independent
and dependent observations. An alternative strategy is
to choose the single nearest observation to τ0 from each
replication and then select the k nearest neighbors from
among these n nearest points, implying that all the k
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nearest neighbors will be independent. However, the
bias of the corresponding knn estimator will be larger
because these k observations are not necessarily very
close to τ0, especially when the arrivals within each
replication are not that dense around τ0. We employ
this alternative strategy as the natural competitor in
Section 7.

From the perspective of model complexity, the num-
ber of nearest neighbors to include, k, is the single tuning
parameter in knn. In most situations, the optimal k⋆ is
not obvious because the true mean of virtual perfor-
mance is unknown and the data are noisy. A common
approach is to evaluate many values of k and then
choose the best one based on an empirical bias–variance
trade-off such as empirical mean squared error (EMSE).
In typical data analytics problems, the chosen value of k
is small, so a direct search, say, starting with k � 1, is
possible. However, because the superposition of arrivals
from n replications may be dense around τ0 and the
observations can be quite variable, using a large number
of times τ(ℓ,n)0 close to τ0 to estimate v(τ0) may greatly
reduce variancewithout a significant impact on bias. The
airport check-in problem analyzed in Lin and Nelson
(2016) is an example: the optimal k⋆ determined via CV
is 1,980. Therefore, having good insights into how the
valueofk⋆ isaffectedbyvarious featuresof thesimulation
data could be helpful for saving computational effort
when searching for k⋆, a topic discussed in Lin and
Nelson (2016) but not here.

4. Asymptotic Properties of the
knn Estimator

In this section,we show that the proposed knn estimator
of the expected virtual performance is asymptotically
consistent and unbiased under mild conditions on
the growth rate of k and the retained sample path in-
formation {Y(tij), tij; i � 1, 2, . . . ,Mj, j � 1, 2, . . . , n}. This
provides useful assurance that a knn estimator is ap-
propriate and—although not the topic of this paper—
would be helpful for designing sequential procedures
that increase the number of replications until a fixed
precision is achieved. However, because our focus is
on best using a fixed set of retained sample paths, we
return to small-sample behavior in Sections 5–7.

As mentioned in Section 3, the most critical challenge
for understanding properties of the knn estimator comes
from the dependence among the k nearest neighbors.
Intuitively, if the time that events of interest occur
has positive density around the prediction point of
interest and the number of retained sample paths is
much greater than the number of nearest neighbors
to choose (i.e., n≫ k), then it is very likely that the k
nearest neighbors will come from distinct replications so
that they behave like the k nearest neighbors from

independent replications. Motivated by this intuition,
we first investigate how fast k can grow as n→∞ to
ensure this behavior before establishing the consistency
of the knn estimator.
Remark 3. In general, the k nearest neighbors out of n
independent observations are not independent by virtue
of being the k nearest neighbors. Throughout this section,
when we refer to the k nearest neighbors as being “in-
dependent” or “asymptotically independent,” we mean
they behave like the k nearest neighbors drawn from
independent observations.

In the remainder of this section, we first define key
quantities, then lay out our assumptions, and finally
present the asymptotic results.
For our formulation, the arrival time is the only

“predictor” in the knn model, and we are interested in
predicting at a fixed time or times, denoted generically
by τ0. Let the arrival-counting process from a generic
replication of the dynamic system be denoted by {N(t) :
t≥ 0}. For any time interval (t − w/2, t + w/2]withw> 0,
let the number of arrivals within (t − w/2, t + w/2] be
denoted by

Nw(t) � N t + w
2

( )
−N t − w

2

( )
.

If τ0 is very close to the endpoint zero, then t − w/2might
be negative so that N(t − w/2) is not defined. A similar
issue occurs for τ0 that is close to T. Thus, we further
define N(t) � N(0) for t≤ 0, and N(t) � N(T) for t≥T.
Jointly with the point process, the simulation gener-

ates an output processY1,Y2, . . . , and eachYi is uniquely
associated with a random arrival time ti. Although the ti
are realized in order, t1 < t2 <⋯ , the Yi need not be. For
instance, if t1 < t2 are the arrival times of the first and
second customers, andY1 andY2 their respective sojourn
times, then if customers can overtake each other it is
possible that Y2 is realized before Y1. For this reason, we
write Y(ti) rather than Yi as mentioned earlier. If the
simulation represents a realizable stochastic processwith
well-defined initial conditions, then the joint distribution
of (ti,Y(ti)) is also well defined.
Again, let {τ(1,n)0 ,τ(2,n)0 , . . . ,τ(k,n)0 } be the k nearest

neighbors to τ0 from the superposed process7n with its
corresponding observed output {Y(τ(1,n)0 ),Y(τ(2,n)0 ), . . . ,
Y(τ(k,n)0 )}. Define

Wk
n(τ0) � min w :

∣∣∣7n ∩ τ0 − w
2
, τ0 + w

2

( ]∣∣∣� k
{ }

, (4)

representing the smallest symmetric interval that con-
tains the k nearest neighbors of τ0 chosen from7n. Note
that this interval might exceed (0,T] if τ0 is close to the
endpoint zero or T, and there might not be k total
arrivals if n is too small; we let n→∞, so we ignore the
latter issue.We also show thatWk

n(τ0) converges to zero
asymptotically, so the first issue does not affect the
following development.
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For each replication, we assume the arrival-counting
process {N(t) : t≥ 0} satisfies the following properties
for all t∈ (0,T]:

Pr{Nw(t) ≥ 1} � λtw + o(w) and
Pr{Nw(t) ≥ 2} � o(w), (5)

where λt > 0 is the arrival process intensity at time t.
These properties are weaker than those for a Poisson
process because a Poisson process also requires in-
dependent increments; we assume Equation (5) holds
from here on and do not restate it. The only assumption
we make about the output performance Y is that
E[Y2(ti)]<∞ for all i; we refer to this assumption as
E[Y2(t)]<∞ from here on.

