Multiple Comparisons in the
General Linear Model

Jason C. Hsu and Barry NELSON

Whereas multiple comparisons computations in a one-way model are well under-
stood, multiple comparisons computations in a general linear model (GLM) are not.
For models with the so-called “one-way structure,” no new technique is needed beyond
proper substitution of terms. Examples of designs that guarantee a one-way structure
include variance balanced designs and orthogonal designs. For models without a one-
way structure, more sophisticated computational techniques are needed. Approximations
based on the probabilistic inequalities of Bonferroni, Sidék, and Slepian are too con-
servative. Even the second-order Hunter—Worsley inequality is rather conservative. The
so-called factor analytic approximation is quite accurate for multiple comparison with a
control (MCC) and multiple comparison with the best (MCB), but conditions for it to
be conservative are not known. This article describes a highly accurate, deterministic,
conservative approximation that is applicable to a popular class of general linear models,
and a fast, stochastic, conservative approximation that is generally applicable.
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1. MULTIPLE COMPARISONS IN THE
GENERAL LINEAR MODEL

Suppose two or more “treatments” are to be compared. A variety of multiple compar-
isons may be of interest, such as all-pairwise comparisons (MCA), multiple comparison
with the best (MCB), multiple comparisons with a control (MCC), and multiple com-
parisons with the mean (MCM). As described in Hsu (1996), exact computations for
MCA and MCM inferences are feasible only for variance-balanced models. However,
computationally exact MCC and MCB inferences have been implemented in JMP and
MINITAB for the unbalanced one-way model, and extended to variance-balanced mod-
els and models in which effects are orthogonal under the LSMEANS option of PROC
GLM and PROC MIXED in SAS 6.11. This article discusses the computation of MCC
and MCB inferences in the general linear model (GLM) when exact computations are
impossible. We give some examples of situations in which such inferences may be of
interest.
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Consider a general linear model (GLM) with fixed effects:
Y =X8+e¢, (1.1)

where Y 1 is the vector of observations, Xy xp is a known design matrix, 5px1 =
(Bi,-..,Bp) is the vector of parameters, and €1 is a vector of iid normally distributed
errors with mean 0 and unknown variance o2.

In the special case of a one-way analysis of covariance (ANCOVA) model,
Yih =0, + 0Xsn + e, i=1,...,k, h=1,...,n;, (1.2)

the response Y not only depends on the treatment (indexed by 7) but is also linearly
dependent on a covariate X. If the assumed lack of interaction between the treatment
effect and the covariate in (1.2) is reasonable, then one can meaningfully compare the
treatments after adjusting for the covariates (which puts the treatments on an equal footing
in the comparison).

Another special case is the two-way no-interaction model

Yihr = b+ 7+ On + €ihr, 1=1,...,k, h=1,...,b, r=1,...,n4, (13)

in which the 7;’s denote treatment effects and the 3;,’s denote block effects. If the assumed
lack of interaction between treatment effects and block effects in (1.3) is reasonable, then
one can meaningfully compare the treatments after adjusting for block effects.

We will let p; — p; denote the generic multiple comparison parameters of interest
in a GLM. Thus, u; — p1; may denote 6; — #; in an ANCOVA model, or 7; — T; in a
two-way model.

We assume that all p; — 5, © # j, are estimable. For a fixed 4, if C_; is the matrix
such that pu_; = (p; — pi,Vj # i) = C_; 3, then even if the individual p; are not
estimable, there will be no confusion if we use the notation fi_; = (2 — f;, V5 # i)’ =
C_;B3. Let 6 = MSE = (Y - X3) (Y ~Xf3)/(N —rank(X)) denote the usual estimator
of o2. Because MCC and MCB inferences are based on fi_; and 42, we consider their
distributions.

Under the iid normal errors assumption of model (1.1), f_, is multivariate
Normal(C_;3,0?V_;), where V_; = C_;(X’X)~C"_,. Also, v5?/5? has a x* distri-
bution with v = N — rank (X) degrees of freedom, and it is independent of fi_,. For
later convenience, let ov! denote the variance of fi; — fi;—that is, v} is the diagonal
element of V_; = C_;(X'X)~C’, corresponding to fi; — f1;, and let R_; denote the
correlation matrix of fi_,.

