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New point and interval estimators for quantiles that employ a control variate are introduced.
The properties of these estimators do not depend on the usual assumption of joint normality
between the random variable of interest and the control. Illustrative examples for queucing and
stochastic activity network models are given. In those examples, the new estimators are superior
to the standard estimator in terms of the mean squared error of the point estimator and the length
of the confidence interval.
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1. Introduction

Let Y be arandom variable with an unknown distribution, Fy, but for which realizations
can be obtained. This paper considers estimating the value y, such that Pr{¥ < y,} = ¢
for prespecified g (0 < g < 1). The value y, is called the gth quantile of Y.

Much of the literature on simulation output analysis concentrates on estimating E[Y ],
the expected value of Y. Quantiles provide additional information about the distribution
of Y. In fact, in some problems the quantiles of Y are the parameters of primary interest.

For example, Y could be a proposed test statistic whose distribution under the null
hypothesis is difficult to evaluate numerically. One might then be interested in estimating
the critical values Yoo, Vo5, and g9 by simulating ¥ under the null hypothesis. As a
second example, Y might be the delay in queue experienced by a customer arriving to a
service system. Then 50% of the customers experience delays less than y, 5o, but 5% of
the customers experience delays longer than yg.gs.

Straightforward estimation of y, is based on the order statistics of ¥ (see §2 below).
However, sometimes one can observe a control random variable X that is statistically
dependent on Y and whose gth quantile, x,, is known. §3 presents improved estimators
based on pairs (X, Y') and x,. §4 introduces a new confidence interval procedure. §5
presents some simple numerical examples. Some conclusions and recommendations are
offered in §6.

2. The Standard Method

Let ¥y, Y», ..., Y, be an independent and identically distributed (i.i.d.) sample from
a distribution Fy that is absolutely continuous. Let Y, < Y(5)<- - - < ¥{,, be the sample
Y values ordered from smallest to largest; these are the order statistics of the sample. If
k =[ng] + 1, where [ - ] is the largest integer function, then Yz, is the standard estimator
of y, (see David 1981 and Juritz, Juritz and Stephens 1983 for properties of this estimator).

Since E[Y ] # y, and Pr{Yu, < y,} # 1/2, in general, Y, is neither mean nor
median unbiased (an estimator is median unbiased if the true parameter is the median
of the estimator). Thus, one may want to interpolate between order statistics. In this
study we utilize the quantile function of the S statistical package (Becker and Chambers
1984), in which Y; is taken to be the (i — 0.5)/nth sample quantile, i = 1,2,...,n
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836 JASON C. HSU AND BARRY L. NELSON

and linear interpolation is employed for g between these values. When ¢g < 0.5/n, the
estimator is Yy, and when g > (n — 0.5)/n, the estimator is Y,). We call this interpolated
estimator the ““no control variate” (No CV) estimator. Other interpolation schemes have
been proposed by Harrell and Davis (1982), Kaigh and Lachenbruch (1982), and Yang
(1985). Kappenman ( 1987) integrates and inverts a kernel estimator of the density of Y.

The standard estimator is intuitively appealing. In the remainder of this section we
show that the standard estimator arises from either of two estimation methods: inverting
a test of hypothesis and (nonparametric) maximum likelihood estimation. In the sections
that follow we derive new quantile estimators by applying these same two methods in
conjunction with a control variate.

To understand how an estimator is derived by inverting a test of hypothesis, one must
first understand the connection between tests and confidence sets (see also Lehmann
1986, p. 90). The explanation given below is more general than quantile estimation.

Suppose a random variable Y has a distribution that depends on # € 0, the parameter
space. For each 0* € 0, let A4y be the acceptance region of a size-« test for H: 6 = 6%;
i.e., Prg {Ap} = 1 — a. Then the set C(Y) = {6: Y € 4,} is an exact (1 — «)100%
confidence set for 6, since Pr,{0 € C(Y)} = Pro{Y E 4y} = 1 — o for every § € 0.

However, the most familiar confidence sets (normal and ¢ confidence intervals, for
example) are derived by the pivotal method, and do not use the full power of this con-
nection. Suppose Y has the same dimension as 6, and ¥ — 6 has a known probability
distribution P, that does not depend on 8. Choose the set Aq such that Po{ 4o} = 1 — a;
then clearly theset Y — 4y = {6: 0 = Y — a, a € Ay } is an exact (1 — a) 100% confidence
set for 6. This is referred to as the pivotal method because ¥ — A is obtained by pivoting
Y — 8 = A,. Notice that the pivotal method amounts to setting 4, = Ao + 0 for all § in
the testing framework above.

As an illustration of deriving an estimator by inverting a test, consider one-sample

Hodges-Lehmann estimation: Suppose Yi, Y3, ..., Y, are i.i.d. with symmetric distri-
bution F(y — #). For testing H: § = 6*, let R; denote the rank of | Y, — 6*| in the joint
ranking from least to greatest of |Y; — 6*|, ..., |Y, — 6¥[. Let , = 1 if ¥, — 6* = 0,

and 0 otherwise. Then the signed rank test rejects H against the alternative K: § < 0* or
K: 6 = 6* if

n(n+1)_z

T= > IR, =t or T=> LR < >
=1

=1

respectively, where 7 is the smallest integer such that the test is of level «. By the corre-
spondence between tests and confidence sets, a 1 — a lower confidence bound is 17408
where W) <. .. < W+D/2) are the ordered (Y, + Y,)/2 values with i < j and a
= n(n+ 1)/2 — t + 1 (Hollander and Wolfe 1973, p. 35). Similarly, a 1 — « upper
confidence bound is W, with b = ¢. A point estimator is derived by letting « approach
1/2, which drives both W@ and W® toward the median of W <. . - < p("+1/2),
which is the usual Hodges-Lehmann point estimator of # (Hollander and Wolfe 1973,
p. 33).

