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1. Introduction
Financial risk management is vital to the survival of finan-
cial institutions and the stability of the financial system.
A fundamental task in risk management is to measure the
risk entailed by a decision, such as the choice of a port-
folio. In particular, regulation requires each financial insti-
tution to measure the risk of the firm’s entire portfolio
and to set its capital reserves accordingly, to reduce the
chance of bankruptcy if large losses occur. This firmwide
risk measurement problem is challenging. Solution meth-
ods that avoid Monte Carlo simulation involve simplifica-
tions and approximations that cast doubt on the validity
of the answer. Monte Carlo simulation allows for detailed
modeling of the behavior of the firm’s portfolio given pos-
sible future events, and it is compatible with the use of
the best available models of financial markets. Because of
this, Monte Carlo simulation is an attractive methodology,
but its appeal is limited by its computational cost, which
can be quite large, especially when derivative securities are
involved (McNeil et al. 2005, §2.3.3). This is because a
precise estimate of the risk measure requires consideration
of many future financial scenarios, but it takes a long time
to compute the value of all the derivative securities in any
scenario. Consequently, a large firmwide risk measurement
simulation can take days to run on a cluster of 1,000 com-
puters. Because of the speed at which markets move, time-
lier answers are needed. One of our main contributions is

to develop a more efficient simulation procedure for risk
measurement when it is time consuming to compute the
portfolio value in a future financial scenario.
Let V be a random variable representing the value of

a portfolio in the future, and let FV be its distribution. A
risk measure is a functional T �FV � of this distribution. For
example, value-at-risk VaR1−p may be defined as the nega-
tive of the p-quantile of FV . In market risk management, it
is usual to consider the 95th or 99th percentile: p = 5% or
1%. In this paper, we focus on expected shortfall (ES):

ES1−p = − 1
p

�E�V 1�V�vp�� + vp�p −Pr�V � vp���� (1)

where vp is the lower p-quantile of FV . If FV is continuous
at vp, then ES equals tail conditional expectation (TCE)
(Acerbi and Tasche 2002):

TCE1−p = −E�V � V � vp�	

Closed-form expressions for ES are available when the
distribution FV belongs to some simple parametric families
(McNeil et al. 2005, §§ 2.2.4, 7.2.3). There is also a litera-
ture on nonparametric estimation of expected shortfall from
data V1� V2� 	 	 	 � Vk drawn from a stationary process whose
marginal distributions are FV . In this setting, Chen (2008)
shows that although kernel smoothing is valuable in esti-
mating VaR, the simplest nonparametric estimator of ES,
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involving an average of the �kp� smallest values among
V1� V2� 	 	 	 � Vk, is preferred to kernel smoothing. Accord-
ingly, we use unsmoothed averages in our construction of
confidence intervals for ES.
However, we consider a different situation, in which we

do not have a sample of data from FV and we do not
have a parametric form for FV . In many risk measurement
applications, it is important to consider risk as depend-
ing on the current state of the market. In this case, his-
torical loss data is not directly representative of the risks
faced today. In particular, suppose that V is the gain expe-
rienced by a portfolio containing derivative securities. We
have a model of underlying financial markets that allows
us to sample a scenario Z (which specifies such things
as tomorrow’s stock prices) from its distribution FZ, and
there is a function V � · � such that the portfolio’s gain
V = V �Z�. Even if FZ belongs to a simple parametric
family, FV may not, because the value function V � · � is
not analytically tractable. Furthermore, the function V � · �
itself is not generally known in closed form; it is known
in closed form only for some simple models and deriva-
tive securities. However, in most models, we can represent
V �Z� = E�X � Z� where X involves the payoffs of deriva-
tive securities, which we can simulate conditional on the
scenario Z.
In this situation, we can estimate the risk measure T �FV �

by a two-level simulation, in which the outer level of simu-
lation generates scenarios Z1�Z2� 	 	 	 �Zk and the inner level
estimates each Vi 
= V �Zi� by simulating V conditional on
Zi. For more on this general framework and its signifi-
cance in risk management, see Lan et al. (2007b). Point
estimation of a quantile of the distribution (here called FV )
of a conditional expectation via two-level simulation has
been studied by Lee (1998) and Gordy and Juneja (2006,
2008). This is equivalent to point estimation of VaR. Gordy
and Juneja (2008) also consider point estimation of ES.
This strand of the research literature emphasizes asymptotic
optimality for large computational budgets or portfolios.
In related work, Steckley (2006) studies estimation of the
density of FV via two-level simulation.
The present paper focuses on interval estimation of ES

and moderate sample sizes, and it improves upon our ear-
lier work in Lan et al. (2007a). We develop a procedure for
efficient computation of a confidence interval for ES and
show that it performs well at realistic sample sizes. Two-
level simulations can be extremely computationally expen-
sive. A plain two-level simulation procedure, such as that
discussed in §4, can produce very wide confidence inter-
vals given the available computational budget. To produce
a narrower confidence interval given a fixed computational
budget, our procedure uses screening with common ran-
dom numbers and allocates sample sizes proportional to
each scenario’s sample variance. An electronic companion
to this paper is available as part of the online version at
http://or.journal.informs.org. In the electronic companion,
we prove that the coverage of our procedure’s confidence

interval is at least the nominal level asymptotically. To
the best of our knowledge, this paper and our conference
papers (Lan et al. 2007a, b) provide the first proof of the
asymptotic validity of a confidence interval produced by a
two-level simulation; this is one of our main contributions.
Section 2 contains two examples of two-level risk mea-

surement simulation problems. We present our simulation
procedure in §3. Numerical results of simulation experi-
ments in which we apply our procedures to the examples
appear in §4, whereas §5 concludes and describes future
research.

2. Motivating Examples
Risk management simulations may deal with nontrivial
models and thousands of derivative securities with com-
plicated payoffs. However, for purposes of illustration, we
consider the following two simple examples. This allows
us to report the coverage rate that our procedure achieves
by repeating the simulation experiment many times, so as
to see how often our confidence interval contains the true
value of ES.