2. MULTIPLE COMPARISONS WITH A CONTROL IN GLM

Suppose treatments versus control comparisons are our primary concern, so the
parameters of interest are p; — g, @ = 1,...,k — 1. Recall that o?vF denotes the
variance of [i; — [ij.

In theory, one can generalize Dunnet’s (1955) MCC confidence intervals for one-way
designs to the general linear model in a straightforward fashion. Suppose the constant
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|d| satisfies

P{ s o710y = s =)l ok < @h=1-a @

then

P{p,—f—|d|G+/vF < pi—pe < pi—py+ld|GyJoF for i=1,.. k=1} =1-a.

Thus, for two-sided MCC, one infers,

fii — i — |6\ 0F < i — pr < fi — P+ |dlGyJvf, i=1. k=L

Suppose the constant d satisfies

a=lin L k — 1 _
P{ w07 = = G- ) [\ <dp=1-a0 @2)

then

P{p; — py — doJoF <pi—pe for i=1,...k-1}=1-«a

or

P{u; — pr < fi; — fuy, + doyJoF  for i=1,....k—1}=1-a.

So for one-sided MCC, one infers,

i — g > i — g — doy/vE for i=1,...,k—1

or

/Li—uk<ﬂi—ﬂk+d&w’uf for i=1,...,k—1.

Computing the probabilities (2.1) and (2.2) as k dimensional integrals in order to
solve for the critical values |d| and d is only feasible for very small k, as the computational
effort increases exponentially as k increases. One can simulate the probabilities (2.1)
and (2.2) as described in Edwards and Berry (1987) or Somerville (1995). However,
deterministic answers are often desirable. (For example, it is difficult to imagine FDA
approving a drug based on analysis which changes each time it is repeated.) We describe
in the following a condition under which |d| and d can be computed by solving two-
dimensional integral equations, so that the computing time is not impacted significantly
by the dimension k.

Let pfj denote corr(fi; — fig, fi; — Qi) Suppose there exist constants Aj,. .., Ag—;
such that pf; = A\;; for all ¢ < k or, equivalently,

R_p =diag(1 — X2, ., 1=X_ )+, Mem1) Oy ey Akt)- (2.3)

Then o~ ((fi; — iy — (s — px))/+/v¥, i < k) has the same distribution as

(\/ 1- )\%Zl 4+ AMZoy .54/ 1 — )\i_le_l + )\k_1Z0) y
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where Zo, Zy, ..., Zy_; are iid standard normal random variables. By conditioning on &
and Zg, |d| can be written as the solution to

0o k-1 iz + |d|u iz — |du ) B
/ / [ ( 1__,\2>—(I)(——\/—1——_i_-%—— d(I(z)fy(u)du_l_a

and d can be written as the solution to

R —

where @ is the standard normal distribution, and + is the density of &/c. With efficient
numerical integration and root finding algorithms, |d| and d can be obtained quickly
enough for interactive data analysis.

Hsu (1996) calls a model for which there exists a set of positive constants ay, . . . , a,
such that

7); = a; + a; (2.4)

for all k(k —1)/2 pairs of (i,7),% # j, a model with one-way structure, and proves that
such a model satisfies (2.3) with A\; = (1 + a;/ax) "2, i < k.

At least two possible characteristics of an experimental design are individually suffi-
cient to ensure a one-way structure for the model: Balance in the assignment of treatments
to blocks ensures an equal covariance one-way structure for the model; and orthogonality
of effects ensures a one-way structure of the model, although not necessarily an equal
covariance one-way structure.

A design is variance balanced if all elementary contrasts u; — ; are estimated
with the same precision: var(f, — ;) = 20%/e forall i # j, where e is a design
dependent but known constant. Examples of variance-balanced designs include balanced
incomplete block designs, Latin squares, and Youden square designs. Clearly variance-
balanced designs have one-way structure.

Latin square designs are not only variance-balanced but are also orthogonal in the
sense that the blocking effects are orthogonal to the treatment effect. Therefore, estimates
of treatment effect parameters are based on treatment means and no adjustment for
blocking effects is necessary except in the estimation of experiment error (John 1987,
p. 101 and p. 103). An example of a linear model that is not variance-balanced, but is
orthogonal, is the two-way proportionate cell frequencies model.

However, models with covariates or missing observations typically lead to R_;, not
satisfying (2.3). In the following, we describe methods of approximating |d| and d with
computing time not impacted significantly by the dimension k.