Remark 4. Our assumption about the arrival process
implies that it is regular, which is easily verifiable
for external arrival processes but might require some
thought for internal (e.g., queue-to-queue) arrivals.
Note that if the first arrival cannot occur until after
some clock time TL > 0, then we simply call TL “time
zero” for the purpose of our definitions.

Later, to prove asymptotic unbiasedness of the knn
estimator, we assume the expected value of the response
surface v(τ) is Lipschitz continuous for any τ1, τ2 ∈ (0,T],
that is, |v(τ1) − v(τ2)| ≤ L1 · |τ1 − τ2 |, where L1 > 0 is
a finite constant. This is a mild assumption that fol-
lows if E[Vi(τ)] have bounded Lipschitz constants
for all i.

In the following, we prove that, if k/n→ 0 as both
k,n→∞, then the k nearest neighbors become inde-
pendent and the corresponding knn estimator is
pointwise consistent and asymptotically unbiased.
Even if k is fixed and only n→∞, we show that the
knn estimator is still asymptotically unbiased, and
the k nearest neighbors are independent under mild
conditions.

We first establish the conditions on k and n to ensure
that Y(τ(1,n)0 ),Y(τ(2,n)0 ), . . . ,Y(τ(k,n)0 ) are asymptotically
independent as defined in Theorem 1. Lemma 1 is
a critical result.

Lemma 1. Suppose the system of interest satisfiesE[Y2(t)]<
∞ and its arrival-counting process {N(t) : t≥ 0} satisfies

Equation (5). If k/n→ 0 as n→∞, thenWk
n(τ0)→

L2
0, that is,

lim
n→∞
k/n→0

E[(Wk
n(τ0))2] � 0,

and further Wk
n(τ0)→

a.s.
0.

Proof. To make the development easier, consider an
alternative strategy for constructing a knn estimator for
v(τ0). In contrast to choosing the k nearest neighbors
from the superposed process defined in Equation (2),

first select the nearest neighbor of τ0, denoted by τ̃0,j,
from the jth replication; that is,

τ̃0,j � argmin
tij

|tij − τ0 |, j � 1, 2, . . . ,n.

Next, similar to 7n, define

7̃n � {τ̃0,1, τ̃0,2, . . . , τ̃0,n}. (6)

The alternative strategy averages the k nearest neigh-
bors from among this one nearest neighbor 7̃n; we refer
to this as the k-of-1nn strategy and compare our esti-
mator to it in Section 7.
The corresponding smallest symmetric interval con-

taining the k-of-1 nearest neighbors to τ0 is

W̃k
n(τ0) � min

{
w :

∣∣∣7̃n ∩ τ0 − w
2
, τ0 + w

2

( ]∣∣∣� k
}
,

which is an upper bound on Wk
n(τ0); that is, Wk

n(τ0) ≤
W̃k

n(τ0) for all sample paths.Hence, to proveWk
n(τ0)→

L2
0

or Wk
n(τ0)→

a.s.
0, it suffices to prove the corresponding

result for W̃k
n(τ0).

Consider an arbitrary replication j and let

p(w) � Pr {tij : i � 1, 2, . . . ,Mj}∩ τ0 − w
2
, τ0 + w

2

( ]
≠ ∅

{ }
.

Assumption (5) ensures that w> 0 implies p(w)> 0. For
any ε> 0, let the actual number of points within (τ0 −
ε/2, τ0 + ε/2] from 7̃n be denoted by Kε,n. Define k �
k(n) as a function of n; our first goal is to establish the
growth rate of k(n) so that

lim
n→∞Pr

{
W̃k

n(τ0)> ε
} � 0. (7)

Fix ε0 > 0 and let p0 ≡ p(ε0). Then
lim
n→∞Pr

{
W̃k

n(τ0)>ε0
}� lim

n→∞Pr{Kε0,n<k(n)}

� lim
n→∞

∑k(n)−1
ℓ�0

n
ℓ

( )
pℓ0(1− p0)n−ℓ

� lim
n→∞Φ

k(n) − 1− np0���������������
np0(1− p0)

√( )
+O(n−1/2),

(8)

where Φ( · ) is the distribution of a standard normal
random variable and theO(n−1/2) term is a consequence
of the Berry–Esseen theorem (Jacod and Protter 2003).
Thus, Equation (7) is achieved if

k(n) − 1 − np0���������������
np0(1 − p0)

√ → −∞ as n→∞,

which is equivalent to

k(n)��
n

√ − ��
n

√
p0 �

��
n

√ k(n)
n

− p0

( )
→ −∞ as n→∞.
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Therefore, we need k(n)/ ��
n

√
to grow strictly slower

than
��
n

√
, and that means k(n)/ ��

n
√ � o( ��

n
√ ); that is,

lim
n→∞

k(n)/ ��
n

√��
n

√ � lim
n→∞

k(n)
n

� 0.

Therefore, we can get limn→∞Pr{W̃k
n(τ0)> ε0} � 0,

that is, Wk
n(τ0)→

p
0, as long as k(n)/n→ 0 as n→∞.

Because W̃k
n(τ0) ≤T and E(T2)<∞, then we can further

conclude W̃k
n(τ0)→

L2
0, according to theorem 17.4 in

Jacod and Protter (2003). Therefore, we haveWk
n(τ0)→

L2

0 for all τ0∈ [0,T].
To provealmost sure convergence,weshow inAppendix

E of the online supplement that
∑∞

n�1Pr{W̃k
n(τ0)> ε0}

<∞ and then apply the Borel–Cantelli theorem (Jacod
and Protter 2003). □

Lemma 2. If k/n→ 0 as n→∞, then the probability that
any tij is one of the k(n) nearest neighbors infinitely often in n
is zero.