2.1. Selling a Single Put Option

At time 0, we sell a put option with strike price K = $110
and maturity U = 1 year on a stock whose initial price
is S0 = $100. This stock’s price obeys the Black-Scholes
model with drift � = 6% and volatility � = 15%. There is a
money market account with interest rate r = 6%. The initial
price for which we sell the put option is P0 = P�U�S0�,
which is the Black-Scholes formula evaluated for maturity
U and stock price S0.
We are interested in ES0	99 at time T = 1/52 years, or

one week from now. The scenario Z is a standard normal
random variable that determines the stock price at time T :

ST = S0 exp
((

� − �2

2

)
T + �

√
T Z

)
	

The net payoff at maturity U , discounted to time T , from
selling the put for an initial price of P0 is

X = e−r�U−T ��P0e
rU − �K − SU �+��

where

SU = ST exp
((

r − �2

2

)
�U − T � + �

√
U − T Z′

)
and Z′ is a standard normal random variable independent
of Z.
In this simple example, we can actually find the value

V = E�X � Z� = P0e
rT − P�U − T �ST ��

using the Black-Scholes formula evaluated for maturity
U − T and stock price ST . Furthermore, V is strictly
decreasing in Z, so we can compute that VaR0	99 ≈ $2	92
by evaluating V at Z = z0	01, the standard normal first per-
centile. By numerical integration, we can also compute
ES0	99 ≈ $3	39, which will help us to evaluate the perfor-
mance of our procedure. (Our procedure does not compute
V by using the Black-Scholes formula, but rather estimates
it using inner-level simulation of payoffs at maturity.)
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2.2. A Portfolio of Options on Two Stocks

We are interested in ES at time T = 1/365 years, or one
day, of a portfolio of call options on Cisco (CSCO) and Sun
Microsystems (JAVA), as shown in Table 1. In the table, the
position given for each option is the number of shares of
stock we have the option to buy; if it is negative, then our
portfolio is short call options on that many shares of stock.
Except for the portfolio weights, which we made up, the
data in the table were drawn from listed options prices on
June 26, 2007. We ignored the distinction between Amer-
ican and European options because neither of these stocks
pays dividends, a situation in which early exercise of an
American call option is widely regarded as mistaken (see,
e.g., Luenberger 1998, §12.4).
The scenario Z = �Z�1��Z�2�� is a bivariate normal ran-

dom variable that determines the stock prices at time T :

S
�j�
T = S

�j�
0 exp

((
��j� − 1

2
���j��2

)
T + ��j�

√
T Z�j�

)
�

j = 1�2	

The initial stock prices were S
�1�
0 = $27	15 for CSCO and

S
�2�
0 = $5	01 for JAVA. Based on sample moments of 1,000

daily stock prices, the volatilities of CSCO and JAVA are,
respectively, ��1� = 32	85% and ��2� = 47	75%, whereas
the correlation between the components of Z is 0.382. In
practice, more sophisticated methods of volatility forecast-
ing would be used, but this method yields a reasonable
covariance matrix for the vector ST of stock prices tomor-
row. Because one day is such a short period of time that
the effect of the drift � is negligible, while mean returns
are hard to estimate because of the high ratio of volatility
to mean, we take each ��j� = 0.
In addition to a distribution FZ for scenarios, we need

to specify the function V � · � by saying how option values
at time T depend on the scenario. We adopt the “sticky
strike” assumption, according to which each option’s value
at time T is given by the Black-Scholes formula with
volatility equal to the implied volatility that this option
had at time 0 (Derman 1999). This does not make for
an arbitrage-free model of the underlying stock prices S,
but it is an assumption that has been used in practice to

Table 1. Portfolio of call options.

Option Implied
Underlying Position Strike Ki Maturity price volatility �i

Index i stock 
i �$� Ui ($) (%)

1 CSCO 200 27	5 0	315 1	65 26	66
2 CSCO −400 30 0	315 0	7 25	64

3 CSCO 200 27	5 0	564 2	5 28	36
4 CSCO −200 30 0	564 1	4 26	91

5 JAVA 600 5 0	315 0	435 35	19
6 JAVA 1�200 6 0	315 0	125 35	67

7 JAVA −900 5 0	564 0	615 36	42
8 JAVA −300 6 0	564 0	26 35	94

model short-term changes in option values. As in the pre-
vious example, we can compute these values without using
inner-level simulation, but our procedure performs inner-
level simulation for each option i by taking the stock price
at maturity Ui to be

Si =
S

�ji�
T

Di

exp
(

−1
2

�2
i �Ui − T � + �i

√
Ui − T Z′

i

)
�

where j1 = j2 = j3 = j4 = 1 (the four options on CSCO)
and j5 = j6 = j7 = j8 = 2 (the four options on JAVA), Di is
a discount factor from T to Ui, and Z′ is a standard mul-
tivariate normal random vector independent of Z. Based
on Treasury bond yields, the discount factor was 0.985
for options maturing in 0.315 years and 0.972 for options
maturing in 0.564 years. The independence of the compo-
nents of Z′ means that, even though in reality the eight
options depend on two correlated stock prices at two times,
independent inner-level simulations are used to estimate the
option prices at time T . As shown by Gordy and Juneja
(2006, 2008), this can improve the efficiency of the two-
level simulation. Furthermore, the sticky strike assumption
does not lead to a consistent model of the underlying stock
prices, so one cannot use a single simulation of the two
stocks to price all the options; this makes it more natural
to think of eight separate option-pricing simulations. The
value of option i at time T is the conditional expectation
of the discounted payoff Yi 
= Di�Si −Ki�

+ given S
�ji�
T . The

profit from holding the portfolio from 0 to T is V �Z� =
E�X�Z�, where X = 
��Y − P0/D0� and the discount fac-
tor D0 ≈ 1 because the time value of money over one day
is negligible. We estimated the true value of ES0	99 to be
$32.4, the average point estimate produced by 100 repe-
titions of the complete experiment with a budget of 1.56
billion inner-level simulations each.