Returning to quantile estimation, a uniformly best estimator of y, among median
unbiased estimators based on Y that assumes no knowledge of Fy can be obtained by
inverting one-sided sign tests (Lehmann 1986, pp. 94-95 and pp. 120-121). When 7 is
large, this best median unbiased estimator is typically an estimator that randomizes
between Yy and Y1) of Yi1y. However, by the Rao-Blackwell Theorem, a nonran-
domized version with smaller risk relative to any convex loss function (such as mean
square error) can be obtained by taking the conditional expectation with respect to some
sufficient statistic, the set of order statistics in this case. The resulting nonrandomized
estimator is then a linear combination of Yy and Yy_1) or Y 1y. This nonrandomized
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CONTROL VARIATES FOR QUANTILE ESTIMATION 837

estimator, which is no longer exactly median unbiased, is typically different from No
CV, but not by much. Thus, the estimator No CV can be thought of as approximately
the best median unbiased estimator based on Y when # is large.

Another method for deriving estimators is maximum likelihood estimation. Since we
consider the case where F'y is unknown, it is not possible to apply the maximum likelihood
method directly. However, by taking a nonparametric approach as in the sign test—
reducing the data to the number of observations less than or equal to y,—it is possible
to apply the principle of maximum likelihood in the following way: Let M = #{Y;
< y,}. The distribution of the count M is binomial with parameters » and g; that is

n m n—m
PriM=mly}=| |41~ q) (1)
form=0,1,...,n. Wetake (1) as our likelihood function. Of course, M cannot actually
be observed because y, is not known. However, given a sample y;, ..., y, and treating

¥, as a variable, the value of y, that maximizes (1) is any one that makes the sample
value of M equal to m*, where (n + 1)g — 1 < m* < (n + 1)q (Johnson and Kotz
1969, p. 53); this occurs if we set 3, = y(,»). Notice the difference between this approach
and standard maximum likelihood estimation: Given a sample, the sample value of M
that we observe depends on our candidate value for the parameter y,. Although our
likelihood function is not a function of the sample directly, the value of M does depend
on the sample through the relationship M = #{Y, < y,}. The value m* is nearly the
same as k, so that No CV is also approximately a nonparametric maximum likelihood
estimator of y,, in the sense we use the term here.

The discussion above shows that we may derive the estimator No CV (at least for
large n) by inverting unbiased tests or by nonparametric maximum likelihood estimation.
Below we use these two methods, in conjunction with a control variate, to derive new
estimators.

3. Control-Variate Estimators

Control variates (CVs) is a well-known variance reduction technique that estimates
some characteristic of Y by exploiting knowledge about a random variable X that can
be observed simultaneously with Y, and that is statistically dependent on Y. See Bratley,
Fox, and Schrage (1987) for an introduction to CVs.

We now assume that there exists an X such that (X, Y') has joint distribution Fyy,
which is absolutely continuous, and the gth quantile x, of the marginal distribution of
Xis known. Let (X7, Y3), (X2, Y2), ..., (X4, Y,) be an i.i.d. sample of (X, Y), and let
Xy <= Xy = - ¢+ = X denote the order statistics of X. In this section we develop
estimators of y, based on simulated pairs (X, Y) and x,.

3.1. A Regression-Based Estimator

If we assume that Cov[Xy,, Y] # 0, then we might consider the classical control-
variate estimator Y, — B( Xy — X,) (e.g., Hammersley and Handscomb 1964, Chapter
5; Bratley, Fox, and Schrage 1987, Chapter 2). We refer to this estimator as the “regression
estimator” (Reg). Unfortunately, Cov[X, Y] # 0 does not guarantee that Cov[Xy,,
Y41 # 0. However, under the assumption of regression dependence (Tong 1980), we
can show that Cov[X,, Y] # 0, so Reg might be expected to do better than the
standard estimator Y.

The performance of Reg depends on 8. The value of 8 that minimizes the variance of
Regis 8* = Cov[ Xy, Y1/ Var[X]. Typically, 8* is not known and must be estimated.
In the context of quantile estimation, estimating 8* requires partitioning the size # sample
into subsamples and calculating estimates of y, from the smaller samples. Unfortunately,
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838 JASON C. HSU AND BARRY L. NELSON

when estimating extreme guantiles single-sample estimators are usually less biased (Juritz,
Juritz and Stephens 1983). If we fix the value of § arbitrarily, then Reg may be more
variable than No CV. As an aside, we mention that fixing § guarantees that Reg is
unbiased when estimating mean values, but it is not sufficient in the case of quantile
estimation since X, is not an unbiased estimator of x,.

Our new control-variate estimators can be computed without partitioning the sample.
Thus, they are not directly comparable to Reg and we do not consider Reg further.

3.2. New Quantile Estimators

To motivate the new estimators derived below, consider Figure 1, which is a plot of a
random sample of 100 pairs (X, Y); X and Y are strongly dependent. The vertical solid
line is X = Xg95, the known 0.95th quantile of X. The horizontal solid line represents a
candidate for yjp 95, the unknown 0.95th quantile of Y. To estimate y, 95 based on Y alone
we would put the estimate somewhere between Y95y and Y (s6). Observe, however, that
while the expected number of X’s > Xpgs is 5, in this sample there are 8 X’s > Xg.9s.
Because X and Y are strongly dependent, one would guess that the number of Y’s > .95
in this sample is also 8, which would put yp9s somewhere between Y (g2, and Y(e3), as
indicated by the dashed horizontal line. More generally, a large difference between the
number of X’s > x, and the number of Y’s > c is evidence against the candidate value
¢ for y,.