Proof. We prove this lemma by contradiction. The
smallest symmetric interval containing the single
nearest neighbor to τ0 is denoted by W1

n(τ0)> 0.
Suppose for some ñ> 0 the nearest neighbor will be
among the k(n) nearest neighbors infinitely often for
all n> ñ as n→∞ (clearly tij farther away have even
less chance). Thus,

Wk
n(τ0) ≥W1

ñ(τ0)> 0 infinitely often

and, therefore, does not converge to zero. This contra-
dicts Lemma 1, which shows, for any n> 0, Wk

n(τ0)→
a.s.

0
if k/n→ 0 as n→∞. □

Theorem 1. Suppose the system of interest satisfies
E[Y2(t)]<∞ and its arrival-counting process {N(t) : t≥ 0}
satisfies Equation (5). Let

Ikn(τ0) �
1, i f τ(1,n)0 , τ(2,n)0 , . . . , τ(k,n)0 are

from distinct replications
0, otherwise.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
If k/n→ 0 as n→∞, then Pr{Ikn(τ0) � 1}→ 1 for any
τ0 ∈ [0,T]; that is, the k nearest neighbors of τ0 are as-
ymptotically independent.

Proof. For the sake of simplicity, let Wk
n � Wk

n(τ0) in
this proof. Instead of proving Pr{Ikn(τ0) � 1}→ 1, we
show the convergence of Pr{Ikn(τ0) � 0}, that is, con-
vergence of the probability that at least one repli-
cation contributes multiple observations to the k
nearest neighbors.

We have shown that the width of the intervalWk
n will

converge to zero almost surely under certain conditions
on k and n, so it is very likely that it will take many
replications to get new observations into the interval.

Thus, we are only interested in the replications that
contribute observations into (τ0 −Wk

n/2, τ0 +Wk
n/2],

and for such replications,

Pr{NWk
n (τ0) ≥ 2 |NWk

n(τ0) ≥ 1} � o(Wk
n)

λτ0Wk
n + o(Wk

n)
� o(Wk

n)/Wk
n

λτ0 + o(Wk
n)/Wk

n
→ 0

as Wk
n → 0.

This means that if a replication is able to contrib-
ute observations into (τ0 −Wk

n/2,τ0 +Wk
n/2], then the

probability that this replication contributes multiple ob-
servations converges to zero as Wk

n→0. From Lemma 2,
we know that the k nearest neighbors at any fixed n will
eventually be replaced by new observations as n in-
creases. Thus, the probability that there exists at least one
replication contributing multiple observations converges
to zero as Wk

n→0, that is, Pr{Ikn(τ0) � 0}→0 as Wk
n→0.

Therefore,

Pr{Ikn(τ0) � 1} � 1 − Pr{Ikn(τ0) � 0}→ 1 as Wk
n → 0.

(9)

The critical condition required for Equation (9) to hold
is that the width of interval containing the k nearest
neighbors should converge to zero. According to
Lemma 1, Wk

n →
a.s.

0 if k/n→ 0 as n→∞. Therefore,

lim
n→∞
k/n→ 0

Pr{Ikn(τ0) � 1} � 1 (10)

implying that the k nearest neighbors to τ0 are as-
ymptotically independent for any τ0 ∈ [0,T]. □

Devroye (1981) proves that the knn estimator for
a regression function is pointwise consistent if all the
observations are independent and

k
n
→ 0 as k,n→∞. (11)

Refer to Appendix A of the online supplement for
a restatement of Devroye’s (1981) results. Although the
observations are dependent in our problem setting, we
have shown in Theorem 1 that the k nearest neighbors
are asymptotically independent if k/n→ 0 as k,n→∞,
which is the same condition as Equation (11). By ap-
plying Devroye’s (1981) results and Theorem 1, we can
establish the asymptotic consistency for the proposed
knn estimator for the expected virtual performance of
interest.

Theorem 2. Suppose the system of interest satisfies
E[Y2(t)]<∞, and its arrival-counting process {N(t) : t≥ 0}
satisfies Equation (5). If k/n→ 0 as k,n→∞, then the knn
estimator V̄(τ0) is asymptotically consistent for v(τ0).
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Proof. According to Devroye (1981), if all observations
are independent and Equation (11) is satisfied, then
E(|V̄(τ0) − v(τ0)|2)→ 0; that is,

lim
k,n→∞
k/n→ 0

E(|V̄(τ0) − v(τ0)|2) � 0. (12)

This means that V̄(τ0) converges to v(τ0) in mean

square, and it also implies that V̄(τ0)→p v(τ0). Our
imposed condition is k/n→ 0 as k, n→∞, the same as
Equation (11) required by Devroye (1981). Based on
Equation (10), we can show that for every ε> 0,

lim
k,n→∞
k/n→ 0

Pr{|V̄(τ0) − v(τ0)| > ε}

� lim
k,n→∞
k/n→ 0

Pr{|V̄(τ0) − v(τ0)| > ε | Ikn(τ0) � 1}Pr{Ikn(τ0) � 1}

+ lim
k,n→∞
k/n→ 0

Pr{|V̄(τ0) − v(τ0)| > ε | Ikn(τ0) � 0}Pr{Ikn(τ0) � 0}

� lim
k,n→∞
k/n→ 0

Pr{|V̄(τ0) − v(τ0)| > ε | Ikn(τ0) � 1} · 1 + 0

≤ lim
k,n→∞
k/n→ 0

E[|V̄(τ0) − v(τ0)|| Ikn(τ0) � 1]
ε

(by Markov inequality)
� 0,

where the last equality follows from Equation (12) be-
cause when Ikn(τ0) � 1 the k nearest neighbors are like
the k nearest neighbors from independent replications
and ε> 0 is fixed. Therefore, if k/n→ 0 as k, n→∞, then
our proposed knn estimator V̄(τ0)→p v(τ0) for any τ0 ∈
(0,T], implying that V̄(τ0) is asymptotically consistent
for v(τ0). □