Let £, denote the upper ath quantile of the univariate ¢ distribution with v de-
grees of freedom. By the Bonferroni inequality, a conservative approximation to |d| is
ta/(2(k—1)),v, and a conservative approximation to d is #,, J(k—1),- BY Sidak’s inequality,
a less conservative approximation to |d| is |dling. = ¢(y—(1—a)t-1)/2,,, but the improve-
ment is very slight. If the correlations among the treatment versus control estimators
are all positive, then by Slepian’s inequality a less conservative approximation to d is
dind. = t1_(1—a)*-1,,, but again the improvement is very slight.
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If, instead of approximating the multivariate-¢ probability by functions of univariate-
t probabilities, one approximates them with functions of bivariate-t probabilities, then a
better approximation results. In two-sided MCC, let

B = { = = o =l 0o < 1}

In one-sided MCC, let

B = { = o s = ) oot > —a

o= {5~ (= )/ < a}.

The second-order inequality of Hunter—-Worsley (Hunter 1976; Worsley 1982), in the
context of MCC, states that if the e;; represent the edges in a spanning tree 7 of the
nodes {1,2,...,k— 1}, then

or

el

P(UEY) < 3 P(ES)— Y P(E{NES).

i=1 ei; €T

Clearly, the best Hunter—Worsley approximation is obtained by finding the optimal span-
ning tree, the tree 7 which maximizes the second term on the right-hand side. This best
Hunter—Worsley approximation, though typically significantly better than the Bonferroni,
Siddk, or Slepian approximations, is still quite conservative.

Noting that correlation matrices with the product structure (2.3) correspond to corre-
lation matrices with a single factor in multivariate factor analysis, Hsu (1992) proposed
using existing factor analysis algorithms to approximate R_.;; by the “closest” R” f sat-
isfying (2.3), and then computing |d| or d from R¥%}. In contrast to methods based on
probabilistic inequalities, the factor analytic approximation will automatically produce
exact MCC inference whenever possible. Hsu (1992) presented evidence that the fac-
tor analytic approximation typically far outperforms the Hunter—Worsley approximation
when exact MCC inference is impossible. Based on this evidence, as well as their own
studies, SAS Institute has implemented the factor analytic approximation as the default
computational method for MCC inference under the LSMEANS option in PROC GLM
and PROC MIXED of SAS Version 6.11.

However, the conditions under which the factor analytic approximation will be con-
servative (when exact MCC inference is impossible) is not known, and this may bother
some users. For such users, we describe in Section 3 a highly accurate, deterministic,
conservative approximation that is applicable to a popular class of general linear models,
and in Section 4 a fast, stochastic, conservative approximation that is generally applicable.

3. THE LINEAR PROGRAMMING METHOD

According to Slepian’s inequality, if one approximates R_j, by a correlation matrix of

the form (2.3), where \;A; < pfj , Vi #£ j, then the computed critical value is conservative.
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When all pfj are positive, one can approximate R_j by a correlation matrix Rfl,z of
the form (2.3) with not only A\;\; < pfj,Vz' #j,butalso0< \; <1,5=1,...,k—1.
This improves upon the approximation d;,q. which, by Kimball’s inequality, is slightly
more conservative than the approximation obtained by replacing R_j by the identity
matrix.

An example of a GLM for which all pfj in R_j are positive is the two-way no-
interaction model (1.3). Let N denote the incidence matrix whose (4, j)th entry is the
number of times the ith treatment occurs in the jth block. Then the inverse of the
variance-covariance matrix of #; — ,..., .1 — 7% is

K = [diag(n.+) — N [diag(n4.)]7'N'], _

(see Searle 1971, p. 267). Here diag(n.,.) is the diagonal matrix with the row sums of N
as its diagonal elements, diag(..) is the diagonal matrix with the column sums of N as
its diagonal elements, and for any matrix L, L;_ denotes that matrix with its kth row and
column deleted. Because the off-diagonal elements of K are all negative, it is a so-called
M-matrix. Consequently, all covariances of 7| — 7, ..., #x_; — 7} are positive (Graybill
1983, chap. 11). In fact, this shows the joint distribution of 7| — #y, ..., #x_1 — 7 has
the stronger property of MT P;; see Karlin and Rinnot (1980).