We can visualize the observed data in the (X, Y') plane as follows: Each hypothesized
value ¢ of y, corresponds to a horizontal line ¥ = ¢ which, together with the known
vertical line X = x,, divides the (X, Y') plane into four quadrants or cells (see Figure 1).
For notation, let

Nyo(c¢) = number of (X, Y)with X < x;and Y < ¢,

Noi(¢) = number of (X, Y)with X < x;and Y > ¢,

Nio(c) = number of (X, Y) with X > x,and Y < c,

Nii(¢) = number of (X, Y) with X > x,and ¥ > c.

The N,(c¢), i, j = 1, 2, are random variables. Let ngo(c), n0:(¢), n10(c), and ny,(c) be
their realized values. Intuitively, if no knowledge is assumed concerning the joint distri-
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FIGURE 1. Sample Scatter Plot of 100 (x, y) Pairs, Known gth Quantile of X, and Candidates for gth
Quantile of Y.
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CONTROL VARIATES FOR QUANTILE ESTIMATION 839

bution FY y, then the essential information concerning y, is contained in the four numbers
Noo(c), Noi(c), Nig(c), and Ny (c). For a hypothesized value ¢ of y,, let

DPoo(c) =Pr{X =<x, Y =<c},

Doi(c) =Pr{X<x, Y>c},

Diolc) =Pr{X>x, Y=c},

pulc) =Pr{X>x,, Y>c}.
For any fixed ¢, the cell counts have a multinomial distribution; that is

Pr{Noo(C) = npo, No1(¢) = noy, Nio(c) = nyo, Nii(c) = ’111}

!
- —n—f (g — po1(€))™po; (c)™ prolc)™(1 — g — pro(c)™ (2)

7’!00!7’101 !l’llo!n“ :
where nge + ng; + 119 + 1y = n. Equation (2) will be used repeatedly to derive new
estimators.

Two general methods of estimating an unknown parameter are inverting tests of hy-
potheses and the maximum likelihood method. In §3.2.1 and §3.2.2 we derive estimators
of y, by inverting tests for hypothesized values of y, based on observed pairs (X, Y) and
Xz In §3.2.3 it is shown that, even with no knowledge of the joint distribution Fyy
beyond x,, it is still possible to apply the maximum likelihood method to estimate y, by
reducing the data to ngo(c), Hoi(c), r1p(c), and ny,(¢).

3.2.1. An Estimator Based on Inverting an Unbiased Test. The hypothesis H: y,
= cis the same as H: poo(¢) + po1(¢) = poo(c) + pio(c) (=q) or, equivalently, H: po,(c)
= pio(c). Thus, estimators of y, can be obtained from tests of the hypothesis H: py;(¢)
= pio(¢). An approximately median unbiased estimator of y, is derived in the Appendix
by inverting uniformly most powerful unbiased tests for H: py;(¢) = pio(c), namely
McNemar’s test. A different estimator of y, is derived in the next section by inverting
the likelihood ratio test for H: py;(¢) = pio(c).

The resulting point estimator is a linear interpolation between (X¢mu), ¥omy) and (Xgpns1),
Y(n+1)) at x,, where m is the number of X’s less than or equal to x,. (Also, when m
= n, we take the estimate of y, to be Y,). When m = 0, we take the estimate of y, to be
Y(y.) We refer to this approximately median unbiased interpolated estimator as
“Med Unb.”

The performance of Med Unb relative to No CV depends on the unknown distribution
Fyx,y. However, even without knowledge of Fy y, we can compare the two estimators in
one respect.

If ¢ = y,, then po(c) = pio(c) = p; notice that 0 < p < min{g, 1 — g}. Let K
= Noo(¥,) + Nio(y,), the number of ¥’s less than or equal to y,. Ideally, an estimator
of y, lies somewhere between Y x, and Y x4, since Y < y, and Yx.1)> y, by definition.
The No CV estimator predicts that K is k = [rng] + 1. Med Unb predicts that K is M
= Noo(¥g) + No1(¥g). One way to compare the estimators is to compare the differences
A=k~ Kand A'=M — K = Ny((y,) — Nio(y,); that is, the difference in the number
of order statistics between No CV or Med Unb and Y(,. The first two moments are
casily calculated: E[A] = k — ng versus E[A'] = 0, and Var[A] = ng(1 — g) versus
Var[A'] = 2np. Thus, the expected difference for Med Unb is 0, while the expected
difference for No CV only converges to 0. Also, Var[A'] < Var[A] if and only if p <
q(1 —q)/2, and Var[A'] = 0 as p — 0. Thus, when p < g(1 — g)/2 Med Unb tends
to be closer to Yk, than No CV.

3.2.2. An Estimator Based on Inverting the Likelihood Ratio Test. For fixed c, the
likelihood function, as a function of (po(c), poi(c), Pio(c), pi1(c)) and (ngo(c), Ho1(c),
m0(c), ny1(c)), is proportional to

L = (g = poi(€))™ g1 (€)™ p1o( )™ O(1 — g — pio(c))™©.
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840 JASON C. HSU AND BARRY L. NELSON

The maximum likelihood estimators of py;(c¢) and po(c) are (see the Appendix)

grioi (¢) L (= @)mele)
fgo(€) + ngy(c) O mee) + mule)”’

with asymptotic variance-covariance matrix

Doy =

Por(c)(g — poi(€))
4 q

0

DPro(€)(1 — g — pio(¢))
(1—9)

The asymptotic likelihood ratio test for H: pg;(c) = pio(c) is based on the statistic
Vi (Bor — Bro)

\/ﬁm(q_ 1301)_'_1510(1 — g — D)
q l ¢

0

T =

(Bickel and Doksum 1977, p. 212). In the Appendix we show that the point estimator
obtained by inverting this test is the value ¢ such that py; = Pyo. Since such a ¢ may not
exist, we take ¢ = sup { ¢|fo; — P10 = 0 }. We refer to this estimator as ILRT, for inverted
likelihood ratio test.