Theorem 3. Suppose that the system of interest satisfies
E[Y2(t)]<∞, its arrival-counting process {N(t) : t≥ 0}
satisfies Equation (5), and the mean of the response surface
v(t) is Lipschitz continuous with finite Lipschitz constant
L1 > 0 for any t1, t2 ∈ [0,T]. If E[Wk

n(τ0)]→ 0 as n→∞,
then the knn estimator V̄(τ0) is asymptotically unbiased for
v(τ0).
Proof. The bias of the knn estimator defined in
Equation (3) is

E[V̄(τ0) − v(τ0)] � 1
k

∑k
ℓ�1

E[v(t(ℓ)) − v(τ0)]

≤L1
k

∑k
ℓ�1

E[|t(ℓ) − τ0 |].

Now because the distances from all the k nearest
neighbors to τ0 must be less than or equal to Wk

n(τ0),
the bias is upper-bounded by L1 ·E[Wk

n(τ0)]. We can

similarly provide a lower bound with −L1 replacing
L1. Therefore, the knn estimator V̄(τ0) is asymptoti-
cally unbiased if E[Wk

n(τ0)]→ 0 as n→∞. □

Notice that the proof of asymptotic unbiasedness of
V̄(τ0) does not impose specific conditions on k and n.

However, if Lemma 1 holds such thatWk
n(τ0)→

L2
0, then

the condition E[Wk
n(τ0)]→ 0 required in Theorem 3 is

satisfied simultaneously.

Remark 5. Walk (2010) also provides consistency results
for knn applied to dependent data when {(Xi,Yi), i �
1, 2, . . .} are identically distributed with either ρ-mixing
or α-mixing dependence. Such conditions would be
appropriate for a stationary queueing system in steady
state.

5. Error Measurement for the
knn Estimator

In this section, we provide two variance estimators for
the proposed knn point estimator V̄(τ0). We show the
scaled limit of one of these is the same as the scaled
limit of the true variance of V̄(τ0) under mild condi-
tions; however, we show later that the second vari-
ance estimator has significantly better small-sample
performance.
Let the marginal variance of the observation at t � τ0

be denoted by σ2(τ0), that is, σ2(τ0) � Var(V(τ0)); see
Appendix C of the online supplement. The variance of
the knn estimator V̄(τ0) is

τ2n,k(τ0) ≡ Var[V̄(τ0)] � Var
1
k

∑k
ℓ�1

Y(τ(ℓ,n)0 )
[ ]

.

Lemma 3. Suppose that the system of interest satisfies
E[Y2(t)]<∞, its arrival-counting process satisfies Equation (5),
and the marginal variance σ2(t) is Lipschitz continuous with
finite Lipschitz constant L2 > 0 for any t1, t2 ∈ [0,T]. If k/n→ 0
as n→∞, then

lim
n→∞
k/n→ 0

kτ2n,k(τ0) � σ2(τ0).

The proof is provided in Appendix C of the online
supplement.
Our first approach is to use the sample variance of

the k nearest neighbors {Y(τ(ℓ,n)0 )}k
ℓ�1; that is,

τ̂2n,k(τ0) �
s2n,k(τ0)

k
� 1
k(k − 1)

∑k
ℓ�1

[Y(τ(ℓ, n)0 ) − V̄(τ0)]2.

Theorem 4. Suppose that the system of interest satisfies
E[Y2(t)]<∞, its arrival-counting process satisfies Equation (5),
and the expected value response surface v(t) and the marginal
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variance σ2(t) are Lipschitz continuous with finite Lipschitz
constants L1,L2 > 0 for any t1, t2 ∈ [0,T]. If k/n→ 0 as
k,n→∞, then

kτ̂2n,k(τ0) � k ·
s2n,k(τ0)

k

[ ]
→
p
σ2(τ0)

implying that s2n,k(τ0) is asymptotically consistent for σ2(τ0).
The proof is provided in Appendix D of the online

supplement.
The conditions required for proving Lemma 3 and

Theorem 4 imply Theorem 1, which means that the
underlying assumption for proving the consistency of
the sample variance estimator is that the k nearest
neighbors of τ0 should be asymptotically independent.
In fact, this independence assumption is important
because a sample variance computed from dependent
observations is biased for the true variance.

Of course, in a finite sample, the {Y(τ(ℓ,n)0 )}k
ℓ�1 may

not be independent, and thus, s2n,k(τ0)may be biased for
τ2n,k(τ0). Therefore, we consider a second variance es-
timator for τ2n,k(τ0) that directly accounts for this de-
pendence using bootstrapping.

We treat each complete replication as a sample drawn
from the unknown joint distribution of the stochastic
system. We draw B bootstrap samples of size n, with
replacement, from the original set of n replications, then
compute the knn estimator for each bootstrap sample
and compute the sample variance of these B knn esti-
mators. Let the knn estimator obtained from the bth
bootstrap sample to be denoted by V̄∗

n,k,b(τ0). Then the
bootstrap variance estimator is given by

τ∗
2

n,k,B(τ0) �
1

B − 1

∑B
b�1

V̄∗
n,k,b(τ0) −

1
B

∑B
l�1

V̄∗
n,k,b(τ0)

( )
2

.

Because of the strong lawof large numbers,we can define
τ∗2n,k(τ0) � limB→∞τ∗

2

n,k,B(τ0) a.s. We apply these two var-
iance estimators to empirical examples in Section 7.