The motivation for using linear programming algorithms to approximate R_j is that
the closer A;\; are to pfj the less conservative the approximate critical value. Thus, we
want to ensure that

Aidj < pFL VG >4, (3.1)
and
0< X\ <1,Vi (3.2)

while keeping A\;); close to pf;. One measure of closeness is the ratio p¥;/Ai)j, and one
overall objective is to

k
Pij
Y

minimize | | (3.3)

J>i
The objective function (3.3) combined with the constraints (3.1)—(3.2) form a nonlinear
program. By taking logarithms of (3.1)-(3.3) and letting z; = —log \; we obtain the
linear program

minimize Z(avz +z;) -+ constant
i>i
T, +r; > -10gpi~cj,Vj>i
z; > 0,V (3.4)
This linear program has k — 1 variables and (k — 1)(k — 2)/2 constraints, excluding the

nonnegativity constraints. We call the approximate quantile obtained using formulation
(3.4) the MinAve approximation.
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Formulation (3.4) attempts to minimize the average ratio pfj/ (AiAj). Another rea-
sonable objective is to minimize the largest ratio. To formulate this objective we add the
constraints

P?j
Aidj

<w,Vj>1 (3.5)
and replace the objective function (3.3) with
minimize w.

After the log transformation and the substitution z = log w we obtain the linear program

minimize x
i +x; > —logpfj,Vj > 1
T—T;—2; > logpfj,k/j>z’
z; > 0,Vi
z > 0. (3.6)

This linear program has k variables and (k — 1)(k — 2) constraints, excluding the non-
negativity constraints. We call the approximate quantile obtained using formulation (3.6)
the MinMax approximation.

When pfj > 0,Vi # j, both linear programs are guaranteed to have a feasible
solution. When some pi?j < 0, as can occur in an ANCOVA model (1.2) with common
slope (see Fleiss 1986, p. 195, for example), or a three-way no-interaction model

Yine = p+ 7i + Bn + ¥ + €inr,
there may not be a feasible solution. For example, if

1 -

1
4
Ry = 1

1
4
L
4 )
1

then there are no feasible values of A, Az, A3 such that A;A; < pfj,Vi # 7.

When there are negative correlations and a feasible solution exists, then it is possible
to reformulate (3.4) and (3.6) by separating the problem of assigning values and assigning
signs to the \; as follows:

1. Determine a feasible sign assignment for the A; so that sign(A;A;) = sign( pfj), Yi

# 4 (there will be either no or two such sign assignments).
2. For each pfj < 0, revise the objective function term and constraints associated
with p¥; as follows:
(a) Replace \i\; < pf; with \;\; > |pf| in (3.1).
(b) Replace the ratio p¥;/(AiA;) with A\, /|pf;] in (3.3).
(c) Replace pf;/(XsA;) < w with M) /|pf| < w in (3.5).
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3. Transform the problem using logarithms and solve the linear program as if all
pfj > 0. Assign the signs determined in Step 1 to the resulting \; to form the
solution.

The remaining outstanding case is when one or more pfj = 0. This is a particularly
difficult case because the log transformation used to obtain a linear program prohibits
A; = 0. In fact, this is a difficult case for a one-factor approximation determined by any
method because if A, = 0, then AyA; = 0 for all j # £, meaning that all correlations Pej
and pj, are approximated as 0.

In principle we could address the problem of pfj = 0 by solving the nonlinear
program (3.1)—(3.3) directly. A second approach is to set pfj = —¢, where € is a small
positive number, which guarantees that our linear programming solution will be conser-
vative (provided there is a feasible sign assignment).

The following is a list of properties of the linear programs (3.4) and (3.6), which we
refer to as the MinAve and MinMax formulations, respectively. In all cases we assume
lof;| < 1 and pk; # 0,Vi # j.

1. When R_; has a one-factor structure then Rff = R_j is the unique optimal

solution of both linear programs.

2. Even when a feasible sign assignment exists, a feasible solution may not exist
when some pfj < 0. For example, if

1 e —e™

R..k = 1 —6—1

a positive definite correlation matrix, then a feasible sign assignment is \; and \,
positive, and A3 negative. However, after adjusting for the negative correlations,
the constraints in (3.4) become

Ttz > 3
Ti+z3 < 1
T,+23 < 1

z; > 0.