The distribution of ILRT depends on Fx y. However, in the special case when po; (y,)
= pio(y,) = 0, ILRT, like Med Unb, sets ¢ = Y (a1, and thus fo; = pio = 0 exactly.

3.2.3. A Maximum Likelihood Estimator. Recall thatif ¢ = y,, then py,(c) = p1o(c)
= p. Therefore, the distribution of the cell counts Nyo(c), Noi(c), Nio(c), and Ny (c)
when ¢ = y, is

n!

Hoo(€) o1 () 'n10(c)!n (c)'(q_p)nm(c)pnm(E)HIO(C)(1 —em e
00 RLY 10 L] .

=k(n;c)g(n;c,p)y (3)

where k(7; ¢) is the multinomial term and g(#; ¢, p) is the product of probabilities. We
take (3) as our likelihood function, which depends on the observed sample indirectly
through the cell counts.

Given a sample and treating p and ¢ = y, as variables, we seek the values p* and ¢*
that maximize (3). Notice that p is a nuisance parameter and c is the parameter of
interest. We only need to consider values of ¢ equal to the order statistics of Y, {¥ (1),
Yy - - -» Yoy} » since the cell counts 7go(c), #o1(¢), Mo(c), n11(c), and thus the value
of (3), change at those values.

No closed-form expression for (p*, ¢*) has been found. However, for fixed ¢, the
value of p, denoted p*(c), that maximizes (3) is (see the Appendix)

g(n — ngo(c)) + (1 — g)(n — nu(c))
2n

~ V(g(n — noo(€)) — (1 — @)(n — muu(e)))? + 4q(1 — )1 (€)oo(¢)
2n )

An efficient recursion exists for calculating k(#n; c¢) as ¢ increases (see the Appendix),
which leads to an algorithm that steps through the possible values of ¢, determines p* (¢)
and the corresponding value of (3) for each ¢, and sets c* equal to the value that maximizes
(3). This estimator, obtained by maximizing the nonparametric likelihood function (3)
with respect to y,, will be referred to as the nonparametric maximum likelihood estima-
tor (NPMLE).
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CONTROL VARIATES FOR QUANTILE ESTIMATION 41

4. Confidence Intervals

Although seldom reported in Monte Carlo studies, an interval estimate of y, lends
some insight into the precision of the point estimate. The standard (1 — «)100% con-
fidence interval based on Y alone is (¥ 1, Y(4,)), where 0 < /; < u, < n are integers such
that

u—1

> (Z)qk(l a1 - a

k=Ig

The confidence interval is nonparametric since the constants /; and #, depend only on
n and g. Determining /; and u; is computationally expensive when # is large, but large
n allows a normal approximation to the binomial distribution:

“n\ o, B u,— 1 —ng+1/2 L—ng—1/2
R e
Ezs (k)q (t-a ng(1 — q) ng(1 — q)

where ® is the distribution function of the standard normal distribution. The right-hand
side equals 1 — aif ([, ~ ng—1/2)/VYng(l — q) = —zi_qppand (u; — 1 — ng + 1/2)/
Vng(l — q) = zi_n/2, where z,_,,, is the 1 — a/2 quantile of the standard normal dis-
tribution. Since integers /; and u, that satisfy these equations may not exist, we set /, =
[ng — zy_sp2Vng(l — q) + 1/21and u,; = [ng + z;-,,2Vrg(1 — q) + 1/2] + 1, which
guarantees that Pr{Y ) <y, < Y(,,} = 1 — « when the normal approximation to the
binomial is adequate.

We seek an improved interval estimator by exploiting knowledge of the control variate
X. In principle, we can invert McNemar’s test (§3.2.1) or the likelihood ratio test (§3.2.2)
to obtain confidence intervals. However, unless « = 1/2 the endpoints of these intervals
are difficult to compute. We consider instead a direct extension of the standard interval.

Suppose ¢ = y,. Then, suppressing the dependence of N, and p,; on ¢ for notational
convenience,

PI‘{NI(): v, N()()ZS!N10+N11 =n—m}

(I O
r 1—g 1—g¢q K} q q
= B(r;n—m,p/(1 —q))B(s;m, (g —p)/q) (4)

forr=12,...,n—m,s=1,2,...,m,where B(-;n, p)is the binomial mass function
with parameters 7 and p, and p = pg; = p1o (Lehmann 1986, p. 158). The quantity Ny
+ N, is the number of observations with X value greater than x,, which does not depend
on knowledge of y,. The random variables Ny, and Ny are, together, the number of
observations with Y value less than or equal to y,. Equation (4) shows that, conditional
on Nip + Ny, Nyp and Ny are independent binomial random variables. Thus, for integers
O<l/<us<n,

Pri{Yy <y, < Ywl|Niwo+ Ny =n—m}
u—1

e z PI'{N10+N00: i|N10+N11 = n—m}

=l

u—1

™M

=2 2 B(in—m,p/(1 —g)B(i—j;m,(qg—p)ag). (5)
i=] j=0

]