6. Practical Approach
In data analytics, it is always preferred to have training
data for model selection and separate testing data for
assessment to avoid overfitting. When this is not
possible or desirable, CV, which is an out-of-sample
technique to assess prediction error, can be used to
reduce overfitting. However, training the model with
such methods can be computationally expensive. In
this section, we discuss how to apply CV in our
problem setting.

A traditional K-fold CV approach randomly divides
N observations into K subsets or “folds” of size N/K,
then repeatedly uses each subset of (K − 1) folds of data
to train the model and the remaining fold as the testing
data, in which K for the number of folds should not

be confused with k, the number of nearest neighbors
to average in a knnmodel. This procedure is repeated K
times until all folds of data are tested; then a goodness-
of-fit measure is used to compare alternative models.
Tenfold CV is a common choice, and it is sometimes
preferred to leave-one-observation-out CV (which
could be thought of as N-fold CV) because, other-
wise, the folds are highly correlated because they
share (N − 1) observations.
We should not directly apply traditional CV to virtual

statistics because of the correlation among observations
collected from within the same replication. Hart (1991)
points out that CV performs poorly with correlated data.
Thus, instead of leaving individual observations out, we
propose to leave out n/K entire replications, using the
remaining replications as the training data and the left-
out replications as the testing data; recall that replications
are independent. This guarantees independence of each
training and testing set.
An underlying principle of CV is that the model fit

obtained when leaving out some data should be rep-
resentative of the model fit we would obtain using all of
the data; even tenfold CV uses 90% of the data for fitting.
Notice, however, that in our context the training data
consist of the superposition of all of the observations
from multiple replications, so the k nearest neighbors of
any test point will, typically, not come from different
replications and, therefore, will be correlated. For this
reason we further propose leave-one-replication-out (LORO)
CV, which increases the likelihood that the predictive
performance of a value of k based on (n − 1) replications
will be most similar to its performance with n replications.
If we were to leave out a larger number of replications,
then the k nearest neighbors from the remaining replica-
tions would be more strongly correlated than they would
be leaving out fewer. Stated differently, if each fold leaves
out one replication for testing, then there are a large
number of (n − 1) replications for training, and the k
nearest neighbors should be spread out among them as
they would be with all n replications. Traditional leave-
one-observation-out CV does not have this advantage in
most data-analytics problems because data are usually
assumed i.i.d. The details of our approach can be found in
Algorithm 1. Algorithm 1 searches for a single globally
optimal k⋆ that minimizes the EMSE(k) across the entire
time range (0,T]; the EMSE(k) is obtained viaCV inwhich
the values of Y(tij) at times tij for each left-out replication j
are predicted by a trial value of k applied to the data from
the (n − 1) other replications without j.

Algorithm 1 (knn Method via LORO CV)
1: Input search range kL < kU, NN = “nearest

neighbors.”
2: For j � 1, 2, . . . ,n, do
3: Stest ← {Y(tij), tij; i � 1, 2, . . . ,Mj}.
4: Strain ← all data except Stest.
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5: Find kU NN in Strain to tij ∈ Stest.
6: Store the indices of the kU NN to each tij ∈ Stest

into an indexmatrix Mind ∈R|Stest |×kU , where the ith row
in Mind contains the indices of the kU NN to tij ∈ Stest.

7: For k ∈ [kL, kU], do
8: Extract the first k columns from Mind.
9: Find the k NN to each tij ∈ Stest and compute

the knn estimator V̄(tij, k).
10: end For
11: end For
12: For k ∈ [kL, kU], do
13: Compute EMSE(k)� ∑n

j�1
∑Mj

i�1 [Yij− V̄(tij,k)]2
)
/

(∑n
j�1Mj

)(
.

14: end For
15: Choose k⋆ that results in the minimum EMSE(k).
We know that one critical issue about LOROCV is its

computational effort, especially when both k and n
could be very large. Thus, using a K-fold CV might be
more appropriate in terms of computational effort in
some situations. Refer to Hastie et al. (2001) for more
discussion on the choice between K-fold CV versus
leave-one-out CV from the perspective of bias–variance
trade-off and computational effort. Notice that we focus
on LORO CV in the remainder of the paper because, in
our experiments, the number of replications n is only
10 to 100 (not a large n), so the computational effort is
not a concern.

Because we suggest CV for parameter tuning, the
constructed knn mean estimator is actually a cross-
validated estimator. Hence, it is also important to
understand the properties of such a knn estimator.
Li (1984) proves asymptotic consistency for a cross-
validated knn mean estimator under certain conditions
on the data and the weight function of the k nearest
neighbors. All of the required conditions, except that
the k nearest neighbors should be independent, are
satisfied in our problem setting. Refer to Appendix B
of the online supplement for the verification of each
condition.

Thus, to apply the results from Li (1984), we need
additional conditions to ensure the independence among
the k nearest neighbors first. Recall that in Theorem 1
we have shown that the k nearest neighbors will be
asymptotically independent as long as k/n→ 0 as
n→∞. We have not shown that cross-validation leads
to a choice of k with this property, but if it does, then
Theorem 1 implies that all of the conditions of Li (1984)
are satisfied. This, in turn, would imply that our
proposed cross-validated knn estimator is asymptot-
ically consistent, that is,

1∑n
j�1Mj

∑n
j�1

∑Mj

i�1
[v(tij) − V̄(tij, k⋆CV)]2

( )
→
p
0,

where k⋆CV is the optimal tuning parameter obtained
using Algorithm 1.