3. Explanation of the Procedure
This section presents a fixed-budget two-level simulation
procedure for generating a confidence interval for ES1−p.
The procedure first simulates scenarios Z1�Z2� 	 	 	 �Zk. If
the values V1� V2� 	 	 	 � Vk of these scenarios were known,
then the point estimate of ES1−p would be

− 1
p

(	kp
∑
i=1

1
k

V�V �i� +
(

p − 	kp

k

)
V�V ��kp��

)
� (2)

where �V is a permutation of �1�2� 	 	 	 � k� such that
V�V �1� � V�V �2� � · · ·� V�V �k�. That is, V�V �i� is the ith order
statistic of V1� V2� 	 	 	 � Vk.
Because these values are not known, they are estimated

by inner-level simulation. The inner level of simulation has
a first stage in which n0 � 2 payoffs are generated for every
scenario, using common random numbers (CRN; see, e.g.,
Law and Kelton 2000). Let Xi be a random variable repre-
senting a payoff simulated under scenario i, that is, having
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the distribution of the payoff X given Z = Zi. The first-
stage sample average of the n0 payoffs Xi1�Xi2� 	 	 	 �Xin0

is denoted �Xi�n0�. Our proof of the procedure’s validity
depends on an assumption that the payoffs are normally
distributed. Financial payoffs are often far from normally
distributed, but the sample averages are usually close to
normally distributed because of the central limit theorem.
Lesnevski et al. (2008) investigated empirically the effect
of nonnormal payoffs on a related confidence interval pro-
cedure and found that it posed no problem as long as the
first-stage sample size n0 was at least 30.

After the first stage, screening eliminates scenarios
whose values are not likely to appear in Equation (2). The
goal of screening is to allocate more of the computational
budget to scenarios that matter. After screening, sample
sizes N1�N2� 	 	 	 �Nk are chosen; the sample size Ni is 0
if scenario Zi has been screened out. For scenarios that
survive screening, we set the sample size proportional to
sample variance, with the goal of equalizing the standard
errors of simulating each scenario’s value. The reason for
this is that the confidence interval width is related to the
maximum standard error over all scenarios because of the
proof techniques we use. Next, the first-stage data are dis-
carded, a process called “restarting.” This is necessary for
the statistical validity of the confidence interval (Boesel
et al. 2003).
In the second stage, Ni payoffs Xi1�Xi2� 	 	 	 �XiNi

are
generated conditional on the scenario Zi for each i =
1�2� 	 	 	 � k using independent sampling (no CRN). The
sample average of Xi1�Xi2� 	 	 	 �XiNi

is denoted �Xi�Ni�.
Then a confidence interval is formed: the confidence lim-
its appear in Equations (9) and (10) below. The two-level
simulation point estimator of ES1−p is

ÊS1−p 
= − 1
p

(	kp
∑
i=1

1
k

�X�1�i�
�N�1�i�

�

+
(

p − 	kp

k

)
�X�1��kp���N�1�i�

�

)
� (3)

where �1 is a permutation of �1�2� 	 	 	 � k� such that
�X�1�1�

�N�1�1�
� � �X�1�2��N�1�2�� � · · · � �X�1�k��N�1�i�

�. If
Ni = 0, then �Xi is taken to be � so that it is not among the
order statistics used in Equation (3).
To get a confidence interval, we need a way of com-

bining uncertainty that arises at the outer level, because
Z1�Z2� 	 	 	 �Zk is a sample from FZ, with uncertainty that
arises at the inner level because we only possess an esti-
mate �Xi of each scenario’s value Vi = V �Zi�. In Lan et al.
(2007b), we described a framework for two-level simula-
tion that generates a two-sided confidence interval �L̂� 
U�
with confidence level 1 − � where � can be decomposed
as � = �o + �i, representing errors due to the outer and
inner levels of simulation, respectively. Here we further
decompose �i = �s + �hi + �lo, where �s is error due to

screening and �hi and �lo are errors, respectively, associ-
ated with upper and lower confidence limits for inner-level
simulation.
Before providing a detailed description of our proce-

dure and how it produces an asymptotically valid confi-
dence interval from a two-level simulation, we explain why
we advocate using such a complicated procedure to pro-
duce a confidence interval. Looking at Equation (3), one
might think to run m separate two-level simulations and

use the resulting point estimates ÊS
�1�

1−p� ÊS
�2�

1−p� 	 	 	 � ÊS
�m�

1−p

to construct a confidence interval for ES1−p, e.g., based
on the assumption that these point estimates are normally
distributed with mean ES1−p. However, the point estimator
is biased because of inner-level sampling uncertainty (Lan
et al. 2007b). Consequently, in experiments not reported
here, we found that the normal-theory confidence interval
had very low coverage except when it was so wide as to be
useless for practical purposes. Our procedure takes the bias
into account when constructing the confidence interval and
thus is able to provide a confidence interval that is narrow
and achieves the nominal coverage.

3.1. Screening

Screening is the process of eliminating (“screening out”)
scenarios to increase the simulation’s efficiency by devot-
ing more computational resources to the remaining sce-
narios. From Equation (2), we can see that ES depends
on the values of scenarios �V �1���V �2�� 	 	 	 ��V ��kp��
alone, so we want screening to keep these scenarios
but eliminate as many others as possible. Call the set
of scenarios that survive screening I , and define � 
=
��V �1���V �2�� 	 	 	 ��V ��kp���, the set of scenarios we
wish to keep. The event of correct screening is �� ⊆ I�,
and we must create a screening procedure such that
Pr�� ⊆ I�� 1− �s . The number of pairwise comparisons
between � and all other scenarios is �k−�kp���kp�. There-
fore, for each ordered pair �i� j� we consider a hypothe-
sis test that Vi � Vj at level �s/��k − �kp���kp��. If the
hypothesis is rejected, then we say Zi is “beaten” by Zj .
For each i = 1�2� 	 	 	 � k, let Xi1�Xi2� 	 	 	 �Xin0

be an i.i.d.
sample drawn from the conditional distribution of X given
Zi, and let �Xi�n0� be its sample average. For each i� j =
1�2� 	 	 	 � k, let S2

ij �n0� be the sample variance of Xi1 −Xj1�
Xi2 − Xj2� 	 	 	 �Xin0

− Xjn0
. We retain all scenarios that are

beaten fewer than �kp� times:

I =
{

i

∑
i �= j

1
{

�Xi�n0� > �Xj�n0� + d
Sij�n0�√

n0

}
< �kp�

}
� (4)

where 1� · � is an indicator function and

d = tn0−1�1−�s/��k−�kp���kp�� (5)

is the 1−�s/��k−�kp���kp�� quantile of the t-distribution
with n0 − 1 degrees of freedom. Because the �kp� sce-
narios with the lowest sample averages are necessarily
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beaten fewer than �kp� times, they survive screening, so
�I �� �kp�. Because of the extra margin dSij�n0�/

√
n0 in

Equation (4), there are pairs �i� j� such that neither does
scenario i beat scenario j , nor does scenario j beat sce-
nario i; therefore, it is possible for �I � > �kp� scenarios to
survive screening.
From Equation (4) we see that it is easier to screen out

scenarios when the sample variances S2
ij �n0� are smaller.

We use CRN to reduce the variance of Xi −Xj by inducing
positive correlation between Xi and Xj . In finance, CRN
usually induces a substantial positive correlation between
Xi and Xj . In our examples, Xi and Xj have to do with stock
option payoffs at maturity U > T simulated conditional on
the stock price at time T being Si�T � or Sj�T �, respec-
tively. These payoffs are highly correlated when CRN is
used, because, in our examples, CRN makes the stock
return between times T and U the same for any value
of S�T �.

3.2. Empirical Likelihood

The procedure uses empirical likelihood (Owen 2001) to
account for statistical uncertainty at the outer level, that is,
for the fact that V1� V2� 	 	 	 � Vk is only a sample from the
true distribution FV of portfolio values at time horizon T .
The construction of an outer-level confidence interval for
ES1−p based on empirical likelihood is discussed by Baysal
and Staum (2008). Here we review a few essential facts for
understanding the operation of empirical likelihood in our
two-level simulation procedure.
Empirical likelihood involves considering distributions

that arise by assigning a vector w of weights to the
scenarios Z1�Z2� 	 	 	 �Zk, or, equivalently, to their values
V1� V2� 	 	 	 � Vk. This weight vector w must belong to the set

� �k� 
=
k⋃

l=1

�l�k��

where

�l�k� 
=
{
w
 w� 0�

k∑
i=1

wi = 1�

l∑
i=1

wi = p�
k∏

i=1

wi � c k−k

}
� (6)

where c is a critical value derived from a chi-squared dis-
tribution. Each w ∈ � �k� belongs to �l�k� for a unique
integer l, which can be interpreted as the number of sce-
narios that we believe belong to the tail of FV , i.e., are
less than or equal to the p-quantile of V . The intuition
behind using only weight vectors that fall in � �k� in this
application of empirical likelihood is as follows. First, it
is unlikely that too few or too many of the scenarios that
we sampled from FV belong to the tail of FV . There are
integers lmin and lmax such that �l�k� is empty if l < lmin
or l > lmax; we need only consider a limited range of l,

not all 1�2� 	 	 	 � k. (Although l depends on w, and lmin and
lmax depend on k, to lighten notation we do not make this
dependence explicit.) Second, we use only weight vectors
that are fairly close to uniform; if elements wi are too far
from 1/k, then

∏k
i=1 wi < c k−k. This means that we work

with discrete distributions that are not too far from the
empirical distribution, which places weight 1/k on each of
V1� V2� 	 	 	 � Vk.
Because ES1−p involves an average over the left tail con-

taining probability p, we also define a transformed weight
vector w′:

w′
i 
=

⎧⎨
⎩

−wi/p� i = 1�2� 	 	 	 � l

0� otherwise.
(7)

If the vector V 
= �V1� V2� 	 	 	 � Vk� of true portfolio values
were known, then with a weight vector w it would define
a discrete distribution Fw�V assigning probability wi to each
value Vi. For this distribution, ES1−p is

∑k
i=1 w′

iV�V �i�. The
empirical likelihood confidence interval for ES1−p of the
unknown true distribution FV , expressed in Equation (1), is[
min

w∈� �k�

k∑
i=1

w′
iV�V �i�� max

w∈� �k�

k∑
i=1

w′
iV�V �i�

]
� (8)

representing the outer-level uncertainty entailed by working
with a sample Z1�Z2� 	 	 	 �Zk instead of the true distribu-
tion FZ. The intuition behind (8) is that � �k� is the set of
weight vectors that are “empirically likely,” and we do not
believe that the true ES according to FV is less than the
smallest ES that comes from applying weights in � �k� to
the values V, nor do we believe that the true ES is more
than the largest ES that comes from applying weights in
� �k� to the values V.
Because we do not know the values V, we must com-

bine this confidence interval with inner-level simulation as
discussed in Lan et al. (2007b). The result, derived in the
electronic companion, is that the lower confidence limit is

min
l=	kp
�			�lmax

(
min

w∈�l�k�

l∑
i=1

w′
i
�X�0�i�

�N�0�i�
� − tlo�l�B0�l�

)
(9)

and the upper confidence limit is

max
l=lmin�			��kp�

(
max

w∈�l�k�

l∑
i=1

w′
i
�X�1�i�

�N�1�i�
� + thiBS�l�

)
� (10)

where several quantities are defined in Step 5 of the pro-
cedure in the following subsection. At an intuitive level,
the lower confidence limit in Equation (9) arises from that
in Equation (8) by ordering the scenarios based on infor-
mation available at the end of the first stage, estimating
the scenarios’ values by second-stage sample averages, and
subtracting a term that accounts for inner-level uncertainty.
The upper confidence limit in Equation (10) arises simi-
larly, but the ordering of the scenarios is based on informa-
tion available at the end of the second stage, and we add
a different term to account for inner-level uncertainty. The
minimization and maximization over l represent our uncer-
tainty about how many of the values V1� V2� 	 	 	 � Vk are less
than the quantile vp.
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Figure 1. Schematic illustration of our procedure’s
operation.
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3.3. Outline of the Procedure