Clearly there is no feasible solution.
3. If R, does not have a one-factor structure, then the optimal solution to both
linear programs may not be unique. For example, if

1
5
1

— - 3=
[ = =

Then )4 :/\22/\3:/\42\/-1% and A\ = A3 = %, A1 :)\4:”316 are both
optimal solutions to MinAve.
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4. In the optimal solution of either linear program, at most one A\¢ = %1. In addition,
Ag = =1 if and only if p¥; = pf,pf;, Vi # j.

It is important to note that if R_;, has a one-factor structure (2.3) then R I,: =R_ is
the unique optimal solution of both linear programs. Thus, in contrast to the probabilistic
inequality methods, the LP methods will automatically produce exact simultaneous MCC
confidence intervals whenever possible.

3.1 SIMULATION STUDIES

Simulations were performed to see how closely the coverage probability provided
by dip, the linear programming approximation to d, comes to 1 — «. In these simula-
tion studies the conservatism of the coverage probability caused by using the MinMax,
MinAve, and Hunter-Worsley approximations,

conservatism = (true coverage probability) — (1 — «),

was estimated as described in Appendix B of Hsu (1992) (except the number of sim-
ulations per design was increased to 100,000). Boxplots of estimated conservatism are
then given to compare the MinMax (labeled LP1), MinAve (labeled LP2), and Hunter—
Worsley (labeled HW) approximations. Note that these are boxplots of point estimates
of conservatism for different designs.

To see how closely the coverage probability provided by dip comes to 1 — ¢ in two-
way models (1.3), 100 random designs were generated under the missing-completely-at-
random model (Little and Rubin 1987, p. 14) for k = b =10, ny,; = - - = ny0,10 = 10,
where independently each observation had a .2 probability of being missing. The top half
of Figure 1 gives side-by-side boxplots of point estimates of conservatism for these 100
models, for o = .10, .05, .01. For this particular setting, both the MinAve approximation
and the MinMax approximation are extremely accurate, much more so than the Hunter—
Worsley approximation. The conservatism of the MinAve approximation seems slightly
more variable than the conservatism of the MinMax approximation. Some of the point
estimates of conservatism of the MinMax and MinAve approximations were negative, but
not significantly so when randomness in the simulation is taken into account, the most
negative ratio of estimated conservatism over its estimated standard deviation being —2.

To see how closely the coverage probability provided by dip come to 1 — ¢ in
one-way analysis of covariance models (1.2) with a common slope, 100 random designs
were generated for k = 10, n; = -+ = njo = 10, taking X, ..., Xjo to be iid standard
normal random variables. The bottom half of Figure 1 gives side-by-side boxplots of point
estimates of conservatism for these 100 models for & = .10, .05, .01. For this particular
setting, the MinAve approximation seems better than the MinMax approximation, which
in turn is much better than the Hunter-Worsley approximation. A few of the point
estimates of conservatism of the MinMax and MinAve approximations were negative, but
not significantly so when randomness in the simulation is taken into account, the most
negative ratio of estimated conservatism over its estimated standard deviation being about
—1.57.
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Figure 1. Conservatism of Approximations for Two-Way (top) and ANCOVA (bottom) Designs.

4. SIMULATED QUANTILE METHODS

When the LP method is not applicable, one can obtain an upper confidence bound
for the desired quantile via simulation. For notational simplicity, we shall discuss the
case of determining an upper confidence bound on d; the technique for |d| is analogous.

Let

D= max &7 '(p; — Py — (i — uk))/\/ vf

1<i<k—1

and let D(jy < -+ < D(y) be the order statistics of a random sample Dy, ---, Dys of
D.

The approach of Edwards and Berry (1987) uses D(,) as a point estimate of d,
assuming r = (1 — a)(m+ 1) is an integer. This approach has been implemented as the
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ADJUST = SIMULATE option for multiple comparisons under the LSMEANS option
in PROC GLM and PROC MIXED of SAS Version 6.11.

In order to achieve conservatism with high confidence, instead of a point estimate
of d, our approach obtains an upper confidence bound U for d. A crude level 1 — «v
upper confidence bound for d is D(y,), where m¢ is the smallest integer such that the
binomial (M, o) probability of at most m® — 1 successes is at least 1 — ~. This upper
confidence bound is obtained by inverting the usual level-« test for

H()ZP{D>CZO}=CM. (4.1)

We can obtain a sharper bound by also generating a control variate D with known
(1 — a)th quantile d., along with each D, and inverting McNemar’s conditional test for

Hy: P{D > do} = P{D® > do,} (= o). (4.2)

This will yield a conditional upper confidence bound for d. If one can generate D to
be highly correlated with D, then the test for (4.2) will be substantially more powerful
than the test for (4.1) and the corresponding confidence bound will be more accurate.