7. Experiments
In this section, we describe controlled studies based on
queueing models to evaluate the performance of our
proposed knn estimator V̄(τ0) and the corresponding
variance estimators. Although themodels themselves are
simple, they allow us to stress the method by varying the
factors that could affect estimator performance, in-
cluding severity of the nonstationarity, variability, and
correlation of the output response (waiting time), density
of arrivals, and number of replications. In addition, we
can compute the true value of v(τ0), as described herein,
which facilitates evaluating the bias of V̄(τ0).
As mentioned in Section 2, the Kolmogorov forward

equations (KFEs) of a continuous-time Markov chain
can be numerically integrated to obtain state proba-
bilities over time, and from these, the true values of
some virtual performance measures, such as mean
virtual waiting time, can be computed. To extend to
queues with non-Markovian behavior, we employ
phase-type (Ph) distributions, because Ph distributions
can approximate nonexponential distributions while
still allowing state probabilities to be represented by
KFEs; this is at the cost of expanding the state space and
number of differential equations.
For arrivals, we consider homogeneous customers

with either nonstationary, two-phase hyperexponential
(H2(t)) or nonstationary, two-phase Erlang (E2(t)) inter-
arrival times. There are s servers with stationary, expo-
nentially distributed service times, and a single first-
come, first-served queue with finite system capacity c.
We denote these two queueing systems by H2(t)/M/s/c
and E2(t)/M/s/c, respectively. Compared with the ar-
rivals to an M(t)/M/s/c queueing system, from the
perspective of coefficient of variation (cv), aH2(t)/M/s/c
system is more variable with cvH > 1, and an E2(t)/
M/s/c system is less variable with cvE < 1, so they can
represent more general systems with nonexponential
behavior. We also report results from an E4(t)/E4/s/c
queue for reasons described herein.
For these phase-type queueing systems, we are in-

terested in estimating the mean virtual waiting time of
arrivals. Because the systems have finite capacity, the
virtual arrivals occurring when the system is full cannot
enter the queue. The true virtual waiting time, v(τ0), is
computed to high numerical accuracy using code we
developed in Python; details about the computation of
v(τ0) are offered inAppendix F of the online supplement.
TomakeH2(t)/M/s/c and E2(t)/M/s/c comparable in

terms of their arrival processes, we first specify the two
arrival-rate functions λ(1)

H(t) and λ
(2)
H(t) for H2(t)/M/s/c,

and then the arrival-rate function for E2(t)/M/s/c is
λE(t) � pλ(1)

H(t) + (1 − p)λ(2)
H(t), where p is the mixing

probability for the hyperexponential distribution.
We study the performance of the knn estimator for the

virtual waiting time v(τ0) along with the two variance
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estimators under different system characteristics.
A summary of all cases is provided in Table 1. For the
arrival-rate functions, we test the two patterns of time-
varying arrival rates presented in Figure 1—one is
piecewise constant (pw-c) with different shapes, and the
other is piecewise linear (pw-l) with the same shape.
Notice that multiple values are tested for some pa-
rameters in some cases. For example, the first case
shown in Table 1 indicates that the pw-c arrival-rate
functions (Figure 1(a)) are applied to the corresponding
H2(t) and E2(t) interarrival-time distributions and that
these two queueing models are tested under two dif-
ferent values of service rate µ (i.e., 10 and 20).

Overall, the knn estimator turns out to estimate v(τ0)
well across all seven cases, and the bootstrap variance
estimator performs much better than the sample var-
iance estimator. For the purpose of illustration, we
provide detailed results for cases 2 and 7. The time-
varying pw-l arrival-rate functions we used for these
cases are presented in Figure 1(b), from which we see
that the arrivals are generated from t � 0 to t � 16. We
let the simulation model run until the service for all
arrivals before time 16 are completed, implying that the
actual run length T is greater than 16. We run the
simulation in this way because if the simulation model
stopped running at t � 16 then we would lose the data
for the arrivals occurring late, especially when systems
are congested. As for the other parameters, we have
service rate µ � 20, number of servers s � 1, system
capacity c � 50, mixing probability p � 0.4 for the

hyperexponential cases, and B � 2, 000 resamples for
computing the bootstrap variance estimator. For case 2,
we test different numbers of replications: n � 10, im-
plying relatively sparse superposed arrivals, and
n � 100, yielding much denser superposed arrivals. For
case 7, we only report results for n � 10.
We begin with the case 2 results. Figure 2 gives an

illustration of the superposed sample paths from n � 10
replications of the H2(t) and E2(t) systems, from which
we find that the H2(t)/M/1/c waiting times are more
variable than E2(t)/M/1/c as expected. To assess
variance-estimator performance, we ran R � 100 mac-
roreplications for all the scenarios so that we could
obtain an unbiased estimator for τ2n,k(τ0), the true
variance of V̄(τ0), that is,

τ̂2R(τ0) �
1

R − 1

∑R
r�1

[V̄r(τ0) − �
VR(τ0)]2,

where V̄r(τ0) is the knn estimator for the expected
virtual waiting time computed from the rth macro-
replication and

�
VR(τ0) is the average of these Rknn

estimators. In each macroreplication, the optimal k⋆

was tuned via LORO CV using Algorithm 1. Notice
that τ̂2R(τ0) is available in experiments in which we
make macroreplications but would not be available to
the practitioner who has a single set of replications.
We estimate virtual waiting time at time points

τ0 � 1, 2, . . . , 15. Figure 3 shows the comparison be-
tween

�
VR(τ0) and the true virtual waiting time v(τ0).