Appropriate / and u yield a confidence interval that covers y, with probability approxi-
mately 1 — a, conditional on knowledge of the control variate. The interval estimator is
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842 JASON C. HSU AND BARRY L. NELSON

exact, up to discreteness, and is nonparametric. There are, however, two difficulties: First,
p is not known; to compute the interval we will substitute an estimate for p. Second,
determining / and u such that (5) is close to 1 — « is computationally expensive; below
we construct a normal approximation. In the derivation that follows p is assumed known.
Conditional on Ny + Ni; = n — m, the mean and variance of Ny + Ny are

(n— Wt)p+ m(q — p)

un—m) = and
1—gq q
— 1 — — —_
o2(n—my = ﬂz)1p£ q)zq ), m(qqu)p

respectively. We approximate the conditional distribution of Nyg + Ngo by a normal
distribution with mean u(n — m) and variance ¢(n — m). An argument completely
analogous to the standard interval leads to the conditional interval (¥, Y(4,), where
L=[un—m)— zi_ypo(n—m)+1/2]and u, = [p(n — m) + zi_opp0(n — m) + 1/2]
+ 1. The approximation should be good when # is large or p is not too extreme.

We can give a rough argument for why the conditional interval should be superior to
the standard interval. Let M = n — (Nyp + Ny, ). Comparing the normal approximations,
we notice that (/;, u,) are constants, but (/., u.) are random variables since n — M is a
random variable. However, if p is known, then

np(2g(1 — q) — p)
q(1 —q)

E[uw(n — M)] = ngq and E[¢*(n — M)] =

Then since

_mp(2q(1—g)—p) ___ n
q(1 —¢q) q(l —q)
we expect I, < [, < u, < u,; that is, the conditional interval should be shorter on average.

Both ILRT and NPMLE yield estimates of p as byproducts. The effect of substituting
an estimate of p is illustrated below.

ng(1 —q) (g1 —q)—p)*=0

5. Examples

This section presents examples that illustrate the new quantile estimators and give
some idea of their potential effectiveness. In all cases y, is actually known, allowing point
estimator bias and interval estimator coverage to be evaluated. Thus, these examples are
not realistic in the sense that experimentation would never be used to estimate y, when
it can be easily calculated. However, they are illustrative of the type of problem for which
the new quantile estimators can be used, and the control variates are like the control
variates that would be available in more complex problems.

Experiments consisted of 100 samples of n = 100 and » = 400 (X, Y') pairs. In all
cases ¢ = 0.95. Experiments were performed on a Pyramid 90x super mini-computer.

Measures of point-estimator performance are mean square error (MSE), variance
(Var), and bias (Bias). In addition, boxplots of the estimators are presented. The box
in a boxplot contains the middle half of the data (i.e., from the 0.25th sample quantile
to the 0.75th sample quantile); a horizontal line is drawn through the box at the median
of the data. The whiskers extending from the box reach to the most extreme data points,
or £1.5 times the interquartile range above and below the median, whichever is least.
Points beyond the limits are plotted individually by “=”. Thus, boxplots summarize the
sampling distribution of the estimators.

Measures of interval-estimator performance are the mean, variance and coefficient of
variation of the interval halfwidth, and the probability the interval contains y,. These
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CONTROL VARIATES FOR QUANTILE ESTIMATION 843

measures are displayed via halfwidth versus midpoint plots (Kang and Schmeiser 1989).
Points inside the 45 degree angle with its base at y, indicate intervals that contained Vas
points to the right indicate intervals whose lower endpoint was greater than y,, and points
to the left indicate intervals whose upper endpoint was less than y,.

5.1. M/M/1 Queue

The M/M/1 queue is a single server, first-come-first-served service system in which
customers arrive according to a Poisson process and service times are i.i.d. negative
exponential random variables. Let Y be the delay in queue (not including service) ex-
perienced by the /th (/ > 0) customer to arrive to an M/M/1 queue that had /# = 0
customers present at time 0. The control variate X is the difference between the sum
of the service times of the first / + 2 — 1 customers and the sum of the interarrival
times of the first / customers. The distribution of X is the difference of independent
Erlang random variables and the distribution of Y is a mixture of Erlangs (Kelton and
Law 1985).

10

by

-————

No CV Med Unb ILRT NPMLE
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R —
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55

No CV Med Unb ILRT NPMLE
FIGURE 2. Boxplots of Estimates of yy s for the A//M/1 Example with (a) n = 100, (b) n = 400.
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Observations (X, Y) were generated by a FORTRAN simulation using IMSL subrou-
tine rnexp to generate interarrival and service times. The value of x5 was obtained as
follows: Since X = E, — E,, where E, and F, are independent Erlang random variables,
the cdf of X was expressed as a single-variable integral by conditioning on E,. Numerical
integration via IMSL routine qdagi was used to determine Fx( x) for any x. A bisection
search was employed to find the value Xos such that Fx(Xges) ~ 0.95, with relative
error 0.001 for the numerical integration and absolute error 0.0001 for the bisection
search. The cdf of Y was evaluated using the algorithm of Kelton and Law (1985), and
the same bisection method was used to determine yo9s.

The example below is an M/M/1 queue with arrival rate 0.9 customers/unit time,
service rate 1 customer/unit time, and 4 = 0 customers present at time 0. We consider
the delay in queue in the 10th arriving customer. Thus, with probability 0.95 the 10th
customer to arrive for service waits no more than ygos time units for service to begin.
The sample correlation between X and Y, based on 40,000 pairs, was 0.76 which seems
to indicate strong dependence.