We first derive the conditional upper confidence bound then provide a practical way
of computing it. Let (DS, Dy,),m = 1,2,..., M be a random sample of (D*?, D). For
a candidate (1 — «)th quantile do of D, let n™~(dp) be the number of (D&Y, D,,) such
that

DV >d.,, and Dy <dp
and let n~ T (dp) be the number of (DY, D,y,) such that
DY <de and Dy > dp.
Let t(do) = nT~(dy) + n~(dp). Under the null hypothesis
Hy : d = d, (4.3)

which is equivalent to (4.1) and (4.2) by the definition of d. The conditional distribution
of n™%(do) given t(do) is binomial(¢(dp), 1/2), provided t(dy) > 0 (see Lehmann 1986,
p. 169). Suppose we reject (4.3) in favor of H, : d < doy (which is equivalent to
H()ZP{D>d0}<Oé)if

n” " (do)
p value(dp) = Z ( t(:;) ) (1/2)1d0) <
m=0

(with the understanding that v < .5 and p value(dp) = .5 when t(dy) = 0), then by
the correspondence between tests and confidence sets (see Lehmann 1986, p. 90), a
100(1 — )% confidence set for d is C = {dp : p value(dp) > ~}. Note that setting
~ = .5 results in essentially the median unbiased point estimate of d proposed by Hsu
and Nelson (1990) (with a slight positive bias induced by discreteness). The computation
of the upper confidence bound U = sup{dp : do € C} is simplified by the following
theorem.
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Theorem 1. p value(dy) is nonincreasing in dy.
Proof:  Let Dy < -+ < D(yy be the order statistics of Dy, ..., Dys. Suppose

D(m-—l) <dg < D(m) < d; < D(m—H)

(with the understanding Dy = —oo and Dy M+1) = 00). Then either

or

Figure 2.
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By the correspondence between binomial tail probabilities and the incomplete beta func-
tion,

p value(do) = Is(t(do) — n™F(do),n~ " (do) + 1), (4.4)
and
p value(dy) = Is(t(do) — n~t(do),n T (dp)), (4.5)
or
p value(dy) = Is(t(do) — n~ T (do) + 1,n~ " (do) + 1), (4.6)
where
I.(a,b) = 11:—((;‘)—;% /ch““l(l — )b e

(with the understanding that p value(dj) = .5 when ¢(d§) = 0). In either case, by
monotonicity and symmetry of the incomplete beta function (Abramowitz and Stegun
1972, eqns. 26.5.16 and 26.5.2), (4.4) > (4.5) and (4.4) > (4.6). i

Therefore, U = D(;,ev) where m® is the smallest integer m such that p value(D )
<7.

To generate (D, D) with high correlation, we propose the following strategy:
Recall that if R_j; has the one-factor structure (2.3), then |d| and d can be computed
exactly. But a factor-analytic approximation can be used to find a correlation matrix RY ﬁ
with one-factor structure that is close to R_j. We therefore proceed as follows:

Generate a vector of iid standard normal random variates and a scalar chi-squared
variate, and transform them into a multivariate ¢ vector with correlation R_j, and also
into a multivariate ¢ vector with correlation matrix R4, Because we transform common
variates, it can be shown that monotonic functions of the ¢ vectors, such as D¢ and D,
obtain the maximum possible correlation. And since one can usually find an excellent
factor-analytic approximation to R_y, as verified in Hsu (1992), we expect the correlation
to be quite large.

Specifically, we use the following algorithm:

1. Use a factor analytic algorithm to find the RE f satisfying (2.3) closest to R_j.

Let C_j and C”{} represent the Cholesky decompositions of R_j, and RY 4
respectively.

2. Repeat

(a) Generate Zy,...,Z5_1 " Normal(0,1). Let Z = (Zy,..., Zx—1)".
(b) Generate S? ~ x2/v.
(c) Let

Vi, Vi) = C1Z
(Wi,..., W) = CcFgz.