The procedure involves a fixed computational budget, which
may be expressed as a total number C of simulation repli-
cations, i.e., the total number of payoffs that can be simu-
lated, or as an amount of computing time T . The distinction
between these two kinds of computational budgets is impor-
tant when choosing the first-stage sample size n0 and the
number of scenarios k. However, given n0 and k, the kind
of budget makes only a small difference in determining the
number C1 of payoffs to simulate in the second stage. If the
budget is C total payoffs, then C1 = C − kn0. If the budget
is an amount of time T , then during the first stage we must
estimate t, the amount of time required to simulate one pay-
off, and record T0, the amount of time required by the first
stage. Then C1 = �T − T0�/t, treating the amount of time
required to construct the confidence interval at the end as
negligible in comparison to simulating payoffs.
To explain exactly how CRN is used, we overload nota-

tion by supposing that there is a function Xi� · � such that
when U is a uniform random variate (or vector), the distri-
bution of Xi�U� is the conditional distribution of the payoff
X given that the scenario is Zi.

The procedure has the following steps, illustrated in
Figure 1:
1. Scenario Generation: Generate scenarios Z1�

Z2� 	 	 	 �Zk independently from the distribution FZ.
2. First-Stage Sampling: Sample U1�U2� 	 	 	 �Un0

inde-
pendently from a uniform distribution.
For each i = 1�2� 	 	 	 � k and j = 1�2� 	 	 	 � n0, compute

Xij 
= Xi�Uj�.
3. Screening: For each i = 1�2� 	 	 	 � k, compute the

sample average �Xi�n0� and sample variance S2
i �n0� of

Xi1�Xi2� 	 	 	 �Xin0
.

Sort to produce a permutation �0 of �1�2� 	 	 	 � k� such
that �X�0�i�

�n0� is nondecreasing in i. Compute S̃2�n0� 
=
maxi=1�2�			��kp� S2

�0�i�
and d according to Equation (5). Ini-

tialize I ← �1�2� 	 	 	 � �kp�� and i ← k.
(a) Screening of scenario �0�i�: Initialize b ← 0 and

j ← 1.

(i) Compute the sample variance S2
�0�i��0�j�

of
X�0�i�1

− X�0�j�1
�X�0�i�2

− X�0�j�2
� 	 	 	, X�0�i�n0

− X�0�j�n0
.

(ii) If �X�0�i�
�n0� > �X�0�j�

�n0� + dS�0�i��0�j�
/
√

n0,
scenario �0�i� beats scenario �0�j�: set b ← b + 1.

(iii) If b � �kp�, scenario �0�i� is screened out: go
to Step 3(b). Otherwise, set j ← j + 1.

(iv) If j < i, go to Step 3(a)(i). Otherwise, scenario
�0�i� survives screening: set I ← I ∪ ��0�i��.

(b) Loop: Set i ← i − 1. If i > �kp�, go to Step 3(a).
4. Restarting and Second-Stage Sampling: Discard all

payoffs from Step 2.
Compute C1 
= C −kn0 or �T −T0�/t, depending on the

type of budget constraint.
For each i ∈ I , compute

Ni 
=
⌈

C1S
2
i �n0�∑

j∈I S2
j �n0�

⌉
	 (11)

For each i ∈ I and j = 1�2� 	 	 	 �Ni, sample Uij indepen-
dently from a uniform distribution and compute Xij 
=
Xi�Uij�.
5. Constructing the Confidence Interval: For each i ∈

I , compute the sample average �Xi�Ni� and sample vari-
ance S2

i �Ni� of Xi1�Xi2� 	 	 	 �XiNi
, and compute si 
=√

S2
i �Ni�/Ni.
Compute

lmin 
=min
{

l 
 kk

(
p

l

)l(1− p

k − l

)k−l

� c

}
and

lmax 
=max
{

l 
 kk

(
p

l

)l(1− p

k − l

)k−l

� c

}
�

respectively, the smallest and largest numbers of scenarios
to use in estimating ES.
Initialize the lower confidence limit L̂ ← �. Com-

pute Nlo��kp�� 
= mini=1�2�			��kp� N�0�i�
and s��kp�� 
=

maxi=1�2�			��kp� s�0�i�
, which are, respectively, the smallest

sample size and the largest standard error associated with
any of the �kp� scenarios with the lowest first-stage sample
averages.
The following loop computes the lower confidence limit

as a minimum of lower bounds associated with different
numbers l of scenarios that could be used in estimating ES.
For l = 	kp
� 	kp
 + 1� 	 	 	 � lmax:
(a) Compute tlo�l� 
= t1−�lo�Nlo�l�−1,

��l� 
=
√√√

max
w∈� �l�

l∑
i=1

�w′
i�

2� (12)

and B0�l� 
= s�l���l�, which serves to bound standard error
in estimating ES using l scenarios.
(b) Set

L̂←min
{

L̂� min
w∈�l�k�

l∑
i=1

w′
i
�X�0�i�

�N�0�i�
�−tlo�l�B0�l�

}
	 (13)
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(c) Compute Nlo�l + 1� 
= min�Nlo�l��N�0�l+1�� and
s�l + 1� ←max�s�l�� s�0�l+1��.
Sort to produce a mapping �1 from �1�2� 	 	 	 � �I �� to I

such that �X�1�i�
�N�1�i�

� is nondecreasing in i.
Initialize the upper confidence limit 
U ← −� and the

largest standard error associated with any scenario s̄ 
=
maxi=1�2�			�k si.