Figures 2(a) and (b) show boxplots of the 100 values of each estimator for n = 100
and n = 400, respectively. Table 1 gives the numerical values of MSE, variance, and bias
for these experiments. The MSE reductions for the best control variate estimator in each
case is approximately 50%. At the larger sample size ILRT and NPMLE seem to perform
better than Med Unb.

Figures 3(a) and (b) show midpoint by halfwidth plots for the standard and conditional
confidence intervals when 1 — a = 0.95 for » = 100 and n = 400, respectively. Plusses
represent the standard interval and circles represent the conditional interval. Points that
are lower (shorter halfwidth) and centered within the 45 degree angle (3, in the middle
of the interval) are preferred. The probability of coverage is apparent from the number
of points outside the 45 degree angle, since there are 100 intervals constructed via each
method. Table 2 gives the numerical values of the mean, variance and coefficient of
variation of the halfwidth, and the estimated probability of coverage.

In experiments not reported, estimators for p from both ILRT and NPMLE were
evaluated, and the estimator from NPMLE appeared to be slightly better when =
and/or p is small; they performed equally well when r is large and/or p is not too
extreme. However, ILRT does have the advantage that, when p = 0, the estimate from
ILRT is always 0. Nevertheless, the estimator from NPMLE was used to construct the
conditional interval in all experiments reported here.

When p = 0 the conditional interval becomes two adjacent order statistics. Even though
p > 0 in this example, when the sample size is small the estimator of p is quite variable

TABLE 1
Point Estimator Performance for M/M/\ and SAN Examples

Data Set No CV Med Unb ILRT NPMLE
MM/ MSE 0.766 0.384 0.375 0.484
n= 100 Var 0.756 0.376 0.375 0.477
Bias 0.096 0.088 0.001 —0.084
n =400 MSE 0.164 0.103 0.075 0.076
Var 0.162 0.100 0.075 0.076
Bias —0.042 0.057 0.015 —0.001
SAN MSE 0.357 0.162 0.191 0.202
n= 100 Var 0.357 0.157 0.191 0.182
Bias 0.013 0.068 -0.011 —0.140
n =400 MSE 0.082 0.043 0.035 0.042
Var 0.081 0.043 0.035 0.039
Bias —-0.034 0.010 —0.013 —0.050
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Confidence Interval Comparison
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Confidence Interval Comparison
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FIGURE 3. Halfwidth Versus Midpoint Plots for Standard (Plus) and Conditional (Circle) Intervals for the
M/M/1 Example with « = 0.05, ¢ = 0.95 and (a) n = 100, (b) n = 400.

so that the estimate of p may be zero. This explains the short intervals that do not cover
Vo.e5 in Figure 3(a). Figure 3(b) shows that the problem disappears when # = 400 and
the estimate of p is more stable. Certainly when the sample size is large, the conditional
interval produces shorter intervals on average while maintaining the desired coverage
probability. The results of experiments not reported showed little or no undercoverage
problem when q is less extreme, in which case the estimate of p would tend to be greater
than O.
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TABLE 2

Confidence Interval Performance for MM/l and SAN Examples (Mean,
Variance and Coefficient of Variation of the Halfwidth, and Coverage)

Data Set Standard Conditional
MM/ Mean 2.52 1.33
n =100 Variance 0.85 0.74
Coef. Variation 0.37 0.65
Coverage 0.97 0.81
n = 400 Mean 1.03 0.67
Variance 0.05 0.03
Coef. Variation 0.21 0.27
Coverage 0.98 0.98
SAN Mean 1.74 0.82
n= 100 Variance 0.57 0.39
Coef. Variation 0.43 0.76
Coverage 0.94 0.74
n =400 Mean 0.67 0.40
Variance 0.02 0.02
Coef. Variation 0.21 0.37
Coverage 0.99 0.92

5.2. Stochastic Activity Network

Stochastic activity networks (SANs) are used to model and manage the progress of
large projects. A SAN is composed of a collection of nodes and directed arcs, with one
node representing the beginning of the project and another representing the completion
of the project. The arcs represent activities that are part of the project and must be
completed in sequence. The time required to complete each activity is often modeled as
arandom variable. One quantity of interest is the time required to complete the project.

Consider the SAN in Figure 4. Let 7; be the time required to complete activity i,
i=1,2,...,5 and let Y =max {T, + To, T} + T3+ Ts, T4 + Ts}, the time to
complete the project. Thus, with probability 0.95 the project will be completed by or
before yy9s5. In this example we assume that the activity times are i.i.d. negative expo-
nentially distributed random variables with mean 1. As the control variate we use X =
T+ T3+ T, which has an Erlang distribution. The sample correlation between X and
Y was 0.87.

Observations (X, Y) were generated by a FORTRAN simulation using IMSL subrou-
tine rnexp to generate activity times. The value of x, 95 was determined by the S function
ggamma, which numerically inverts the gamma (and thus Erlang) distribution. The cdf
of Y, which was derived via a sequence of conditioning arguments, is

Fy(y)=1—e+ 3y =3y —3)e™ +(-3y* =3y +3)e””

for y = 0. A bisection search was used to find 5.

FIGURE 4. Stochastic Activity Network (SAN) Example.
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Figures 5(a) and (b) show boxplots of the 100 values of each estimator for n = 100
and n = 400, respectively. Table 1 gives the numerical values of MSE, variance, and bias
for these experiments. The MSE reductions for the best control variate estimator in each
case is more than 50%. Med Unb and ILRT seem to be the least biased.

Figures 6(a) and (b) show midpoint by halfwidth plots for the standard and conditional
confidence intervals for n = 100 and n = 400, respectively. Table 2 gives the numerical
values of the mean, variance and coeflicient of variation of the haifwidth, and the estimated
probability of coverage. Again, undercoverage is apparent when z = 100, but coverage
is indistinguishable from 0.95 when r = 400.