Return

D% = max{V,/S,...,Vik_1/S}
D = max{Wl/S,...,Wk,l/S}.
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4.1 SIMULATION STUDIES

With the obvious change of notation for the two-sided case, we studied the stochastic
behavior of the bias | D|(,,)—|d] of the crude quantile estimate and the bias | D|(,ev)—|d]
of the control variate quantile estimate.

We first considered the two-way model (1.3) with k =b =10,y = -+ = nj,10 =
10, and generated a design that is neither variance balanced nor orthogonal by giving
each observation a probability of .2 of being missing, under the missing-completely-at-
random model. We took the sample 1 — o quantile from 1,000,000 simulations to be
the true quantile |d|, and then observed bias of 100 pairs of quantile estimates based
on 10,000 simulations of |D| each using the crude simulation technique and the con-
trol variate technique. The results are summarized in Figure 2. The top three plots in

.01

Figure 3.
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Figure 2 correspond to v = .50, while the bottom three correspond to v = .05. Within
each boxplot, crude denotes quantile estimates obtained by crude simulation, while
c-v denotes quantile estimates obtained using the control variate technique. Labeling in
the top margin of each side-by-side boxplot denotes .

We then considered the one-way ANCOVA model (1.2) with a common slope, k =
10, ny = --- = nyp = 10, and generated a design which is neither variance balanced
nor orthogonal by taking X,..., X to be realizations of iid standard normal random
variables. We took the sample 1 — « quantile from 1,000,000 simulations to be the true
quantile |d|, and then observed bias of 100 pairs of quantile estimates based on 10,000
simulations of |D| each using the crude simulation technique and the control variate
technique. The results are summarized by the side-by-side boxplots in Figure 3, which
are arranged as in Figure 2.
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Table 1. Timing and MSE Comparisons of Quantile Estimates

Design e v  c-v time/crude time  crude MSE/c-v MSE

two-way .10 .50 1.42 271
two-way .10 .05 1.42 68
two-way .05 .50 1.42 57
two-way .05 .05 1.42 70
two-way .01 .50 1.42 18
two-way .01 .05 1.45 12
ANCOVA .10 .50 1.41 62
ANCOVA .10 .05 1.44 47
ANCOVA .05 .50 1.44 53
ANCOVA .05 .05 1.41 27
ANCOVA .01 .50 1.41 10
ANCOVA .01 .05 1.41 13
25 .10 .50 1.47 40
25 10 .05 1.47 26
25 .05 .50 1.53 36
25 .05 .05 1.47 24
25 .01 .50 1.47 14
25 .01 .05 1.53 10

Finally, we considered the 2" factorial model with k& = 5, and generated a design
which is neither variance balanced nor orthogonal by giving each observation a proba-
bility of .2 of being missing, under the missing-completely-at-random model. We took
the sample 1 — o quantile from 1,000,000 simulations to be the true quantile |d|, and
then observed bias of 100 pairs of quantile estimates based on 10,000 simulations of
|D| each using the crude simulation technique and the control variate technique. The
results are summarized by the side-by-side boxplots in Figure 4, which are arranged as
in Figure 2.

It is clear from Figures 2—4 that the control variate quantile estimate is significantly
more accurate than the crude simulation estimate for these models, and estimates with
v = .05 are typically more conservative than estimates with v = .50.

Table 1 compares crude simulation with the control variate technique in terms of
CPU time and MSE of the quantile estimate. The column labeled “c-v time/crude time”
is the estimated ratio of CPU time required by the control variate technique and crude
simulation. The column labeled “crude MSE/c-v MSE” is the estimated ratio of the MSE
of quantile estimates using crude simulation and the control variate technique. Clearly,
the control variate technique is worth implementing.

S. EXAMPLES

The following examples illustrate the techniques discussed previously.

The first data set has an unbalanced two-way design (1.3). It is popular for illustrating
unbalanced ANOVA (Fleiss 1986, p. 166; SAS 1989, p. 972). Of interest is the increase
in systolic blood pressure in dogs after treatment, with disease as a blocking factor. The
sample means and sample sizes (in parentheses) are given in Table 2.