We have also added error bars at ± 2τ̂R(τ0)/
���
R

√
for

Table 1. Simulation Experiment Designs for Controlled Studies

Case Arrival rate Arrivals Service µ s c p n

1 pw-c H2(t),E2(t) M 10, 20 1 30 0.5 50
2 pw-l H2(t),E2(t) M 20 1 50 0.4 10, 25, 50, 100
3 pw-l H2(t),E2(t) M 10 2 50 0.4 10
4 pw-l H2(t),E2(t) M 5 4 50 0.4 10
5 pw-l H2(t),E2(t) M 40 1 50 0.4 10
6 pw-l H2(t),E2(t) M 20 2 50 0.4 10
7 pw-l E4(t) E4 20 1 50 — 10

Figure 1. (Color online) Arrival Rate Functions
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�
VR(τ0); however, there is so little error that they are not
really visible. We see that the averaged knn estimator�
VR(τ0) with a globally optimal k⋆ is effectively equal to
v(τ0) for both H2(t)/M/1/c and E2(t)/M/1/c.

The result shown in Figure 3 reflects the performance
of our knn estimator averaged over 100 independent
data sets. However, in applications, the practitioner will
use a single set, so it is important to examine the esti-
mation performance based on a single simulation. For
bothH2(t)/M/1/c and E2(t)/M/1/c systems, we present
a good case and a bad case in terms of the performance
of the knn estimator for n � 10 and n � 100. For each
case, we also provide a comparison between the two
error estimators, sn,k⋆(τ0)/

���
k⋆

√
and τ∗n,k⋆(τ0), and the un-

biased error estimator τ̂R(τ0). See Figure 4 for H2(t)/M/
1/c and Figure 5 for E2(t)/M/1/c.

First, consider the results for the H2(t)/M/1/c system
presented in Figure 4: we see that the knn estimator is
close to the true value v(τ0) for either n � 10 or 100 if
a “good” data set is used. Even for the two “bad” cases,
the knn estimator is still accurate for most values of τ0,
especially when n � 100. As for the two error estima-
tors, we see that the sample variance estimator,
sn,k⋆(τ0)/

���
k⋆

√
, dramatically underestimates τ̂R(τ0), and

the bootstrap variance estimator τ∗n,k⋆ is much closer to
τ̂R(τ0). This is because the optimal k⋆ ≫ n so that many

of the selected observations come from the same rep-
lication; hence, the sample variance estimator un-
derestimates the true variance because of the positive
correlation among those k⋆ observations. As for the
bootstrap variance estimator, because we bootstrap the
n independent replications, the bootstrap variance es-
timator can handle the dependence more appropri-
ately. Therefore, although we can establish asymptotic
consistency for the sample variance estimator, it is less
useful than the bootstrap variance estimator in practice
because the data are finite and usually correlated.
Further, we notice that the estimation error drops more
than 100%when n increases from 10 to 100. Because the
arrivals around τ0 get denser with more replications,
the knn estimator V̄(τ0) is constructed from nearer
neighbors; thus, V̄(τ0) is very likely to be less biased.
Moreover, we find that the optimal k⋆ grows slower
than n, as shown in Table 2, so the dependence issue
among the selected k⋆ nearest observations should be
less severe when n goes from 10 to 100. Therefore,
having more replications of data reduces the error of
the knn estimator significantly, especially when the
system of interest is variable. Similar analysis applies to
the E2(t)/M/1/c system presented in Figure 5.
According to the coefficient of variation, the

E2(t)/M/1/c is less variable than H2(t)/M/1/c, whereas

Figure 2. Sample Paths with 10 Superposed Replications for Two Systems

Figure 3. (Color online) Comparison Between V̄R(τ0)± 2τ̂ R(τ0)/
���
R

√
and v(τ0) for Two Systems
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the performance of our knn estimator alongwith its two
variance estimators for E2(t)/M/1/c is not that different
from the H2(t)/M/1/c. Therefore, we explore an even
less variable system, case 7, E4(t)/E4/1/c, which has
the same system parameters but with different distri-
butions for the interarrival time and service time. From
the 100-replications-superposed sample path shown
in Figure 6, we find that E4(t)/E4/1/c is much less
variable than E2(t)/M/1/c. As for the

�
VR(τ0) with a

globally optimal k⋆ averaged over 100macroreplications,
it is also very close to the true virtual waiting time
v(τ0).

Similar to case 2 discussed previously, we present
two macroreplications with n � 10 to illustrate good
and bad performance of the knn estimator and the
corresponding error estimators for this E4(t)/E4/1/c
system. Comparedwith n � 10 cases shown in Figure 5,
we see that the error of V̄(τ0), especially the bootstrap
error estimator, reduces significantly in Figure 7. Al-
though the sample variance estimator still underesti-
mates the true variance, it is less biased than for the
E2(t)/M/1/c system. This is because E4(t)/E4/1/c is
much less variable than E2(t)/M/1/c, implying that the
optimal k⋆ for E4(t)/E4/1/c should be smaller than the
k⋆ for E2(t)/M/1/c. When n � 10, the average k⋆ over
100 macroreplications for E4(t)/E4/1/c is around 48,
and the one for E2(t)/M/1/c is around 136. Thus, the
dependence issue among the k⋆ nearest neighbors in
the E4(t)/E4/1/c system is definitely less severe, and the
sample variance estimator is less biased.