Compute the smallest sample size associated with
any scenario that survived screening, Nhi 
= min�N�1�1��
N�1�2�� 	 	 	 �N�1��I ���, and thi 
= t1−�hi�Nhi−1.
The following loop computes the upper confidence limit

as a maximum of upper bounds associated with different
numbers l of scenarios that could be used in estimating ES.
For l = lmin� lmin + 1� 	 	 	 � �kp�:
(a) Compute ��l� as in Equation (12) and BS�l� 
=

s̄��l� to bound standard error in estimating ES using
l scenarios.
(b) Set


U ←max
{


U� max
w∈�l�k�

l∑
i=1

w′
i
�X�1�i�

�N�1�i�
� + thiBS�l�

}
	 (14)

The confidence interval given in Equations (9) and (10) is
�L̂� 
U�.
The maximum in Equation (12) is computed by a method

described in the appendix. An algorithm for the opti-
mizations in Equations (13) and (14) is given in Baysal
and Staum (2008). The t-quantiles tlo�l� and thi may be
replaced by normal quantiles when the second-stage sample
sizes are sufficiently large, as they typically are.

3.4. Sketch of the Proof of Asymptotic Validity
of the Confidence Interval

Due to its length, the complete proof of the asymptotic
validity of the confidence interval as the number of scenar-
ios k → � appears in the electronic companion. Here we
sketch the main ideas of the proof.
The basic approach is error spending: we decompose the

allowable error probability � = �i + �o, where �i and �o

are the allowed probabilities of an error associated with
inner- and outer-level simulation, respectively. This is a
feature of the general framework of Lan et al. (2007b),
showing how to construct an asymptotically valid confi-
dence interval for two-level simulation from the following
two components. The first is a confidence interval that is
a function of the vector V 
= �V1� V2� 	 	 	 � Vk� of unknown
true portfolio values and whose coverage probability is at
least 1 − �o in the limit as the outer-level sample size
k → �. In our case, this is the outer-level confidence inter-
val of Equation (8), and its asymptotic validity is proved by
Baysal and Staum (2008). The second component we use
is a confidence region � for the vector V whose coverage
probability is 1− �i.

Our proof shows that the confidence limits L and U
in Equations (9) and (10) are indeed constructed from

Equation (8) and a confidence region � in a way that fits
the framework of Lan et al. (2007b), and that this confi-
dence region � has coverage probability 1 − �i. To sim-
plify our proof, we assume that the payoffs are normally
distributed so as to work with a confidence region � that is
valid even at finite inner-level sample size. (Because of the
central limit theorem, we expect the payoffs to be approx-
imately normal if the sample sizes n0 and Ni are large
enough.) The proof uses a further error-spending decom-
position �i = �hi + �lo + �s , in which the error probabili-
ties are associated with a violation of the upper confidence
limit in Equation (8), with a violation of the lower confi-
dence limit in Equation (8), and with screening out a sce-
nario that should not be screened out, respectively. We use
the Bonferroni inequality to show that the error probabil-
ity associated with screening is bounded by �s , in a way
standard in the ranking-and-selection literature. The nov-
elty is in the shape chosen for the confidence region �
and the arguments that bound error probabilities by �hi

and �lo. The key to bounding error probabilities by �hi and
�lo is Lemma EC.2, which provides a tool like a t-test for
weighted sums of independent normal random variables.

4. Experimental Results
We tested the simulation procedures by producing a
90% confidence interval (CI) for ES0	99 in the examples
described in §2. The error � = 10% was decomposed into
�o = 5% for the outer level, �s = 2% for screening, and
�lo = �hi = 1	5% for the inner-level lower and upper confi-
dence limits. In each experiment, we chose our procedure’s
parameters k and n0 according to a method described in
Lan (2010). We compare our procedure with the plain pro-
cedure, a one-stage procedure that does not use screening,
and therefore does not use CRN. It assigns an equal num-
ber of replications to each scenario, C/k if the total number
C of replications is fixed, T /tk if the total computation
time T is fixed. It then computes the confidence interval in
Equations (9) and (10). We ran the plain procedure with the
same number k of scenarios as our procedure. To compare
the procedures, we evaluate their confidence intervals’ cov-
erage rates and mean widths given the same fixed budget.
We ran the experiments on a PC with a 2.4 GHz CPU and
4 GB memory under 64-bit Red Hat Linux. The code was
written in C++ and compiled by gcc 3.4.6.
Similar to results reported in Lan et al. (2007a), we found

that the plain procedure and our procedure both had cover-
age rates greater than the nominal confidence level of 90%
as long as k � 40/p, where p is the tail probability under
consideration. In these examples, p = 1− 0	99= 0	01.

The following figures report average CI widths for
20 independent runs of the procedures. The error bars in
the figures provide 95% confidence intervals for the mean
width of our procedure’s CI. (The width of the CI produced
by the plain procedure is less variable, so the error bars
for the plain procedure were too small to display.) In each
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figure, a horizontal line represents 10% relative error, that
is, its value is one-tenth of ES0	99. We include the line for
the purpose of comparing the CI widths to a rough measure
of desirable precision. It would not be very useful to attain
a relative error far less than 10% because of model risk:
that is, risk management models are not generally accurate
enough that precision better than, say, 1% would convey
meaningful information. On the other hand, if the CI width
is much greater than 10% relative error, then the simulation
experiment has left us with a great deal of uncertainty about
the magnitude of ES0	99. For these reasons, we ran experi-
ments with computational budgets such that our procedure
yields CI widths in the neighborhood of 10% relative error.
Figure 2 shows how average CI width varies with a com-

putational budget of C replications for the example of sell-
ing a put option described in §2.1. The much narrower CI
widths achieved by our procedure show that the benefit of
screening in directing more replications to important sce-
narios outweighs the cost of restarting and throwing out
first-stage replications. In these experiments, our procedure
produced a CI up to 116 times narrower than that produced
by the plain procedure. On the log-log plot in Figure 2,
the CI width decreases roughly linearly in the budget, with
slope about −0	4 or −0	44. This is unfavorable compared
to the usual ��C−1/2� order of convergence of ordinary
Monte Carlo, but favorable compared to the ��C−1/3� order
of convergence for a two-level simulation estimator of VaR
found by Lee (1998) or the ��C−1/4� order of convergence
for the procedure we proposed in Lan et al. (2007a).
Figure 3 shows similar results from the example of an

options portfolio described in § 2.2. In this example, larger
computational budgets are required to get a precise estimate
of ES. Again, our procedure produced CIs narrower than
those from the plain procedure, up to a factor of 14. For low
budgets, our procedure’s advantage was not as great. For
example, when C is 32 million, our best choice was k =
4�000 and n0 = 4�703, so that more than half the budget