6. Conclusions

Variance reduction research has concentrated on efficiently estimating population
means and variances, which are just two of the characteristics of the population (see
Nelson 1987a for a survey of variance reduction). Quantiles provide additional infor-
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FIGURE 5. Boxplots of Estimates of yy s for the SAN Example with (a) n = 100, (b) n = 400.
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Confidence Interval Comparison
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FIGURE 6, Halfwidth Versus Midpoint Plots for Standard (Plus) and Conditional (Circle) Intervals for the
SAN Example with o = 0.05, g = 0.95 and (a) » = 100, (b} n = 400.

mation about the population, and can in fact be the parameters of primary interest in
certain problems. Thus, it is important to develop good techniques for estimating quantiles.

Techniques based on regression have been the primary focus of control variate research
(Glynn and Whitt 1989, Nelson 1987b, and Rothery 1982 are some exceptions). We
propose quantile estimators that are based on estimating the joint probabilistic behavior
of the variable of interest and the control variate.

The empirical evaluation presented here shows the three new control variate estimators
to be promising. Based on these results and many others not presented, we recommend
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ILRT, the estimator based on inverting the likelihood ratio test, as the best general-
purpose quantile estimator. This recommendation is based on the observation that ILRT
performed well, if not always the best, on all cases considered. An additional benefit of
ILRT over Med Unb is that it yields an estimate of p as a byproduct which can be used
to form the conditional confidence interval. We recommend the conditional interval
when 7 is large or ¢ is not extreme.

An important next step is to consider estimating quantiles of the limiting distribution
of a stationary stochastic process. This problem is of interest to simulators, but is com-
plicated by dependence within the data. Heidelberger and Lewis (1984), Iglehart (1976),
and Seila (1982) propose estimators, but do not consider variance reduction.

! Jason Hsu’s research is made possible in part by Grant No. IR01 CA41168, awarded by the National
Cancer Institute. Barry Nelson’s research was partially supported by National Science Foundation Grant No.
ECS-8707634. Computing resources were provided by the Mathematical Sciences Computing Laboratory of
The Ohio State University. The authors acknowledge the helpful comments of two referees and the Departmental
Editor.

Appendix

Derivation of the Median Unbiased Estimator

We define X0y = X1y, Yi0) = Y1y, Xows1) = Xy, and Yy 1y = Yy, for convenience. The derivation of Med
Unb depends on the following lemma:

LEMMA. A uniformly most powerful unbiased (UMPU) size-a test, ¢, for H: y, = c versus K: y, > c based
on Nog(c), Noi(c), Nyo(c), and Ny(c) exists. It is McNemar’s test, which is a conditional test that rejects for
small values of Nyo(c), conditional on N(c) = Ny (¢) + Nyo(c).

Let n(c) be the realized value of N(c), and let b be the positive integer such that

_ b1 }'l(c) 1 n(c) n(c) 1 n(c)—v
w2 (TR <=2 ()G -
(o —apy)
n{c 1\
(o))

so that (1 — y)ap-y + yop = a. Then the UMPU test rejects if nyo(c) < b, or with probability v when njy(c)
= b.

M=

Let

v =

PrROOF. The hypothesis and alternative H: y, = ¢ versus K: y, > c is the same as H: pg,(c) = pio(c) versus
K: poi1(c) > pio(c), for which the one-sided McNemar’s test is UMPU (Lehmann 1986, §4.9).

Similarly, the UMPU test, ¢, for H: y, = ¢ versus K: y, < ¢ based on Nyo(c), Nyi(c), Nio(c), and Ny (c)
is the one-sided McNemar’s test which rejects if ny; (¢) < b, or with probability v when ny,(¢) = b.

Thus, by the usual correspondence between tests and confidence sets {(Lehmann 1986, Theorem 3.4),
vy = inf{c|H: y, = ¢ is accepted by ¢;} is a level 1 — « lower confidence bound for y,. Likewise, y,
= sup{c|H: y, = cis accepted by ¢} is a level 1 — « upper confidence bound for y,. One way to derive a
median unbiased estimator is to look for a common value of y,; and y; when « = 1/2 (Lehmann 1986, pp.
94-95). We next show that the resulting point estimator is a randomized estimator that selects ¥ () Or Ynu1),
each with probability 1/2, where m is the number of X’s less than or equal to x,.

Let m = ngo(c) + ngi(c), which does not depend on the hypothesized value ¢ of y,. When a = 1/2, the
critical value is b = n(c)/2 = (no:1(¢) + nio(c))/2. Thus, since each hypothesis H: y, = ¢ with ¢ < Y, gives
ngi(c) > nyolc), it is rejected by ¢, . And, since each H: y, = ¢ with ¢ = Y1) gives ng(c) < mo(c), it is
rejected by ¢}. Thus, ¢ € [Yim), Yemeny) are the only candidate estimates.

Every H: y, = ¢ with ¢ € [Y(m), Yiueny) gives ng(c) = nio(c). Thus, for ¢ € [Yomy, Yimeny), Hr y, = cis
rejected by ¢, with probability v. The same H: y, = ¢ is also rejected by ¢/ with probability ~y.