Overall, we see that our proposed knn estimator
tuned via LORO CV estimates the true value v(τ0)well.
Although the sample variance estimator has a nice

asymptotic property, the bootstrap variance estimator
works much better in practice because of the de-
pendence among data. For cases 2–4 with s×µ � 20
and cases 5 and 6 with s×µ � 40, we find that the more
servers the systems have, the shorter the average vir-
tual waiting times are. Further, the systems in cases 5
and 6 serve customers very fast, such that most waiting
times are pretty short or even zero; thus, there is not
much trend but high variability in the sample path. Our
knn estimator works well for most virtual arrivals
occurring during the middle of the time period but is
more biased at the two boundaries. This is because the
globally optimal k⋆ becomes very large because of the
high variability of the system and such a large k⋆ av-
erages too many observations for those τ0’s close to the
boundaries, making the corresponding knn estimator
relatively more biased. In addition to the large bias
at the boundaries, the bootstrapped error bar is very
wide, which also reflects the high variability of the
system. Also, the bootstrap variance estimator turns
out to be much larger than the sample variance esti-
mator. Again, this is because the globally optimal k⋆,
which is around 700, is much larger than the number of
replications (n � 10), such that the dependence issue is
very severe. Hence, the sample variance estimator be-
comes extremely biased, but the bootstrap variance
estimator still works well. For such highly variable
systems, having more replications of data greatly im-
proves the accuracy of the knn estimator. On the other
hand, when the system of interest is not that variable,
such as the E4(t)/E4/1/c, a relatively small number of
replications can provide an accurate knn estimator with
small error.
How sensitive are our results to the estimated value

of k⋆ from LORO CV? The answer is not very. In
Appendix H of the online supplement we report the
EMSE for case 2 simulations in which we employ �k⋆/2�
and 2k⋆ as well as k⋆ and show that the results are
robust. Recall that we estimate a single, global k⋆ for all
target time points, so it is comforting that the results are
not highly sensitive.

Table 2. Average Globally Optimal k⋆ for Different n

n H2(t)/M/s/c E2(t)/M/s/c

10 197 136
25 208 164
50 351 245
100 509 418

Figure 6. (Color online) Sample Path and Macroreplication Results with n � 10 for E4(t)/E4/1/c
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Up to this point, we have examined how properties
of the queueing process affect our knn estimator. Next,
we compare it to the natural alternative that averages
the k nearest neighbors from among the one nearest

neighbor from each replication, which we call the k-of-
1nn strategy. Because replications are independent,
k-of-1nn is just standard k nearest neighbors for which
all the usual asymptotic theory holds and we can

Figure 7. (Color online) Performance of knn Estimator and Two Variance Estimators for E4(t)/E4/1/c

Table 3.
���������
EMSE

√
of knn and k-of-1nn Estimators

E2(t)/M/1/c H2(t)/M/1/c

n � 10 n � 100 n � 10 n � 100

τ0 knn k-of-1nn knn k-of-1nn knn k-of-1nn knn k-of-1nn

1 0.025 0.030 0.010 0.109 0.038 0.036 0.006 0.069
2 0.026 0.054 0.012 0.128 0.035 0.063 0.010 0.098
3 0.036 0.116 0.018 0.118 0.037 0.093 0.015 0.137
4 0.057 0.186 0.026 0.177 0.068 0.182 0.026 0.180
5 0.090 0.326 0.034 0.252 0.095 0.284 0.040 0.270
6 0.120 0.410 0.049 0.352 0.147 0.447 0.057 0.392
7 0.148 0.581 0.055 0.445 0.189 0.584 0.067 0.511
8 0.155 0.579 0.056 0.486 0.212 0.628 0.069 0.587
9 0.166 0.505 0.065 0.493 0.213 0.563 0.072 0.567
10 0.165 0.467 0.060 0.456 0.198 0.538 0.067 0.495
11 0.143 0.416 0.053 0.384 0.152 0.475 0.060 0.411
12 0.134 0.386 0.054 0.343 0.144 0.415 0.062 0.368
13 0.122 0.349 0.057 0.321 0.135 0.401 0.059 0.397
14 0.126 0.382 0.065 0.309 0.153 0.444 0.058 0.394
15 0.153 0.437 0.060 0.433 0.197 0.463 0.059 0.489
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directly apply leave-one-observation-out CV to tune k⋆;
see Appendix G of the online supplement for details.
Table 3 shows the EMSE of both estimators based on 100
macroreplications, for the E2(t)/M/1/c andH2(t)/M/1/c
queues of case 2. Notice that knn has smaller EMSE,
often by as much as an order of magnitude, except for
n � 10 replications when the target time τ0 � 1, when
they are comparable. In these examples, the arrival rate
is quite low near the origin, so knn does benefit enough
from superposing dense arrivals to be superior to
k-of-1nn at this time point. However, overall, the ben-
efit for choosing the k nearest neighbors from among all
arrivals is substantial.

Remark 6. We mentioned the need to store detailed
sample paths in Section 1. Take the E2(t)/M/1/c queueing
system as an example. As an illustration, we retained
a detailed sample path (i.e., a time-stamped trace of all
events and state changes throughout one simulation run)
generated by the commercial simulation software Simio,
which amounted to only 5.05 MB. Thus, the total amount
of data across 100 replications is about 505 MB, which is
not large comparedwith the standards of data analytics. In
addition, these sample paths generated by Simio are not
stored in an efficient data structure; if they were, then the
size of the data could be further reduced, and we could
query the data more efficiently.

8. Conclusions
In this paper, we propose a knn method for estimating
virtual mean performance based on retained trans-
actional data from simulation experiments.We derive the
asymptotic properties of the knn estimator and propose
two variance estimators. The controlled studies show that
even with a globally optimal k⋆, the knn estimator can be
very close to the true value of the virtual performance
throughout the time range, and the bootstrap variance
estimator performsmuch better than the sample variance
estimator because of the dependence among data.

However, to make searching for k⋆ computationally
feasible, we need a robust starting k or at least a modest
range of k within which to search because an exhaustive
search and CV calculation is O((∑n

j�1Mj)2). Our algo-
rithm includes such a range, [kL, kU], but setting this
range, perhaps using results in Lin andNelson (2016), is
still an open problem. Furthermore, it will be valuable
to develop an adaptive knn algorithm in the sense that
the optimal k⋆ could be tuned using a subset of data
around the point of interest τ0 instead of the entire
data set.
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