Suppose 1-sided confidence bounds on 7y — 74,7 — 74,73 — 74 are of interest. The
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Table 2. Mean Systolic Pressure and Sample Sizes (in parentheses)

Disease  Treatment 1  Treatment2 Treatment3 Treatment 4

1 20333 (6)  28.000 (8)  16.333 (3)  13.600 (5)
2 28250 (4)  33.500 (4) 4.400 (5)  12.833 (6)
3 20.400 (5)  18.167 (6) 8.500 (4)  14.200 (5)

correlation matrix R_4 is

1 - -
4863 1 -1,
4493 4515 1

which can be conveniently obtained from a package such as SAS with the 7, = 0
parametrization. Because k = 4 and all the correlations are positive, R_4 satisfies (2.3),
and the LP method finds A\; = .6957, A, = .6990, A\; = .6458. With error degrees of
freedom v = 52, the critical values d given by the various techniques are given in Table
3 (simulated quantile estimates based on 10,000 simulations).

For this example, the LP technique is ideal but the control variate quantile estimates
with v = .50 seem acceptable as well.

The second data set comes from Scheffé (1959, p. 216), which gives breaking
strength (Y) in grams and thickness (X) in 10™* inch from tests on seven types of
starch film (starch 1 = canna, 2 = sweet potato, 3 = corn, 4 = rice, 5 = dasheen, 6 =
wheat, and 7 = potato). It is assumed that the regression coefficient of Y on X is the
same for all starches.

Suppose two-sided treatments versus control confidence intervals are of interest, with

potato as the control. Then the correlation matrix R_; of 61,..., 8¢ is
1 - - - - -
3958 1 — — - =

5677 .4936 1 - - -
5468 4621 7598 1 — -
5140 4488 7675 .6930 1 -
5505 4922 8651 7738 7915 1

The LP technique is not applicable to two-sided inference. With error degrees of freedom
v = 86, the critical values |d| given by the other techniques are given in Table 4
(simulated quantile estimates based on 10,000 simulations).

Table 3. Critical Values for Two-Way Example

e .10 .05 .01
Bonferroni 1.873 2.186 2.826
Slepian 1.857 2179 2.825
Hunter-Worsley 1.800 2.137 2.804
LP (exact) 1.774 21419 2795

Crude simulation (y = .50) 1.764 2.090 2.768
Control variate (v = .50) 1776 2121 2.804
Crude simulation (y = .05) 1.798 2.167 2.889
Control variate (v = .05) 1.777 2127 2.816
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Table 4. Critical Values for ANCOVA Example

a .10 .05 .01

Bonferroni 2442 2701 3.246
Sidak 2425 2693 3.245
Hunter—Worsley 2.324 2,606 3.185

Crude simuiation (y = .50) 2.282 2573 3.124
Control variate (y = .50) 2272 2565 3.165
Crude simulation (y =.05) 2.303 2.586 3.140
Control variate (v = .05) 2271 2572 3.196
Quantile from 10° samples 2.265 2.561 3.159

For this example, the control variate quantile estimate with v = .50 gave the most
accurate estimates overall.

In general, we recommend the LP method when it is applicable. When the LP method
is not applicable, we recommend using the control variate method with v = .05 when
a conservative quantile estimate is desired, and the control variate method with v = .50
otherwise.

6. CONCLUSIONS AND EXTENSIONS

We have presented computationally efficient, conservative approximations for the
critical values required for MCC inference in the GLM. Although these approximations
are conservative, they are much less conservative than standard approximations based
on Bonferroni, Sidak, Slepian, or Hunter—Worsley inequalities. Fast approximations are
essential for interactive data analysis, since it is impossible to develop tables for the
(uncountably infinite) number of cases that may arise.

Another type of multiple comparisons to which the techniques discussed in this
article apply is multiple comparisons with the best (MCB). The parameters of interest in
MCB are 1; — max;; (15, assuming a larger treatment effect is better. This is because if
(i —max; x; p; > 0, then treatment ¢ is the best treatment, while if y; —max;.; u; < 0,
then treatment 7 is not the best treatment. Furthermore, even if treatment ¢ is not the best,
if p; — max;x; u; > —9, where ¢ is a small positive number, then it is close to the best.

Hsu (1981, 1984a, 1984b) derived simultaneous confidence intervals for u;
—max;«; (4 in balanced and unbalanced one-way models, which have been implemented
in JMP and MINITAB. Chang and Hsu (1992) showed that analogous MCB simultaneous
confidence intervals can be obtained in the GLM setting, provided one can compute the &k
critical values for one-sided MCC when one takes each of the k treatments as the control
in turn. They did not, however, address the computational problem. The techniques for
computing MCC critical values discussed in the previous sections thus facilitate MCB
computations.
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