When a = 1/2, v = 1/2 due to the symmetry of the binomial distribution with parameter 1/2. Let U be a
random variable that is uniformly distributed on the interval (0, 1), and that is independent of X and Y. Suppose
¢¢ rejects when U < 1/2. Then y; = Yy when U < 1/2, and Y,y otherwise. Suppose ¢/ rejects when U
> 1/2. Then y§ = Y1y when U < 1/2, and Y, otherwise. Thus, if the same auxiliary random variable U
is employed for both the tests, then y, = y}.
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This randomized estimator can be expected to have good properties, since it is derived from UMPU tests.
However, randomization is not very appealing in practice. Further, according to the Rao-Blackwell Theorem
(Lehmann 1983, pp. 50-51), a nonrandomized version with smaller risk (expected loss) relative to any strictly
convex loss function (e.g., mean square error) can be obtained by taking the conditional expectation with re-
spect to a sufficient statistic (the order statistics of X and Y in this case). The Rao-Blackwellized estimator is
(Yomy + Yineny)/ 2. We chose to linearly interpolate between (Xomy, Yim) and (Xgu+1), Yims1y) at X, as described
in §3.2.1.

Derivation of ILRT
The maximum likelihood estimators of py;(¢) and p,o(c) are obtained by solving the system of equations
dlog L _ —npelc) | mailc) _ dlog L _ ni(c) —na(e)
dPo1 g—palc)  pulc) ’ P Pu(c) 1 —gq—polc)

Let fy; and jy, be the solution; we drop the argument ¢ for convenience. The inverse of the asymptotic variance-
covariance matrix of (P, P1o)’ is (Kendall and Stuart 1979, p. 59)

Zlog L d*log L
E a ozg E og nq 0
o1 APo19p1o Doi(qd — po1)
- = . (A1)
3 log L EazlogL 0 n(l —q)
3p109D01 apio Dw(1 — g — pwo)

The asymptotic variance-covariance matrix is obtained by inverting (Al).
The hypothesis H: y, = ¢ is equivalent to H: po(¢) = pio(c). Let

Vi (Bor — Bro)

vﬁox(q — Do) +1510(1 —q— D)
q l—gq

T=

which converges in distribution to the standard normal distribution if H is correct. Thus, an asymptotic level-
« test for H: po(¢) = pio(c) versus K™: poi(¢) > pro(c) rejects if T > z;,. Similarly, H is rejected at level o
in favor of K*: po(¢) < proe) if T < —z4_,.

When a = 1/2, H is rejected in favor of K™ if 7> 0, and in favor of K* if T < 0. Since py,(¢) — Pio(c) isa
nonincreasing function of ¢, then

¢ = inf{¢|H is accepted versus K~} = sup{c|H is accepted versus K* }
must satisfy gy, (€) = pi1o(<).

Derivation of NPMLE

In this section we show that NPMLE is the nonparametric maximum likelihood estimator of y,. When cis
fixed, k(#; c) is a constant; thus the likelihood function is proportional to g(#n; ¢, p). Let ¥ = njo(c) + ny(c),
the number of X's greater than Xx,, which does not depend on ¢. Then

. - o\ (©)=myg(C) pr—in—r(c)+2mole)} (1 _ . — p\W—H10(E)
g(n;c,p) =(q—p) 14 (I—g—p)

where r(¢) = ngo(c) + nip(c), the number of Ys not exceeding c. Notice that g(#n; ¢, 0) = 0, unless #g; = 1y
=0; g(n; c,q) =0, unless ng = 0; g(n; ¢, 1 — g) = 0, unless ny;; = 0; g(n; ¢, p) > 0 for 0 < p < min {g,
1 — g}; and g is bounded. Thus, g has a maximum at some p € (0, min {¢, 1 — ¢}), except for the special
cases mentioned (we deal with these cases later). Since g is continnous and differentiable in this interval, the
maximum must occur where the dg/dp = 0. We temporarily drop the argument c, since it is fixed.
Leta=—qg(n—r+ny,)—(1 —g)(n—m+ny)andd = g(1 — g)}(n — m — r + 2ny0). Considerable algebra

shows that

9g

ap
Clearly, (A2)iszeroat p = 0, at p = g and at p = 1 — ¢g. We seek the maximum between 0 and min {g,
1 — g} . From the last term on the right-hand side of (A2), it is also zero at

= prriimel (g — pymotl(| — g — p)y*mo(np? + ap + d). (A2)

p_—ai Va® — dnd
2n ’

Tedious algebra shows that ¢? = 4nd. Computing 3?g/dp? shows that a local maximum occurs at

—q — 2
priey =~ dnd (A3)
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Finally, we can show that 0 < p* < min {g, 1 — ¢}, which proves that the absolute maximum in the interval
occurs at p*. Noting that r(c) — ny(c) = ng(c), and m — ne(c) = ny1(c), (A3) can be algebraically reduced
to the result in §3.2.3.

The special cases are handled as follows: If 7y (c) = ni(¢) = 0 then p*(c¢) = 0, which can be shown to
maximize the likelihood function. If ny(c) = ny(¢) = 0 then the likelihood function is maximized at p
= min {g, 1 — q}. If only ng(c) = 0 then the likelihood function is maximized at p = min {1 — ¢,
q(ngi(c) +nyp(c))/n}. If only mny(c) = O then the likelihood function is maximized at p = min {g,
(1 = g)(no1(c) + n(c))/n}.

Calculation of k(#; ¢) as ¢ increases is facilitated by the following recursion: The function n4(c¢) is a non-
decreasing function that increases in unit jumps only when ¢ equals an order statistic of Y. Suppose ¢ € [Y,,
Yueny), forsome i € {1,2,..., 10— 1}.If ¢' € [Yur), Yiuny), then k(n; ¢') = k(n; )h(c, '), where

m(c) : ,
—nlo(C) 1 if nio(c’) > nyo(c),
hic,c') =
nm_(c)_ otherwise.
ngo(c) + 1
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