Figure 2. Average confidence interval width in the
example of §2.1 given a fixed budget of sim-
ulation replications.
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Figure 3. Average confidence interval width in the
example of §2.2 given a fixed budget of sim-
ulation replications.
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was used up in the first stage before restarting, yet the first
stage was too small to enable the procedure to screen out
most of the scenarios that do not belong to the tail. When
the computational budget is small, our procedure may not
be able to produce a CI narrow enough to be useful. A
multistage screening procedure (similar to Lesnevski et al.
2007, 2008) might overcome this problem.
Next we present results when the computational bud-

get limits computing time. The budget constraint is imple-
mented not by dynamically terminating the procedures
when a given amount of clock time has elapsed, but by
choosing values of k and n0 such that the procedure
takes approximately the given amount of time. Our proce-
dure’s running time is slightly variable, but all experiments’
durations were within 5% of the allotted time. A budget
expressed in computing time is less favorable to our pro-
cedure (relative to the plain procedure) than a budget for
the total number of replications: our procedure can spend
a substantial amount of time in performing comparisons
between scenarios as part of screening, even though it does
not generate more replications then. The amount of time
spent on screening when there are k scenarios is ��k2�
because there are k2/2 pairs of scenarios that can be com-
pared. This pushes us to choose smaller values of k (Lan
2010). For instance, in the example of a single put option
(§2.1), our procedure attains a CI width around $0.0427
with a budget of C = 120 million replications or T = 1�560
seconds, but if the budget is in replications, then we choose
k to be about 600,000 scenarios, whereas if the budget is
in computing time, we choose k to be about 427,000 sce-
narios. For budgets so large as to lead to choosing a very
large k, the advantage of our procedure degrades. This can
be seen in Figure 4, where the curve representing our pro-
cedure’s CI width becomes flatter as the computing time
T grows. Still, Figures 4 and 5 show that our procedure
performs much better than the plain procedure when they
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Figure 4. Average confidence interval width in the
example of §2.1 given a fixed budget of com-
puting time.
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are given equal computing times, producing a CI narrower
by a factor of as much as 15 or 12 in these two examples.

5. Conclusions and Future Research
We have presented and tested a new two-level simulation
procedure that creates an asymptotically valid confidence
interval for expected shortfall given a computational budget
expressed in computing time or total number of simula-
tion replications. We found that the confidence interval has
adequate coverage as long as the number of simulated sce-
narios k � 40/p, where p is the tail probability at which
expected shortfall is measured. In these examples, our pro-
cedure’s confidence interval was dozens of times narrower
than one created without using our efficiency techniques.
There are several possibilities for further improving the

procedure’s efficiency. Baysal and Staum (2008) mention

Figure 5. Average confidence interval width in the
example of §2.2 given a fixed budget of com-
puting time.
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potential enhancements to the empirical likelihood estima-
tion used here. As in Lesnevski et al. (2008), it may help
to use multistage screening and to employ other inner-level
variance reduction techniques, such as control variates. One
might also apply variance reduction techniques at the outer
level, in sampling scenarios. Relevant ideas are described
by Glasserman (2004, Ch. 9); they apply to expected short-
fall as well as value-at-risk. However, it seems more dif-
ficult to employ variance reduction at the outer level than
the inner level while maintaining validity of the confidence
interval, which is based on empirical likelihood at the outer
level. Furthermore, some of these variance reduction tech-
niques for risk management may be substitutes rather than
complements for our techniques: for example, importance
sampling is often used in risk management simulations to
increase the proportion of simulated scenarios that lead
to large losses, but our procedure accomplishes something
similar by screening out those scenarios that do not lead to
large losses.
We tested our procedure on small examples, using a

desktop computer. To be useful for large examples, the
procedure must be run in a high-performance parallel com-
puting framework. We are currently developing parallel
implementations of the procedure.
To use our procedure requires choosing a computational

budget and a confidence level 1− �, decomposing � into
several components that govern various sources of error,
and choosing the number k of scenarios and the first-stage
sample size n0. In our experience, it is easy to decompose �
in a way that makes the procedure efficient: the values we
chose in §4 are broadly effective, a finding that agrees with
Lesnevski et al. (2007). However, it is not so easy to choose
k and n0; the procedure’s efficiency depends strongly on
these choices, and the best choices are problem dependent.
A multistage procedure may make it easier to choose n0

(Lesnevski et al. 2007, 2008). Ways of choosing k and
n0, either from a pilot experiment or based on experience
in performing similar risk management simulations in the
recent past, are the subject of ongoing research and will be
discussed in Lan (2010).

6. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Appendix. Computation of the Maximum
in Equation (12)
By the definition of w′ in Equation (7), the computa-

tion of ��l� 
=
√
maxw∈� �l�

∑l
i=1�w

′
i�

2 in Equation (12) is

equivalent to maximizing
∑l

i=1 w2
i /p2 over the set � �l� 
=

�w 
 w � 0�
∑k

i=1 wi = 1�
∑l

i=1 wi = p�
∏k

i=1 wi � c k−k�.
Choosing wl+1 = wl+2 = · · · = wk = �1− p�/�k − l� has no
effect on the objective and leads to the loosest possible con-
straint on w1�w2� 	 	 	 �wl, namely,

∏l
i=1 wi � ck−k��1− p�/
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�k− l��−�k−l�. Thus, letting xi = wi/p for i = 1�2� 	 	 	 � l, we
have reduced the problem to the l-dimensional problem

max f �x� subject to x ∈� 
= �x
 x� 0� g�x�� 0�

h�x� = 0��

where f �x� =∑l
i=1 x2

i , g�x� =∑l
i=1 logxi + l logp− log c+

k logk − �k − l��log�k − l� + log�1 − p�� and h�x� =∑l
i=1 xi − 1. The function f is convex, and the feasible set

� is nonempty, closed, bounded, and convex. Therefore,
the maximum is attained at an extreme point of � (Rock-
afellar 1970, Corollary 32.3.2).
We next turn to necessary conditions on the gradients

�f , �g, and �h at any point x∗ where the maximum is
attained. The gradients of the objective and of the active
constraints are given by ��f �x��i = 2xi, ��g�x��i = 1/xi,
and ��h�x��i = 1. The constraint x� 0 is not active at any
x ∈ � because having xi = 0 for any i leads to a viola-
tion of the constraint g�x� � 0. Because x∗ is an extreme
point of � , its coordinates are not all equal, so the rank
of ��g�x��h�x�� is two. Because this equals the number
of active constraints, there exist �� 0 and �� 0 such that
�f �x∗� + ��g�x∗� + ��h�x∗� = 0 (Sundaram 1996, Theo-
rem 6.10). That is, 2x∗

i +�/x∗
i +� = 0 for all i = 1�2� 	 	 	 � l.

This equation has at most two positive real roots; therefore,
any point x∗ where the maximum is attained is an extreme
point of � with the property that the set �x∗

1� x∗
2� 	 	 	 � x∗

l �
contains at most two distinct values.
The only remaining questions are what those two val-

ues are and how many of the coordinates x∗
1� x∗

2� 	 	 	 � x∗
l

take on each of the two values—by symmetry, it does
not matter how the coordinates are permuted. Consider
an extreme point x�m� of � such that m coordinates take
on one value, a�m�, whereas the other l − m coordinates
take on another value, b�m�. Because the order does not
matter, we take x

�m�
1 = x

�m�
2 = · · · = x�m�

m = a�m� whereas
x

�m�
m+1 = x

�m�
m+2 = · · ·x�m�

l = b�m�. To satisfy the constraint
h�x�m�� = 0, we must have b�m� = �p − ma�m��/�l − m�.
For each m = 1�2� 	 	 	 � l − 1, we compute a�m� by solv-
ing g�x�m�� = 0. Finally, we compute ��l� = max�f �x�m��

m = 1�2� 	 	 	 � l − 1�.

Acknowledgments
This article is based on work supported by the National
Science Foundation under grant DMI-0555485. The authors

are grateful to the associate editor and referees for correc-
tions and comments that led to improvements in the article.

References
Acerbi, C., D. Tasche. 2002. On the coherence of expected shortfall. J.

Banking and Finance 26(7) 1487–1503.
Baysal, R. E., J. Staum. 2008. Empirical likelihood for value at risk and

expected shortfall. J. Risk 11(1) 3–32.
Boesel, J., B. L. Nelson, S.-H. Kim. 2003. Using ranking and selection to

“clean up” after simulation optimization. Oper. Res. 51(5) 814–825.
Chen, S. 2008. Nonparametric estimation of expected shortfall. J. Finan-

cial Econometrics 6(1) 87–107.
Derman, E. 1999. Regimes of volatility. Risk 12(4) 55–59.
Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering.

Springer-Verlag, New York.
Gordy, M. B., S. Juneja. 2006. Efficient simulation for risk measurement

in portfolio of CDOs. L. F. Perrone, B. Lawson, J. Liu, F. P. Wieland,
eds. Proc. 2006 Winter Simulation Conf. IEEE Press, Piscataway, NJ,
749–756.

Gordy, M. B., S. Juneja. 2008. Nested simulation in portfolio risk mea-
surement. Finance and Economics Discussion Series 2008-21, Fed-
eral Reserve Board, Washington, DC.

Lan, H. 2010. Two-level simulation of expected shortfall: Confidence
intervals, efficient simulation procedures, and high-performance com-
puting. Ph.D. thesis, Northwestern University, Evanston, IL.

Lan, H., B. L. Nelson, J. Staum. 2007a. A confidence interval for tail
conditional expectation via two-level simulation. S. G. Henderson,
B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, R. R. Barton, eds.
Proc. 2007 Winter Simulation Conf. IEEE Press, Piscataway, NJ,
949–957.

Lan, H., B. L. Nelson, J. Staum. 2007b. Two-level simulations for risk
management. S. Chick, C.-H. Chen, S. Henderson, E. Yücesan, eds.
Proc. 2007 INFORMS Simulation Soc. Res. Workshop. INFORMS,
Hanover, MD, 102–107.

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and Analysis, 3rd
ed. McGraw-Hill, New York.

Lee, S.-H. 1998. Monte Carlo computation of conditional expectation
quantiles. Ph.D. thesis, Stanford University, Stanford, CA.

Lesnevski, V., B. L. Nelson, J. Staum. 2007. Simulation of coherent risk
measures based on generalized scenarios. Management Sci. 53(11)
1756–1769.

Lesnevski, V., B. L. Nelson, J. Staum. 2008. An adaptive procedure for
estimating coherence risk measures based on generalized scenarios.
J. Comput. Finance 11(4) 1–31.

Luenberger, D. G. 1998. Investment Science. Oxford University Press,
New York.

McNeil, A. J., R. Frey, P. Embrechts. 2005. Quantitative Risk Manage-
ment. Princeton University Press, Princeton, NJ.

Owen, A. B. 2001. Empirical Likelihood. Chapman & Hall/CRC, Boca
Raton, FL.

Rockafellar, R. T. 1970. Convex Analysis. Princeton University Press,
Princeton, NJ.

Steckley, S. G. 2006. Estimating the density of a conditional expectation.
Ph.D. thesis, Cornell University, Ithaca, NY.

Sundaram, R. K. 1996. A First Course in Optimization Theory. Cambridge
University Press, New York.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


